以太网技术

合集下载

以太网和因特网的区别?

以太网和因特网的区别?

以太网(Ethernet)和因特网(Internet)是网络领域中常见的术语,它们代表了不同的概念和技术。

1. 以太网(Ethernet):以太网是一种局域网(LAN)技术,用于在局域网内部传输数据。

它是一种使用电缆连接计算机和其他设备的通信技术,采用的是共享媒体访问控制(CSMA/CD)协议来处理多台设备之间的冲突。

以太网常用于家庭、办公室和数据中心等小范围的局域网环境,提供高速的数据传输能力。

2. 因特网(Internet):因特网是全球范围内的计算机网络互联网。

它是由许多不同的网络通过路由器互相连接而成,形成了一个巨大的网络空间,提供了各种通信和信息服务。

因特网基于TCP/IP协议,支持全球范围内的数据传输和通信,提供了许多互联网服务,如电子邮件、网页浏览、文件传输等。

总结起来,以太网是一种局域网技术,用于小范围的数据传输,而因特网是全球范围内的互联网,提供了全球范围内的通信和信息服务。

以太网是因特网的基础技术之一,因特网则是连接全球的网络基础设施。

以太网技术

以太网技术

2.2 以太网技术以太网是最早使用的局域网,也是目前使用最广泛的网络。

本节内容包括以太网的诞生及标准系列、命名规则、10Mbps、100Mbps、千兆以太网、层次结构及其功能模块、帧结构、媒体访问控制方式、共享式以太网、交换式以太网。

2.2.1 以太网的发展1.以太网的起源以太网(Ethernet)技术于1973年由施乐公司研发,而后由Xerox、Digital Equipment 和Intel三家公司开发成为局域网组网规范,并于80年代初首次出版,称为DIX1.0。

1982年修改后的版本为DIX2.0。

这三家公司将此规范提交给IEEE(电子电气工程师协会)802委员会,经过IEEE成员的修改并通过,变成了IEEE的正式标准,并编号为IEEE802.3。

Ethernet和IEEE802.3虽然有很多规定不同,但术语Ethernet通常认为与802.3是兼容的。

1983年,IEEE将802.3标准提交给国际标准化组织(ISO)第一联合技术委员会(JTC1),再次经过修订变成了国际标准ISO802.3。

2.几个主要以太网标准1982年10BASE5(DIX)802.3 粗同轴电缆1985年10BASE2 802.3a 细同轴电缆1990年10BASET 802.3j 双绞线1993年10BASEF 802.3j 光纤1995年100BASET 802.3u 双绞线1997年全双工以太网802.3x 双绞线、光纤1998年1000BASEX 802.3z 双绞线、光纤2000年1000BASET 802.3ab 双绞线3.IEEE 802.3命名规则– IEEE 802.3 X TYPE-Y NAME– X表示传输速率<1> 10表示10Mbps<2> 100表示100Mbps<3> 1000表示1000Mbps– TYPE表示信号传输方式<1> Base指基带传输<2> Broad指宽带传输– Y表示传输媒体<1> 5指粗同轴电缆<2> 2指细同轴电缆<3> T指双绞线<4> F指光纤举例:10BASE-5,表示该以太网的带宽为10Mb/s,以基带传输,最大传输距离为500m;10BASE-TX,表示该以太网的带宽为100Mb/s,以基带传输,传输介质(媒体)为双绞线。

以太网技术基本原理

以太网技术基本原理

以太网技术基本原理以太网是一种局域网技术,其基本原理是基于CSMA/CD(载波监听多路访问/冲突检测)协议,采用共享介质的方式实现各个终端设备之间的数据通信。

以下是以太网技术的基本原理的详细介绍。

1.CSMA/CD协议:CSMA/CD协议是以太网的核心协议,用于解决多个终端设备同时访问共享介质时产生的冲突问题。

其工作原理是,在发送数据之前,终端设备会先监听共享介质上是否有信号传输,如果没有,则可以开始发送自己的数据。

如果检测到有信号传输,表示介质正在被占用,终端设备会等待一段随机的时间后再次进行监听,以便选择合适的时机进行数据发送。

如果在发送数据的过程中,终端设备检测到介质上有冲突,就会终止发送并等待一段时间,再次检测介质是否被占用,然后重新开始发送数据。

通过这种方式,CSMA/CD协议可以有效地解决冲突问题,实现数据的可靠传输。

2.介质访问控制:以太网采用的是共享介质的方式,多个终端设备共享同一根传输介质。

为了保证每个终端设备的公平性和均衡性,以太网采用了介质访问控制机制。

具体来说,以太网将共享介质分割为多个时隙,并将每个时隙划分为一个最小的数据传输单元(称为“帧”)。

终端设备在进行数据传输之前,需要等待一个空闲的时隙,然后按照时隙进行数据发送。

这种介质访问控制机制能够有效地保证每个终端设备的公平访问权,并避免了数据传输的混乱和冲突。

3.MAC地址:以太网使用MAC(媒体访问控制)地址来唯一标识网络中的每个终端设备。

MAC地址是一个48位的全球唯一标识符,由6个字节组成。

其中前3个字节是由IEEE管理的组织唯一标识符(OUI),用于标识设备的生产厂商,后3个字节由设备厂商自行分配。

每个终端设备在生产时都会被分配一个唯一的MAC地址,以太网通过这个地址来确定数据应该发送到哪个设备。

4.帧格式:以太网的数据传输通过帧来进行,每个帧是一个完整的数据包。

以太网的帧格式包括了源MAC地址、目标MAC地址、协议类型和数据部分。

以太网的三种以太网标准

以太网的三种以太网标准

以太网的三种以太网标准以太网是一种局域网技术,它使用双绞线或光纤作为传输介质,采用CSMA/CD(载波监听多路访问/冲突检测)协议来实现数据的传输。

在以太网的发展历程中,出现了多种不同的标准,其中最为常见的有以太网、快速以太网和千兆以太网。

本文将对这三种以太网标准进行介绍和比较。

首先,以太网是最早的以太网标准,它使用10Mbps的传输速率,采用基带传输技术,传输距离最远为100米。

在以太网中,数据帧的最小长度为64字节,最大长度为1518字节。

以太网使用CSMA/CD协议来解决数据冲突问题,但随着网络规模的扩大,以太网的传输速率已经无法满足需求,因此出现了更高速的以太网标准。

其次,快速以太网是在以太网的基础上进行改进的,它使用100Mbps的传输速率,采用基带传输技术,传输距离最远为100米。

快速以太网在数据帧的最小长度和最大长度上与以太网保持一致,但由于传输速率的提升,快速以太网能够更快地传输数据,适用于对传输速度要求较高的场景。

快速以太网的出现,使得局域网的传输速度得到了显著提升,大大改善了网络性能。

最后,千兆以太网是目前应用最为广泛的以太网标准,它使用1Gbps的传输速率,采用基带传输技术,传输距离最远为100米。

千兆以太网在数据帧的最小长度和最大长度上与以太网和快速以太网保持一致,但由于传输速率的进一步提升,千兆以太网能够更快地传输大容量数据,适用于对传输带宽要求较高的场景。

千兆以太网的出现,进一步提升了局域网的传输速度和带宽,满足了现代网络应用对高速数据传输的需求。

综上所述,以太网的发展经历了以太网、快速以太网和千兆以太网三种不同的标准,它们分别采用了不同的传输速率和技术,适用于不同的网络场景。

随着网络应用的不断发展,以太网标准也在不断演进,未来可能会出现更高速的以太网标准,以满足日益增长的网络传输需求。

在选择以太网标准时,需要根据实际需求和网络环境来进行合理的选择,以实现最佳的网络性能和传输效果。

以太网技术的发展与应用

以太网技术的发展与应用

以太网技术的发展与应用以太网技术是一种通用局域网技术,它以一种高效、安全的方式传输数据。

它的发展和应用对于我们的生活和工作都产生了深远的影响。

在未来,以太网技术的重要性将会越来越突出。

本文将会探讨以太网技术从诞生到发展及其应用,以及一些未来的趋势和发展方向。

1. 以太网的诞生和发展以太网技术最早是由Xerox公司的研究人员研制出来的,该技术最初是为了在局域网内传输数据而设计的。

在20世纪80年代初,以太网技术经过不断的发展,逐渐得到了广泛的应用。

之后,该技术开始支持多种协议,包括TCP/IP等协议,进一步提高了其适用性。

当然,与传统的以太网相比,以太网技术在过去几年中也经历了一些变化。

在过去几年中,以太网技术已经迅速发展成为了高速以太网,以支持更高的传输速度。

在2000年左右,10G以太网技术已经成为了一种行业标准,这需要更高的性能和更高的带宽。

2. 以太网技术的应用在当前的互联网环境下,以太网技术被广泛应用于各种场合。

现在, 以太网技术已经广泛应用于办公网、校园内部网、工业生产网络、交通运输网络等各种领域。

它已经成为了数百万个网络的标准,支持着各种应用。

可以说,以太网技术的广泛应用对于我们的生活和工作都产生了深远的影响。

它可以支持我们的办公、娱乐、交流等各种活动,并且还可以在数据中心、云计算等领域发挥极大的作用。

3. 未来的趋势和发展将来,以太网技术将会继续取得重大突破。

其中一个趋势是由于数据传输量的不断增长,以太网技术需要提供更高的带宽。

因此,研究团队正在不断研究一些更高速的以太网技术,这些技术可能会支持更高的传输速度,并能够更好地应对未来的数据传输需求。

另一个趋势是以太网技术的智能化。

近年来,人工智能技术的快速发展已经深刻影响着各个行业和领域。

在未来,以太网技术将会和人工智能技术相结合,以提高其自动化和智能化水平,以满足不同场合的需求。

此外,以太网技术还将与其他技术相结合,以进一步提高其适应性和运营效率,例如与5G技术的结合,以实现实时数据的更快传输和更低时延等。

以太网两个主要标准

以太网两个主要标准

以太网两个主要标准以太网是一种局域网技术,它是一种在局域网内进行数据通信的技术,而且是一种基于帧的数据通信技术。

以太网的发展经历了几个不同的标准,其中最主要的两个标准是IEEE 802.3和Ethernet II。

这两个标准在以太网的发展历程中起到了非常重要的作用,下面将对这两个标准进行详细的介绍。

首先,IEEE 802.3是以太网的一个标准,它定义了以太网的物理层和数据链路层的标准。

IEEE 802.3标准规定了以太网的传输速率、传输介质、数据帧格式等方面的内容。

在IEEE 802.3标准中,以太网使用CSMA/CD(载波监听多路访问/碰撞检测)技术来实现多台计算机共享同一条传输介质。

此外,IEEE 802.3标准还规定了以太网的传输速率,目前最常用的以太网传输速率是10Mbps、100Mbps、1000Mbps等。

总的来说,IEEE 802.3标准是以太网的基本标准,它定义了以太网的基本工作原理和基本参数。

其次,Ethernet II是另一个以太网的标准,它也是以太网的一个重要标准。

Ethernet II标准定义了以太网数据帧的格式,它规定了以太网数据帧的各个字段的含义和格式。

在Ethernet II标准中,以太网数据帧包括目的地址、源地址、类型/长度、数据和校验序列等字段。

这些字段的格式和含义在Ethernet II标准中都有详细的规定。

与IEEE 802.3标准相比,Ethernet II标准更加注重数据帧的格式和结构,它规定了以太网数据帧的具体格式,使得不同厂商生产的设备可以在同一网络中进行通信。

综上所述,IEEE 802.3和Ethernet II是以太网的两个主要标准,它们分别定义了以太网的基本工作原理和数据帧的格式。

IEEE 802.3标准规定了以太网的物理层和数据链路层的标准,定义了以太网的传输速率、传输介质、数据帧格式等内容;而Ethernet II标准则更加注重数据帧的格式和结构,规定了以太网数据帧的具体格式。

以太网技术

以太网技术
1979年,梅特卡夫为了开发个人电脑和局域离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和 施乐进行游说,希望与他们一起将以太标准化、规范化。这个通用的以太标准于1980年9月30日出台。当时业界 有两个流行的非公有络标准令牌环和ARCNET,在以太大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com 也成了一个国际化的大公司。
定义
定义
以太技术指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域规范。传统以太络使用 CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。以太与 IEEE802·3系列标准相类似。以太不是一种具体的络,是一种技术规范,在IEEE 802.3中定义了以太的标准协 议。 带冲突检测的载波侦听多路访问(CSMA/CD)技术
谢谢观看
技术介绍
技术介绍
以太是当今现有局域采用的最通用的通信协议标准。该标准定义了在局域(LAN)中采用的电缆类型和信号 处理方法。以太在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太由于其低成本、高 可靠性以及10Mbps的速率而成为应用最为广泛的以太技术。直扩的无线以太可达11Mbps,许多制造供应商提供的 产品都能采用通用的软件协议进行通信,开放性最好。
以太(Ethernet)是一种计算机局域组技术。IEEE制定的IEEE 802.3标准给出了以太的技术标准。它规定 了包括物理层的连线、电信号和介质访问层协议的内容。以太是当前应用最普遍的局域技术。它很大程度上取代 了其他局域标准,如令牌环(token ring)、FDDI和ARCNET。
以太的标准拓扑结构为总线型拓扑,但目前的快速以太(100BASE-T、1000BASE-T标准)为了最大程度的减 少冲突,最大程度的提高络速度和使用效率,使用交换机(Switch hub)来进行络连接和组织,这样,以太的拓 扑结构就成了星型,但在逻辑上,以太仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detect即带冲突检测的载波监听多路访问)的总线争用技术。

以太网技术分析及应用

以太网技术分析及应用

以太网技术分析及应用随着互联网的快速发展,以太网技术已经成为人们日常生活中不可或缺的一部分。

它是将计算机网络连接起来的一种通用技术,不受制于特定的硬件设备。

本文将对以太网技术进行深入分析,并探讨其在实际应用中的作用和优势。

一、以太网技术的特点以太网技术是一种基于局域网的计算机通信技术,它的特点主要有以下几点:1. 数据传输速度快以太网技术传输速度非常快,普通的以太网传输速度可以达到10Mbps、100Mbps、1Gbps等多种速度等级。

现在以太网技术所支持的速度已经提高到数十Gbps,并且随着技术的不断革新,速度还将不断提升。

2. 使用成本低以太网技术的硬件和软件的成本都很低,相对于其他网络技术而言,以太网的使用成本要低得多。

因此,它可以提供更加经济的网络方案。

3. 高可靠性以太网技术还具有高可靠性,即使在网络拓扑结构发生变化时,以太网仍然可以保持正常的运行。

因此,以太网技术可以为用户提供更稳定的服务。

4. 灵活性强以太网技术可以同时支持多种不同的应用程序和协议,因此,用户可以根据自己的具体需求来进行设置和优化。

同时,在应用层面上,以太网技术也可以满足用户多样化的需求。

二、以太网技术的实际应用以太网技术已经在众多领域得到广泛应用。

下面,将介绍一些以太网技术在实际应用中的具体作用和应用场景。

1. 工业自动化控制系统以太网技术在工业自动化控制系统中的应用非常广泛。

它可以帮助企业建立起高效、可靠的生产控制系统,提高工作效率和工作质量。

通过互联网,工业设备与设备之间可以快速传输数据,实现物理设备的联网互通和自主智能化。

2. 云计算和数据中心云计算和数据中心是现代企业进行互联网和网络技术应用的重要场景。

通过以太网技术,企业可以实现更加高效的计算资源管理和数据中心管理,帮助企业提高业务效率和服务质量。

同时,以太网技术也可以帮助企业建立起高速、高可靠的数据传输网络,支持企业的网络应用。

3. 传媒和影视行业以太网技术在传媒和影视行业中的应用也非常广泛。

以太网工作原理

以太网工作原理

以太网工作原理
以太网是一种常用的局域网通信技术,它基于CSMA/CD(载
波监听多路访问/冲突检测)的协议来实现多台计算机之间的
数据传输。

在以太网中,通信的数据被分割成称为帧的小块,并通过物理介质传输。

以太网的工作原理如下:
1. 帧的传输:以太网将要传输的数据分割成固定长度的帧。

每个帧包括帧起始符、目的地址、源地址、数据、校验和等字段。

帧的传输是通过物理介质(如双绞线、光纤等)进行的。

2. 帧的发送:发送数据的计算机将数据封装成帧,并通过物理介质发送。

在发送之前,计算机会监听物理介质上的信号,确保没有其他计算机正在发送数据。

3. 帧的接收:接收数据的计算机会监听物理介质上的信号,一旦检测到帧的起始信号,就开始接收数据。

计算机通过解析帧中的目的地址,判断是否是自己需要接收的数据。

4. 冲突检测:如果多台计算机同时发送数据,就会发生冲突。

以太网使用CSMA/CD协议来解决冲突。

当检测到冲突时,发送数据的计算机会停止发送,并根据一定的算法重新发送数据。

5. 重发机制:一旦发生冲突并成功解决,发送数据的计算机会进行重发,确保数据的完整性。

6. 碰撞域和广播域:以太网将网络划分为碰撞域和广播域。

碰撞域指的是一组可以相互影响和冲突的设备,而广播域指的是可以直接通信的设备。

通过交换机等网络设备能够扩展广播域。

总结来说,以太网利用CSMA/CD协议实现多台计算机之间的数据传输。

通过分割成帧、监听信号、冲突检测等机制,确保数据的传输效率和可靠性。

了解电脑网络WiFi以太网和蓝牙

了解电脑网络WiFi以太网和蓝牙

了解电脑网络WiFi以太网和蓝牙了解电脑网络WiFi、以太网和蓝牙随着科技的发展,电脑网络已经成为人们日常生活中不可或缺的一部分。

无线网络技术在过去几年中迅速发展,其中WiFi、以太网和蓝牙是最为常见的三种网络连接方式。

本文将详细介绍电脑网络中的WiFi、以太网和蓝牙,并分析它们各自的特点和使用场景。

一、WiFi技术WiFi,全名无线保真局域网,是一种无线网络技术。

它允许多台设备通过无线方式连接到局域网或互联网。

WiFi技术的优势在于它的便捷性和灵活性。

用户只需在设备上选择可用的WiFi网络并输入密码,即可快速连接到互联网。

而且,WiFi信号可以在一定范围内传输,使得设备可以在离路由器一定距离的情况下进行网络访问。

然而,与其优势相比,WiFi也存在一些缺点。

首先,WiFi信号的范围受限。

在一些大型建筑物或者户外场景中,覆盖整个区域可能需要多个WiFi信号增强器。

其次,WiFi信号容易受到干扰。

在设备过多或者网络拥挤的情况下,信号质量可能会下降。

最后,WiFi连接存在一定的安全风险。

未经保护的WiFi网络可能会被黑客入侵或者恶意软件感染。

二、以太网技术以太网,全名乙太局域网,是一种有线网络技术。

它通过物理电缆将设备连接到网络中。

以太网的最大优势在于其可靠性和稳定性。

设备通过电缆连接到路由器或交换机,可以实现高速稳定的网络连接。

以太网通常被用于需要大带宽和高速传输的场景,比如办公室和家庭网络。

然而,以太网也存在一些不足之处。

首先,由于线缆的限制,设备只能在有线范围内进行网络访问,缺乏WiFi技术的便捷性。

其次,以太网的物理连接需要布线,对于一些租房或者临时场合来说,布线是不现实的。

此外,以太网连接的设备数量也有限制,如果设备过多,可能需要使用交换机来扩展网络。

三、蓝牙技术蓝牙是一种短距离无线技术,主要用于设备之间的数据传输和通信。

与WiFi和以太网不同,蓝牙技术更适用于小范围内的设备连接。

例如,蓝牙耳机可以连接到手机,蓝牙键盘可以连接到电脑。

《以太网技术原理》课件

《以太网技术原理》课件

以太网交换机制
以太网交换机工作原理
以太网交换机是一种基于数据链路层的网络设备,能够实现多个 端口之间的数据交换。
以太网交换机转发方式
以太网交换机采用快速转发方式,能够快速地将数据帧从一个端口 转发到另一个端口。
以太网交换机交换方式
以太网交换机采用存储转发交换方式,能够将接收到的数据帧先存 储在缓冲区中,再根据目标地址将其转发到正确的端口。
CHAPTER
03
以太网设备与组网
以太网设备的类Байду номын сангаас和功能
交换机
集线器
以太网交换机是一种多端口的网桥, 它能够连接多个以太网段,实现数据 包的转发和过滤。
以太网集线器是一种物理层设备,它 能够将多个以太网段连接在一起,实 现数据的集中和广播。
路由器
以太网路由器是一种网络设备,它能 够将多个网络段连接在一起,实现不 同网络之间的数据传输和路由。
数据中心网络的以太网应用案例
总结词
数据中心网络中,以太网技术能够提供高效、灵活的数据传输服务,支持云计算和大数 据等新兴技术的应用。
详细描述
在数据中心网络中,以太网技术被广泛应用于连接服务器、存储设备和网络设备。以太 网技术提供了一种高效、灵活的数据传输方式,能够满足数据中心网络对于数据传输的 高要求,支持云计算和大数据等新兴技术的应用,提高数据中心的运营效率和数据处理
成本效益
以太网技术是一种广泛使 用的局域网技术,具有较 低的成本和较高的性价比 。
以太网技术的应用场景
企业网络
以太网技术广泛应用于企 业网络中,支持各种规模 的企业实现高效的数据传 输和管理。
校园网络
以太网技术也是校园网络 的主流技术之一,支持学 校内部的网络通信和资源 共享。

以太网接入技术(宽带接入技术课件)

以太网接入技术(宽带接入技术课件)
或冲突窗口,竞争时间片、时间槽、冲突时间片。
四、以太网技术——CSMA/CD
争用期的长度
理论上,CSMA/CD协议的争用期为2
工程上,10 M以太网,取 51.2 s 为争用期的长度。
在争用期内可发送512 bit,即 64 字节。 争用期长度,又称为512位延迟(51.2us) 。
以太网在发送数据时,若前 64 字节没有发生冲突,则后 续的数据就不会发生冲突。
如果接收到对方的基页,则跟自 己发送的基页比较,找出支持能 力的交集,选取最优组合运行。
二、以太网的物理层
物理层规定了两个设备之间的物理接口、电气特 性、规程特性、机械特性等内容。
物理层标准:10BASE2、10BASE5、10BASE-T、 100BASE-TX、100BASE-T2、100BASE-T4、 100BASE-FX、1000BASE-SX、1000BASE-LX、 1000BASE-CX、1000BASE-TX
由此,保证了每个产品都具有唯一的MAC地址。
三、以太网的数据链路层——MAC子层
网卡上的硬件地址
1A-24-F6-54-1B-0E路由器
00-00-A2-A4-2C-02
20-60-8C-C7-75-2A
08-00-20-47-1F-E4
20-60-8C-11-D2-F6
路由器同时连接到两个网络上,因此它有两块网卡和两个硬件地址。
三、以太网分类
1.共享式以太网
共享式以太网中,所有的主机都平等地连接到同轴电缆上,所 有主机发出的信号都会被其他主机接收,如果主机数目较多, 则存在冲突与广播泛滥的严重问题,而且共享式以太网还会存 在介质可靠性差与无任何安全性的突出问题。
常用介质
10Base5:粗同轴电缆(5代表电缆的长度字段长度是500m); 10Base2:细同轴电缆(2代表电缆的长度字段长度是200m)。

以太网传输原理

以太网传输原理

以太网传输原理
以太网是一种常用的局域网技术,它基于CSMA/CD(载波侦听多路访问/冲突检测)协议。

它的传输原理如下:
1. 以太网使用一种双绞线或光纤传输数据。

数据通过电信号或光脉冲的形式在物理媒介上进行传输。

2. 在物理层,数据被组织成帧。

每一帧包含了目的地址、源地址、数据等必要的信息。

通过帧的形式,数据可以在局域网中进行传输。

3. 当一台计算机要发送数据时,它首先监听网络上是否有其他计算机正在发送数据。

这是通过载波侦听来实现的。

4. 如果网络空闲,计算机就可以发送数据。

它会将数据作为一系列的比特传输到物理媒介上。

5. 其他计算机也在同时监听网络状态。

如果它们在同一时间内尝试发送数据,就会发生冲突。

这是通过冲突检测来发现的。

6. 当发生冲突时,所有冲突的计算机都会停止发送数据,并等待一个随机的时间间隔后再次尝试发送。

这被称为指数后退算法。

7. 将数据从一个计算机传输到另一个计算机需要经过多个中继设备(如交换机、集线器等)。

这些设备负责将数据帧从一个物理接口转发到另一个物理接口,以实现数据的传输。

总的来说,以太网利用CSMA/CD协议和帧的组织方式,通过物理媒介在局域网中传输数据。

当发生冲突时,采用指数后退算法来解决,以保证数据的正常传输。

几种局域网技术的区别--以太网、令牌环网、FDDI、ATM、无线局域网WLAN

几种局域网技术的区别--以太网、令牌环网、FDDI、ATM、无线局域网WLAN

1. 以太网(Ether‎N et)以太网最早‎是由Xer‎o x(施乐)公司创建的‎,在1980‎年由DEC‎、Intel‎和Xero‎x三家公司‎联合开发为‎一个标准。

以太网是应‎用最为广泛‎的局域网,包括标准以‎太网(10Mbp‎s)、快速以太网‎(100Mb‎p s)、千兆以太网‎(1000 Mbps)和10G以‎太网,它们都符合‎I EEE8‎02.3系列标准‎规范。

以太网技术‎在网络技术‎中的发展如‎火如荼的主‎要原因便是‎它能够实现‎局域网、城域网等的‎技术的兼容‎,(1)标准以太网‎最开始以太‎网只有10‎M bps的‎吞吐量,它所使用的‎是CSMA‎/CD(带有冲突检‎测的载波侦‎听多路访问‎)的访问控制‎方法,通常把这种‎最早期的1‎0Mbps‎以太网称之‎为标准以太‎网。

以太网主要‎有两种传输‎介质,那就是双绞‎线和同轴电‎缆。

所有的以太‎网都遵循I‎E EE 802.3标准,下面列出是‎I EEE 802.3的一些以‎太网络标准‎,在这些标准‎中前面的数‎字表示传输‎速度,单位是“Mbps”,最后的一个‎数字表示单‎段网线长度‎(基准单位是‎100m),Base表‎示“基带”的意思,Broad‎代表“带宽”。

·10Bas‎e-5 使用粗同轴‎电缆,最大网段长‎度为500‎m,基带传输方‎法;·10Bas‎e-2 使用细同轴‎电缆,最大网段长‎度为185‎m,基带传输方‎法;·10Bas‎e-T 使用双绞线‎电缆,最大网段长‎度为100‎m;·1Base‎-5 使用双绞线‎电缆,最大网段长‎度为500‎m,传输速度为‎1Mbps‎;·10Bro‎a d-36 使用同轴电‎缆(RG-59/U CATV),最大网段长‎度为360‎0m,是一种宽带‎传输方式;·10B as‎e-F 使用光纤传‎输介质,传输速率为‎10Mbp‎s;(2)快速以太网‎(Fast Ether‎n et)随着网络的‎发展,传统标准的‎以太网技术‎已难以满足‎日益增长的‎网络数据流‎量速度需求‎。

以太网技术的使用教程

以太网技术的使用教程

以太网技术的使用教程随着科技的发展,以太网技术已经成为现代社会中最常见的网络通信方式之一。

无论是家庭、企业还是学校,几乎每个地方都离不开以太网。

在本文中,我们将探讨以太网技术的基本原理和使用教程,帮助读者更好地了解和应用这一技术。

一、以太网的基本原理以太网是一种局域网技术,它通过使用双绞线或光纤等传输介质,将计算机、服务器、打印机等设备连接起来,实现数据的传输和共享。

以太网采用的是分组交换的方式,将数据拆分成小的数据包,然后通过网络交换机进行传输。

这种方式能够提高网络的传输效率和可靠性。

二、以太网的硬件设备要使用以太网,我们首先需要准备一些硬件设备。

首先是网络交换机,它是连接各个设备的核心设备。

根据网络规模和需求,我们可以选择不同端口数量和速度的交换机。

其次是网线,它是连接设备和交换机的媒介。

常见的网线有Cat5、Cat6等不同规格,根据需要选择合适的网线。

最后是计算机、服务器和其他设备,它们是网络的终端设备,通过网线与交换机相连。

三、以太网的配置和连接在使用以太网之前,我们需要进行一些配置和连接。

首先,将交换机与电源连接,并连接上网线。

然后,将网线的一端插入交换机的端口,另一端插入计算机或其他设备的网口。

确保网线插入牢固,不松动。

接下来,打开计算机或设备的网络设置,选择以太网连接,并通过动态IP或静态IP方式进行配置。

配置完成后,我们就可以开始使用以太网进行数据传输和共享了。

四、以太网的应用以太网技术广泛应用于各个领域。

在家庭中,我们可以通过以太网连接多台计算机,实现文件共享和互联网访问。

在企业中,以太网连接了各个部门的计算机和服务器,实现了内部数据的快速传输和共享。

在学校中,以太网连接了教室、实验室和图书馆等地的计算机,方便师生进行教学和学习。

五、以太网的扩展和升级随着科技的不断进步,以太网技术也在不断发展。

目前,最常见的以太网标准是10/100/1000Mbps,即千兆以太网。

但随着网络需求的增加,千兆以太网已经无法满足高带宽的要求。

以太网和POS技术介绍

以太网和POS技术介绍

以太网和POS技术介绍2.1、以太网技术以太网接口是实现计算机网络互联的最常用接口,以太网接口以其廉价、兼容性好的优势表现出了强大的生命力。

以太网主要有IEEE802.3标准和 DIX Ethernet V2标准。

两种标准的 MAC帧格式如图1。

两种标准的MAC帧均有6字节长的目的地址和源地址,4字节长的FCS, 2字节长的类型(或长度),MAC 客户数据均是46-1500字节,区别在于802.3帧有LLC(逻辑链路控制)子层。

为了达到比特同步,从MAC子层向下传到物理层时还要在帧的前面插入8个字节,前面7个字节称为前同步码,第8个字节是帧开始定界符,表示其后面的信息就是MAC帧了。

MAC子层还规定了帧间最小间隔为12个字节。

以太网接口主要有10BASE-T、10BASE-F、100BASE-T、10BASE-FX、1000BASE-X、1000BASE-T接口,在跨城市互联中将主要用到GE及以上的接口。

GE物理接口有1000BASE-X(802.3z标准)和1000BASE-T(802.3ab标准)两种。

2、POS技术POS技术实际上就是使用SONET/SDH设备/帧结构来传送IP业务。

它利用SDH 标准的帧结构,同时利用点到点传送的封装技术把IP业务进行封装,然后在光纤或传输系统上进行传输。

POS技术标准的封装协议主要有PPP/HDLC、LAPS和GFP封装协议三种。

2.1、PPP/HDLC协议PPP/HDLC协议是最常用的IP over SDH链路层协议。

它是将IP数据报通过PPP(点对点协议)进行分组,然后使用HDLC(高级链路控制)协议根据RFC1662规范对PPP分组进行定界装帧,最后将其映射到基于字节的SDH虚容器中,再加上相应的开销置入STM-N帧中。

PPP/HDLC帧格式如图2所示。

2.2、LAPS协议LAPS协议是HDLC协议族的一种,它与PPP/HDLC协议有很多相识之处,比如都采用标志字节0x7E进行帧定界,控制域依然是0x03,但 LAPS信息部分已取消了协议字节和填充字节。

以太网技术原理ppt课件

以太网技术原理ppt课件

25m 550m/275m 2km-15km
Page 22
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
IEEE802.3z的线缆标准
1000BaseLX是一种使用长波激光作信号源的网络介质技术,在 收发器上配置波长为1270-1355nm(一般为1300nm)的激光, 既可以驱动多模光纤,也可以驱动单模光纤。
万兆以太网出现 千兆以太网迅速发展
100M快速以太网
共享式转向LAN交换机 10M以太网发展成熟 以太网产生
70年代 80年代
90年代
92年 96年
Page 12
2002年
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
10Base5:粗同轴电缆(5代表电缆的字段长度是500米) 10Base2:细同轴电缆(2代表电缆的字段长度是200米)
Page 13
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
共享式以太网的缺点
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
千兆以太网
千兆以太网是对IEEE802.3以太网标准的扩展,在基于以太网协议的基础之 上,将快速以太网的传输速率100Mbps提高了10倍,达到了1 Gbps。
快速以太网

以太网的技术

以太网的技术

以太网的技术1以太网的发展以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。

Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。

在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。

基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。

在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。

由于其简单、成本低、可扩展性强、与IP网能够很好地结合等特点,以太网技术的应用正从企业内部网络向公用电信网领域迈进。

以太网接入是指将以太网技术与综合布线相结合,作为公用电信网的接入网,直接向用户提供基于IP的多种业务的传送通道。

以太网技术的实质是一种二层的媒质访问控制技术,可以在五类线上传送,也可以与其它接入媒质相结合,形成多种宽带接入技术.以太网与电话铜缆上的VDSL相结合,形成EoVDSL技术;与无源光网络相结合,产生EPON技术;在无线环境中,发展为WLAN技术.以太网技术作为数据链路层的一种简单、高效的技术,以其为核心,与其它物理层技术相结合,形成以太网技术接入体系。

EoVDSL方式结合了以太网技术和VDSL技术的特点,与ADSL和(五类线上的)以太网技术相比,具有一定的潜在优势.WLAN技术的应用不断推广,EPON技术的研究开发正取得积极进展。

随着上述“可运营、可管理”相关关键技术问题的逐步解决,以太网技术接入体系将在宽带接入领域得到更加广泛的应用。

同时,以太网技术的应用正在向城域网领域扩展。

IEEE802.17RPR技术在保持以太网原有优点的基础上,引入或增强了自愈保护、优先级和公平算法、OAM等功能,是以太网技术的重要创新。

对以太网传送的支持,成为新一代SDH设备(MSTP)的主要特征。

10G以太网技术的迅速发展,推动了以太网技术在城域网范围内的广泛应用,WAN接口(10Gbase-W)的引入为其向骨干网领域扩展提供了可能.随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以太网与现场总线技术阅览次数:14856 作者:唐济扬单位:北京鼎实创新科技有限公司前言:以太网及TCP/IP通信技术在IT行业获得了很大的成功, 成为IT行业应用中首选的网络通信技术。

近年来,由于国际现场总线技术标准化工作没有达到人们理想中的结果,以太网及TCP/IP技术逐步在自动化行业中得到应用,并发展成为一种技术潮流。

以太网在自动化行业中的应用应该区分为两个方面问题,或者说两个层次的问题。

一是工厂自动化技术与IT技术结合,与互连网Internet技术结合,成为未来可能的制造业电子商务技术、网络制造技术雏形。

大多数专家们对自动化技术这种发展趋势给予肯定的评价。

另一个方面,即以太网能否在工业过程控制底层,也就是设备层或称为现场层广泛应用?能否成为甚至取代现有的现场总线技术成为统一的工业网络标准?这些问题实为目前自动化行业专家们争论的热点。

本文将只就这一问题,从以太网与现场总线的技术比较出发,谈谈个人看法。

1.以太网指的是什么什么是“以太网”?以及相关的IEEE 802.3及TCP/IP技术? 这对计算机网络工程师可能是基本常识,但我们自动化技术工程师未必清楚。

在讨论以太网与自动化技术及现场总线技术之前,有必要先澄清一下这几个基本术语的含义。

笔者查阅了有关资料,现将有关“以太网”、IEEE 802.3及TCP/IP相关的技术背景摘要如下:(1) 以太网:►1975年: 美国施乐(Xerox)公司的Palo Alto研究中心研制成功[METC76],该网采用无源电缆作为总线来传送数据帧,故以传播电磁波的“以太(Ether)”命名。

►1981年:美国施乐(Xerox)公司+数字装备公司(Digital)+英特尔(Intel)公司联合推出以太网(EtherNet)规约[ETHE80]►1982年:修改为第二版,DIX Ethernet V2因此:“以太网”应该是特指“DIX Ethernet V2”所描述的技术。

(2) IEEE802.3►80年代初期: 美国电气和电子工程师学会IEEE 802委员会制定出局域网体系结构, 即IEEE 802参考模型.IEEE 802参考模型相当于OSI模型的最低两层:►1983年:IEEE 802 委员会以美国施乐(Xerox)公司+数字装备公司(Digital)+英特尔(Intel)公司提交的DIX Ethernet V2为基础,推出了IEEE802.3►IEEE802.3又叫做具有CSMA/CD(载波监听多路访问/冲突检测)的网络。

CSMA/CD是IEEE802.3采用的媒体接入控制技术,或称介质访问控制技术。

因此: IEEE802.3 以“以太网”为技术原形,本质特点是采用CSMA/CD 的介质访问控制技术。

“以太网”与IEEE802.3略有区别。

但在忽略网络协议细节时, 人们习惯将IEEE802.3称为”以太网”。

与IEEE 802 有关的其它网络协议:IIEEE 802.1—概述、体系结构和网络互连,以及网络管理和性能测量。

IEEE 802.2—逻辑链路控制LLC。

最高层协议与任何一种局域网MAC子层的接口。

IEEE 802.3—CSMA/CD网络,定义CSMA/CD总线网的MAC子层和物理层的规范。

IEEE 802.4—令牌总线网。

定义令牌传递总线网的MAC子层和物理层的规范。

IEEE 802.5—令牌环形网。

定义令牌传递环形网的MAC子层和物理层的规范。

IEEE 802.6—城域网。

IEEE 802.7—宽带技术。

IEEE 802.8—光纤技术。

IEEE 802.9—综合话音数据局域网。

IEEE 802.10—可互操作的局域网的安全。

IEEE 802.11—无线局域网。

IEEE 802.12—优先高速局域网(100Mb/s)。

IEEE 802.13—有线电视(Cable-TV)(3) TCP/IP协议►TCP/IP是多台相同或不同类型计算机进行信息交换的一套通信协议。

TCP/IP 协议组的准确名称应该是internet协议族,TCP和IP是其中两个协议。

而internet协议族TCP/IP还包含了与这两个协议有关的其它协议及网络应用,如用户数据报协议(UDP)、地址转化协议(ARP)和互连网控制报文协议(ICMP)。

由于TCP/IP是internet采用的协议组,所以将TCP/IP体系结构称作internet体系结构。

►以太网是TCP/IP使用最普遍的物理网络,实际上TCP/IP技术支持各种局域网络协议,包括:令牌总线、令牌环、FDDI(光纤分布式数据接口)、SLIP (串行线路IP)、PPP(点到点协议)、X2.5数据网等。

见图1:TCP/IP技术支持的各种局域网络协议由于TCP/IP是世界上最大的Internet采用的协议组,而TCP/IP底层物理网络多数使用以太网协议,因此,以太网+TCP/IP成为IT行业中应用最普遍的技术。

本文主题中所提到的“以太网”,按习惯主要指IEEE 802.3协议,如果进一步采用TCP/IP协议族,则采用“以太网+TCP/IP”来表示。

2.以太网为什么会进入自动化行业以太网+TCP/IP作为办公网、商务网在IT行业中独霸天下,其技术特点主要适合信息管理、信息处理系统。

但为什么近年来会逐步向自动化行业发展,形成与现场总线技术竞争的局面?回顾近年来自动化技术的发展, 可以了解到其中的原委。

(1)自动化技术从单机控制发展到工厂自动化FA,发展到系统自动化近年来,自动化技术发展使人们认识到,单纯提高生产设备单机自动化水平,并不一定能给整个企业带来好的效益;因此,企业给自动化技术提出的进一步要求是:将整个工厂作为一个系统实现其自动化,目标是实现企业的最佳经济效益。

因此,有了现代制造自动化模型,见图2。

所以说自动化技术由单机自动化发展到系统自动化。

<现代制造自动化模>自动化技术从单机控制向工厂自动化FA、系统自动化方向发展。

制造业对自动化技术提出了数字化通信及信息集成的技术的要求;即要求应用数字通信技术实现工厂信息纵向的透明通信。

(2)工厂底层设备状态及生产信息集成、车间底层数字通信网络是信息集成系统的基础为满足工厂上层管理对底层设备信息的要求, 工厂车间底层设备状态及生产信息集成是实现全厂FA/CIMS的基础。

见图3: 工厂自动化信息网络分层结构:工厂管理级、车间监控级、现场设备级<工厂自动化信息网络分层结构:工厂管理级、车间监控级、现场设备级 > (3) 现场总线技术的产生现场总线(FieldBus)是工厂底层设备之间的通信网络,是计算机数字通信技术在自动化领域的应用,为车间底层设备信息及生产过程信息集成提供了通信技术平台.图4是工厂底层应用现场总线技术实现了全厂信息纵向集成的透明通信,即从管理层到自动化底层的数据存取.<工厂底层应用现场总线技术实现了全厂信息纵向集成的透明通信>(4) 现场总线国际标准之一ROFIBUS技术ROFIBUS技术是1987年由Siemens公司等13家企业和5家研究机构联合开发;1989年批准为德国工业标准DIN 19245(PROFINUS-FMS/-DP);1996年批准为欧洲标准EN 50170 V.2 (PROFIBUS-FMS/-DP);1999年PROFIBUS成为国际标准 IEC 61158 的组成部分(Type III).PROFIBUS技术为设备层提供了PROFIBUS-DP和-PA技术,为车间层提供了PROFIBUS-FMS技术,见图5。

►PROFIBUS-DP是设备层现场总线, 用于控制器(如PLC、PC、NC)与现场控制设备(如驱动器、检测设备、HMI等)之间的通信总线;►设备层现场总线技术具有高速(12M)、实时、确定、可靠特点(如-DPV2可用于运动控制),传输的数据量相对较小。

►PROFIBUS-PA也是设备层总线,具有IEC61158-2的物理层,可实现总线供电,并有本质安全技术。

►PROFIBUS-FMS车间级现场总线,主要用于车间级设备监控。

主要完成车间生产设备状态及生产过程监控、车间级生产管理、车间底层设备及生产信息集成。

车间级现场总线具有传输数据量大、应用层信息规范完整等特点,对网络实时性要求不高。

(5)国际现场总线技术标准IEC61158根据现场总线技术概念,面对自动化行业千变万化的现场仪表设备,要实现不同厂家不同种类产品的互连,现场总线技术标准化工作至关重要。

为此,国际IEC委员会于1984年提出制定现场总线技术标准IEC1158(即IEC61158)。

A. IEC 61158目标:IEC1158的目标是制定面向整个工业自动化的现场总线标准。

为此,根据不同行业对自动化技术的需求不同,将自动化技术分为五个不同的行业;见图6:IEC1158的目标。

IEC61158是要制定出一部满足工业自动化五大行业不同应用需求的现场总线技术标准。

B.妥协的结果经过十几年的努力,1998年,对IEC 61158 (TS)进行投票。

由于IEC 61158 (TS)只包含了Process Control部分,因此,IEC 61158 (TS)没有通过投票,自动化行业期待了十多年的统一的现场总线技术标准的努力失败。

1999年12月,IEC61158放弃了原有设想,通过妥协方案,即:以IEC 61158 (TS)+ Add.Protocols作为IEC61158技术标准的方案;其中Add.Protocols包含Control Net、PROFIBUS、P-Net、FF HSE、Swift Net、WorldFIP和Interbus 总线。

自动化行业将面临一个多种总线技术标准并存的现实世界。

C.IEC 61158发展历程给我们的启示面对当今以太网在自动化领域的应用潮流,IEC 61158发展历程至少给了我们两点启示,这对我们能够清醒面对现实颇有好处:I、工业自动化技术应用于各行各业,使用一种现场总线技术不可能满足所有行业的技术要求;现场总线不同于计算机网络,人们将会面对一个多种总线技术标准共存的现实世界。

II、技术发展很大程度上受到市场规律、商业利益的制约;技术标准不单是一个技术规范,也是一个商业利益的妥协产物。

(6)以太网进入自动化领域IEC61158制定统一的现场总线技术标准努力的失败,使一部分人自然转向了在IT行业已经获得成功的以太网技术。

因此,现场总线标准之争,给了以太网进入自动化领域一个难得的机会。

积极推进这种技术概念的如法国施耐德公司,面向工厂自动化提出了基于以太网+TCP/IP的解决方案,称之为“透明工厂”。

望文生义可以理解为:“协议规范统一,信息透明存取”。

施耐德公司是将以太网技术引入工厂设备底层,广泛取代现有现场总线技术的积极倡导者和实践者,已有一批工业级产品问世和实际应用。

相关文档
最新文档