有关数学建模的方法论

合集下载

数学建模中常用的十种算法

数学建模中常用的十种算法

数学建模中常用的十种算法在数学建模中,有许多种算法可以用来解决不同类型的问题。

下面列举了数学建模中常用的十种算法。

1.线性规划算法:线性规划是一种优化问题,目标是找到一组线性约束条件下使目标函数最大或最小的变量的值。

常用的线性规划算法包括单纯形法、内点法和对偶法等。

2.非线性规划算法:非线性规划是一种目标函数或约束条件中存在非线性项的优化问题。

常见的非线性规划算法有牛顿法、拟牛顿法和遗传算法等。

3.整数规划算法:整数规划是一种线性规划的扩展,约束条件中的变量必须为整数。

常用的整数规划算法包括分支定界法、割平面法和混合整数线性规划法等。

4.动态规划算法:动态规划是一种通过将问题分解为更小的子问题来解决的算法。

它适用于一类有重叠子问题和最优子结构性质的问题,例如背包问题和最短路径问题。

5.聚类算法:聚类是一种将数据集划分为不同群组的算法。

常见的聚类算法有K均值算法、层次聚类法和DBSCAN算法等。

6.回归分析算法:回归分析是一种通过拟合一个数学模型来预测变量之间关系的算法。

常见的回归分析算法有线性回归、多项式回归和岭回归等。

7.插值算法:插值是一种通过已知数据点推断未知数据点的数值的算法。

常用的插值算法包括线性插值、拉格朗日插值和样条插值等。

8.数值优化算法:数值优化是一种通过改变自变量的取值来最小化或最大化一个目标函数的算法。

常见的数值优化算法有梯度下降法、共轭梯度法和模拟退火算法等。

9.随机模拟算法:随机模拟是一种使用概率分布来模拟和模拟潜在结果的算法。

常见的随机模拟算法包括蒙特卡洛方法和离散事件仿真等。

10.图论算法:图论是一种研究图和网络结构的数学理论。

常见的图论算法有最短路径算法、最小生成树算法和最大流量算法等。

以上是数学建模中常用的十种算法。

这些算法的选择取决于问题的特性和求解的要求,使用合适的算法可以更有效地解决数学建模问题。

数学建模的主要建模方法

数学建模的主要建模方法

数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。

它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。

数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。

下面将分别介绍这些主要建模方法。

1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。

它适用于对大量数据进行分析和归纳,提取有用的信息。

数理统计法可以通过描述统计和推断统计两种方式实现。

描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。

2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。

它可以用来寻找最大值、最小值、使一些目标函数最优等问题。

最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。

这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。

3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。

这种方法适用于可以用一些基本的方程来描述的问题。

方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。

通过求解这些方程,可以得到问题的解析解或数值解。

4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。

它可以用来处理随机变量、随机过程和随机事件等问题。

概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。

利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。

5.图论方法:图论方法是研究图结构的数学理论和应用方法。

它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。

图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。

第2章数学建模方法论.doc

第2章数学建模方法论.doc

第2章 数学建模方法论不同的实际问题,建模的模式千差万别,各不相同,这与问题的性质、建模的目的以及建模者自身的数学基础知识和专长有关。

然而,还是有一些普遍适用的思想方法与思维方式,本章将从方法论的角度介绍建模时通常会采用的一般方法。

2.1 概 论数学建模首先在学习形式上与别的数学课程有很大的差别,它不像许多人想像的那样单靠一个人、一支笔、一张纸就可以解决问题,它经常表现为一种集体性质的活动,三、五个人甚至于更多的人组成一个团队,通过个人的智慧和与别人的合作来解决一个甚至一类实际问题。

因此,培养良好的交流、合作和表达能力非常重要。

对于个人来讲,在整个建模过程中,应该自始至终坚持做好记录,独自思考时随时记下好的想法。

再次,在进行集体讨论时借助于文字进行交流,并记下讨论要点;工作中记下方法、计划、进程和结果,以辅助我们高效地进行交流以及作为论文写作的原始资料。

另外,思考时养成记录的习惯可以帮助我们整理思路,并经常可以激发我们产生出新的、创造性的思想。

其次,数学建模在思考方法和思维方式上与学习其他数学课程有很大差别。

这表现在数学建模过程是一种创新过程,它需要相当高程度的观察力、想像力以及一些灵感和顿悟。

数学建模讲求创新,而我们同学最缺乏的就是创新思维,创新思维是创新能力的核心与灵魂,创新思维主要有类比思维、归纳思维、逆向思维、发散思维、猜测思维等等。

下面介绍几种常用的思维方法。

2.1.1发散性思维方法发散性思维是创新思维的重要组成部分,是发明创造的一个有力的武器。

遇到问题(特别是难题)时最好不要有一点想法就一条路走下去,应把自己的思路尽量打开,去寻求更佳的方案。

这里介绍两种方法:一种是借助于一系列问题来展开思路;另一种是借助于下意识的联想来展开思路。

第一种方法我们称之为提问题法。

当你想到什么主意或者面临什么难题时,通过提出一系列问题来导出一些想法或一个好的方案。

一些常用的问题如下:(1)这个问题和什么问题相类似?(2)假如变动问题的某些条件将会怎样?(3)将问题分解成若干部分再考虑会怎样?(4)重新组合又会怎样?对问题已有初步的想法或解决方案时,为进一步打开思路还可提出以下问题:(5)我们还可以做些什么工作?(6)还有没有需要进一步完善的内容?(7)可否换一种数学工具来解决此问题?另一种方法我们称之为关键词联想法。

上海市考研数学建模常用方法总结

上海市考研数学建模常用方法总结

上海市考研数学建模常用方法总结在上海市的考研数学建模中,有一些常用的方法,它们在解决问题过程中发挥着重要的作用。

本文将对这些常用方法进行总结,包括线性回归分析、优化算法、图论分析以及偏微分方程等方法。

通过对这些方法的学习与应用,考生能够更好地应对数学建模考试。

一、线性回归分析线性回归分析被广泛应用于数学建模过程中的数据拟合与预测问题。

在考研数学建模中,可以根据给定的数据集,利用最小二乘法求解最佳拟合直线或平面,从而对数据进行分析与预测。

线性回归分析具有计算简单、易于理解和应用的优点,因此在考试中经常使用。

二、优化算法优化算法是解决数学建模问题的重要手段之一。

通过建立数学模型并运用优化算法,可以求解最优化问题,如最大值、最小值等。

上海市考研数学建模中常用的优化算法包括求解线性规划问题的单纯形法以及求解非线性规划问题的梯度下降法、遗传算法等。

这些算法在实际问题中表现出良好的效果,考生需要熟悉其原理和应用。

三、图论分析图论分析是数学建模中常用的方法之一,它通过建立图模型来描述问题的结构和关系,并运用图论算法进行分析和求解。

在上海市考研数学建模中,常用的图论方法包括最短路径算法、最小生成树算法等。

通过对问题进行建模与分析,考生可以快速找到问题的最优解,提高解题效率。

四、偏微分方程偏微分方程是数学建模中的重要工具,它广泛应用于物理、工程和生物等领域。

在上海市考研数学建模中,通过建立适当的偏微分方程模型,可以对实际问题进行精确描绘和数值模拟。

常见的偏微分方程方法包括有限差分法、有限元法等。

考生需要掌握这些方法的基本原理和应用,以应对考试中的相关问题。

总结:在上海市考研数学建模中,线性回归分析、优化算法、图论分析以及偏微分方程等方法是常用且重要的。

考生需要通过对这些方法的学习与应用,提高数学建模的能力与水平。

除了掌握方法的原理和应用,考生还应该在实践中多加练习,尝试解决不同类型的数学建模问题,从而提升解题能力与经验。

数学建模方法-精品文档资料整理

数学建模方法-精品文档资料整理

数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。

1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。

2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。

二、数据分析法从大量的观测数据利用统计方法建立数学模型。

1. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

3. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

三、仿真和其他方法1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。

①离散系统仿真--有一组状态变量。

②连续系统仿真--有解析表达式或系统结构图。

2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。

3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)二、风扇的最优化布局设计为你上课的教室安装风扇,请你做风扇的最优化布局设计;建模提示:(1)在风扇数目一定的情况下,风扇的位置不同,效果也不同,是否一定存在一个最好的布局?(2)在风扇数目不定的情况下,就有一个安装多少台风扇为最佳方案的问题,自然也应该存在一个最佳数量结果。

数学建模各类方法归纳总结

数学建模各类方法归纳总结

数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。

随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。

本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。

一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。

它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。

贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。

2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。

它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。

数理统计模型在市场预测、风险评估等领域有着重要的应用。

3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。

线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。

4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。

非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。

二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。

它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。

神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。

2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。

它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。

遗传算法模型在组合优化、机器学习等领域具有广泛的应用。

3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。

它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。

有关数学建模的方法论

有关数学建模的方法论

有关数学建模的方法论数学模型指对于现实世界或虚拟世界的某一特定对象,为了某个特定目的,做出的一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。

该结构能解释特定现象的现实形态,或者能预测对象的未来走向,或者能提供处理对象的最优策略或控制。

在这里数学建模被看作成为一种能实现某一特定目标的有用工具。

从本质上说,数学模型是一个以“系统”概念为基础的,关于目标世界的一小部分或几个方面抽象的“映像”。

数学模型的特征是:第一,它是某事物为一种特殊目的而作的一个抽象化、简单化的数学结构,这意味着扬弃、筛选,是取舍次要因素,突出主要因素的主要结果;是事物的一种模拟,虽源于现实,但非实际的原型,而又高于现实。

第二,它是数学上的抽象,在数值上可以作为公式的应用,可以推广到与原物相近的一类问题。

第三,可以作为某事物的数学语言,可以译成算法语言,编写程序进入计算机。

数学模型分类有以下几种:按数学模型的功能可分为定量和定性的。

按数学模型的目的可分为理论研究的,预期结果的和优化的。

按数学模型结构可分为分析的,非分析的和图论的。

按数学模型所研究对象的特性可分为确定的和随机的,静态的和动态的,连续的和离散的,或线性的和非线性的。

当然根据数学建模应用于不同的领域相应的方法也很多,那这里只根据游戏中常见的几个数学建模方法简单介绍下。

建模的一般步骤和原则一个理想的数学模型必须是能反映系统的全部重要特征,同时在数学上又易于处理,即它满足:模型的可靠性在允许的误差范围内,它能反映出该系统的有关特性的内在联系。

模型的适用性它易于用数学手段处理和计算。

一个实际问题往往是非常复杂的,而影响它的因素也是很多的。

如果想把它的全部影响因素都反映到数学模型中来,这样的那个很难甚至无法建立,即使能建立也是无法求解的,这样也是达不到要求满足需求的。

根据相关经验做出一个方法论,该方法论建模的一般步骤如下:1) 模型准备了解问题的实际背景也就是系统策划提供的规则和相应的逻辑,并通过沟通明确建模的目的。

数学建模与实际问题解决

数学建模与实际问题解决

数学建模与实际问题解决数学建模是一种将实际问题转化为数学模型、运用数学工具和方法对问题进行分析和解决的方法。

通过数学建模,我们能够更好地理解和解决实际问题,提高问题解决的效率和准确性。

本文将介绍数学建模的概念、重要性以及其在实际问题解决中的应用。

一、数学建模的概念和方法论数学建模是指将实际问题转化为数学模型的过程。

数学模型是对实际问题的数学抽象和描述,可以是代数方程、微分方程、概率模型等。

数学建模的核心在于建立一个合适的数学模型,以反映问题的关键特征,并运用数学工具和方法对模型进行分析和求解。

数学建模的方法论主要包括以下几个步骤:1. 问题定义:明确问题的背景、目标和限制条件,确定需要解决的具体问题。

2. 建立数学模型:根据问题的特点,选择适当的数学模型来描述问题,将问题转化为数学表达式或方程。

3. 模型分析:对建立的数学模型进行分析,寻找模型的数学特性和规律,探讨问题的数学本质。

4. 模型求解:运用数学工具和方法对模型进行求解,得到问题的解或近似解。

5. 结果验证:对模型的解进行验证,验证结果是否符合实际问题的要求和限制条件。

二、数学建模的重要性数学建模在科学研究、工程技术、经济管理等领域具有重要的应用和研究价值,其重要性主要体现在以下几个方面:1. 提高问题解决的效率和准确性:数学建模能够将复杂的实际问题转化为数学模型,通过对模型的分析和求解,能够更好地理解问题的本质和规律,提高问题解决的效率和准确性。

2. 推动科学研究和技术创新:数学建模是科学研究和技术创新的重要手段之一,能够帮助科学家和工程师深入研究问题,发现新的规律和现象,提出新的理论和方法。

3. 辅助决策和优化问题:数学建模可以帮助决策者分析问题和评估方案的优劣,为决策提供科学依据和参考,优化决策结果。

4. 推广数学知识和方法:数学建模是将数学知识和方法应用于实际问题的重要途径,能够帮助人们认识数学的实际意义和应用范围。

三、数学建模在实际问题解决中的应用数学建模广泛应用于不同领域的实际问题解决中,以下列举几个典型应用案例:1. 物流优化问题:物流是现代社会经济活动中不可或缺的一部分,通过数学建模可以对物流网络进行优化设计,提高物流效率,降低成本。

数学模型方法论

数学模型方法论

1.4 数学建模的特点
(1)数学建模不一定有唯一正确的答案.事实上,对于一个实际问题,不同 的人、不同的建模目的、不同的建模方法、不同的时间场合、不同的分析、不同 的假设等都可能导致完全不同的结果.因此,数学建模的结果无所谓对与错,但 有优与劣的区别,实践检验是评价一个模型优劣的唯一标准.
(2)数学建模没有统一的方法.对于同一个问题,不同的人采取的数学建模 方法可以不同,每个人可根据自己的特长和偏好采取适合自己的方法.我们建模 的目的是解决实际问题,使用近代数学方法建立的模型并不一定比采用初等数学 方法建立的模型好.
1.3 模型分析与检验
对求解结果进行数学上的分析,如误差分析、统计分析、模型对数据的灵敏度 分析、模型对假设的强健性分析等,再将结果与实际的现象、数据进行比较,检 验模型的适应性和合理性.如果结果与实际不符,通常是模型假设出了问题,应 对其进行补充修改,再重新建模、求解、检验,如此反复,直至检验结果达到要 求.
综上分析,我们给出数学模型与数学建模较为严格的定义:对于现实世界的一个 特定对象,为了一个特定目的,根据对象特有的内在规律,在做出问题分析和一些 必要、合理的简化假设后,运用适当的数学工具得到的数学结构,就称为该特定对 象的数学模型,根据上述基本步骤建立数学模型的全过程称为数学建模.
1.1 问题分析与模型假设
1.4 数学建模的特点
(3)模型的可行性.尽管人们总是希望模型可以逼近研究对象,但是一个 非常逼近实际的模型在数学上通常是很难处理的,这达不到通过建模解决实际 问题的目的.因此,建模时不必追求完美无缺,模型只要符合实际问题的基本 要求即可.
(4)模型的渐进性.对于稍微复杂的一些实际问题,其建模通常不能一次 成功,往往需要反复几次,一般是由简到繁,再由繁到简,逐渐变成符合要求 的模型,这也符合人们认识问题的规律性.

建模方法论

建模方法论

第二章建模方法论2.1 数学模型系统模型的表示方式有许多,而其中数学方式是系统模型的最主要的表示方式。

系统的数学模型是对系统与外部的作用关系及系统内在的运动规律所做的抽象,并将此抽象用数学的方式表示出来。

本节将讨论建立数学模型作用、数学模型与集合及抽象的关系、数学建模的形式化表示、数学模型的有效性与建模形式化、数学模型的分类等问题。

2.1.1 数学建模的作用1、提高认识通信、思考、理解三个层次。

首先,一个数学描述要提供一个准确的、易于理解的通信模式;除了具有清楚的通信模式外,在研究系统的各种不同问题或考虑选择假设时,需要一个相当规模的辅助思考过程;一旦模型被综合成为一组公理和定律时,这样的模型将使我们更好地认识现实世界的现象。

因此,可把现实世界的系统看成是由可观测和不可观测两部分组成。

2、提高决策能力管理、控制、设计三个层次。

管理是一种有限的干预方式,通过管理这种方式人们可以确定目标和决定行为的大致过程,但是这些策略无法制定得十分详细。

在控制这一层,动作与策略之间的关系是确定的,但是,由于控制中的动作仅限于在某个固定范围内进行选择,所以仍然限制了干预的范围。

在设计层,设计者可以在较大程度上进行选择、扩大或代替部分现有的现实,以满足设计者的希望。

因此,可把现实世界的系统看成是由可控制和不可控制两部分组成。

3---统实际系统不可观部分不可控部分可观部分 可控部分目标:提高认识 目标:提高干预能力图 2.2 根据目标建立系统2.1.2 集合、抽象与数学模型抽象过程是建模工程的基础。

由于建模和集合论都是以抽象为基础,集合论对于建模工程是非常有用。

1、集合:有限集合无限集合,整数集合I,实数集合R ,正整数集合I +,非负整数集合I 0+=I +U{0},}{0,0∞=++∞ I I 是非负整数加符号∞而成的集合。

与其类似,R +,R 0+和+∞,0R 则表示实数的相应集合。

叉积是集合基本运算:令A 和B 是任意集合,则A ×B={(a,b ),a ∈A,b ∈B}。

数学建模方法论

数学建模方法论
模型:所研究的客观事物有关属性的模拟, 具有事物中感兴趣的主要性质.
* 对实体形体的模拟
如:飞机形状进行模拟的模型飞机; * 对实体某些属性的模拟 如:对飞机性能进行模拟的航模比赛飞机;
* 对实体某些属性的抽象 如:一张地质图是某地区地矿情况的抽象 任何一个模型仅为真实系统某一方面 的理想化,决不是真实系统的重现. 数学模型定义: 关于现实对象基于一定目的抽象、简化 的,具有对象本质属性的数学结构.
第一部分
建模概念及建模方法论
1.1
数学模型简介
一、数学科学的重要性
由于数学的重要性和广泛应用,在国际
上“数学”(Mathematics)已逐渐被“数
学科学”(Mathematical Sciences)代替. 第二次世界大战后,新技术、特别是高
技术像雨后春笋般出现. 数学的应用,从传
统的机械制造等领域迅速扩展到高新技术中.
五、从现实世界到数学模型
1. 世界的末日? 当一个直径约 为1000米的小行 星正好在南极与 南极洲大陆相撞 ,
是否会产生灾难
性的影响?
2. 如何控制喷泉的高度? 如何智能实时控制广场中央的喷泉高 度,以避免水雾浸湿游客的衣衫?
3. 地球在变冷 还是变暖? 能否根据地球过去50年的温现 “千年极寒”?
科学技术是第一生产力.
目前,数学在航空航天技术,先进 制造技术,信息技术,网络技术和网络 安全,能源勘探开发,环境保护和生态, 经济管理,城市规划和交通,基因工程 和生物信息技术,生物医学和疾病防治 等方面起着非常重要的作用.
在经济竞争中数学科学必不可少
自1969年开始颁发诺贝尔经济学奖(The Central Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel). 获奖者们的研究领域涉及到:管理科 学、发展经济学、宏观经济学、微观经济 学、计量经济学、行业组织、公共财政学、 国际经济学、国民收入核算、经济社会学、 信息经济学、经济史、金融经济学„„ 数学家纳什

建模十大经典算法

建模十大经典算法

数学建模十大经典算法1、蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。

2、数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。

3、线性规划、整数规划、多元规划、二次规划等规划类问题。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、M A T L A B软件实现。

4、图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7、网格算法和穷举法。

网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8、一些连续离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9、数值分析算法。

如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10、图象处理算法。

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理。

预测与预报 8种(必掌握:回归马尔可夫列时间序列小波分析神经网络混沌序列备用高大上:灰色预测微分方程预测)评价与决策 8种(常用的备用的)模糊评价主成分分析纸和笔综合评价层次分析数据包络分析优劣节方差分析协方差分析分类与判别 8种(聚类5距离关联层次密度判别3贝叶斯模糊识别马歇尔)关联与因果 8种(样本少,样本小)灰色 candleprosingcouple典型相关分析标准化生产可兰姐因果检测优化与控制 8种(单一,多目标,约束条件)线性整数分析性动态网络计算机灰色模糊多目标。

数学建模的基本方法

数学建模的基本方法

数学建模的基本方法1.类比法数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。

类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。

2.量纲分析法量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。

2解题方法类比法:数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。

类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。

量纲分析法:量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。

3层次结构法1. 递阶层次结构原理:一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2. 测度原理:决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而关于社会、经济系统的决策模型来说,经常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3. 排序原理:层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题4常见方法一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。

数学建模方法详解--三种最常用算法

数学建模方法详解--三种最常用算法

数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。

数学建模算法整理

数学建模算法整理

数学建模算法整理数学建模是将现实生活中的问题抽象化为数学问题,并通过数学模型来解决这些问题的过程。

数学建模是一项复杂而精确的任务,涉及到数学知识、计算能力、逻辑思维和创造力。

在数学建模过程中,算法的选择和设计是至关重要的。

本文将对一些常用的数学建模算法进行整理和介绍。

一、优化算法优化算法是一类常用的数学建模算法,主要用于解决最优化问题。

最优化问题是指在一定的约束条件下,寻找使其中一目标函数取得最大(或最小)值的一组决策变量。

常见的优化算法包括线性规划(LP)、整数规划(IP)、非线性规划(NLP)、动态规划(DP)等。

线性规划是求解线性目标函数下的约束条件的最优解。

常用的线性规划算法有单纯形法、内点法、椭球法等。

整数规划是求解约束条件下的整数决策变量的最优解。

常用的整数规划算法有分支定界法、割平面法、混合整数规划法等。

非线性规划是求解非线性目标函数下的约束条件的最优解。

常用的非线性规划算法有牛顿法、拟牛顿法、粒子群算法等。

动态规划是一种递推求解问题最优解的方法。

常用的动态规划算法有最短路径算法、背包问题算法等。

二、图论算法图论算法是解决图相关问题的一类数学建模算法。

图是由节点和边组成的数据结构,常用于表示网络、社交关系等离散型数据。

最短路径算法用于寻找两个节点之间的最短路径。

常用的最短路径算法有迪杰斯特拉算法、弗洛伊德算法等。

最小生成树算法用于寻找一个连通图的最小生成树。

常用的最小生成树算法有Prim算法、Kruskal算法等。

网络流算法用于在有向图中寻找最大流或最小割。

常用的网络流算法有Ford-Fulkerson算法、Edmonds-Karp算法等。

三、回归分析算法回归分析算法用于通过已知的数据集合,建立一个模型来预测未知的数据。

回归分析常用于统计学和机器学习中。

线性回归是通过线性拟合来寻找自变量与因变量之间的关系。

常用的线性回归算法有最小二乘法、岭回归等。

非线性回归是通过非线性拟合来寻找自变量与因变量之间的关系。

数学模型建模方法论一

数学模型建模方法论一

目标态
教师的主要 教学目标
* 解决实际问题时,分析出问题的初态和 目标态很困难.
* 未清晰地描述出问题的“初态”和“目 标态”之前,过早地进入解决问题的阶段, 会条件不清、目标不明. 例6.飞行管理问题 尽量拓展思路的基础上, 再进行充分分析 得到的问题分解结果:
初态:现有飞机的飞行状态(数据)与碰 撞条件
, t0
r 其中 S , c K 1 N0 K
数学分析
1. 若 r<0,则S<0,随着 t ,则 N ( t ) 0
2. 若 r>0,讨论Logistic曲线特征
(1) N ( t ) 0, N(t) 是单调上升函数.
K ( 2) K lim N ( t ) lim KSt t 1 Ce t
K是使得人口净增长率 r(K)=0 的人口数,可
理解为该地区能容纳的人口上限.
CK 3 S 2e KSt (Ce KSt 1) ( 3) 令 N ( t ) 0 KSt (1 Ce )
K 存在 t 0 使 N ( t 0 ) 0, x( t 0 ) , 且 2
距离
优 化 算 法
问题的初步理解和想法: 飞行管理问题是优化问题,在调整方向角的 幅度尽量小的同时,还必须注意调整方案及 算法的实时性.
思考题:尝试读题与分析
MCM1999A题:强烈的碰撞 美国国家航空和航天局(NASA)从过去某 个时间以来一直在考虑一颗大的小行星撞击 地球会产生的后果。 作为这种努力的组成部分,要求你们队来 考虑这种撞击的后果,假如该小行星撞击到 了南极洲的话。人们关心的是撞到南极洲比 撞到地球的其他地方可能会有很不同的后果。
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。

数学建模方法

数学建模方法

数学建模方法
在数学建模中,有许多方法可供选择,这些方法在不同的问题情境下展现出了各自的优势与适用性。

以下是数学建模中常用的几种方法:
1. 数理统计:数理统计是一种通过对收集到的数据进行分析和解释,来推断总体特征和规律的方法。

它可以帮助研究人员利用已有的数据来预测未来的趋势和结果。

2. 优化方法:优化方法用于寻找最佳的解决方案,以最大化或最小化某个目标函数。

这种方法被广泛应用于资源分配、生产计划、交通路径规划等问题的求解。

3. 动态系统建模:动态系统建模用于描述和模拟由一组变量和它们之间的关系构成的系统。

通过建立动态方程,可以预测系统随时间变化的行为,并对其进行控制和优化。

4. 图论与网络分析:图论与网络分析研究图形和网络的性质及其在实际问题中的应用。

它可以用来分析交通网络、社交网络等复杂系统,并提供优化解决方案。

5. 差分方程与微分方程模型:差分方程和微分方程模型是描述连续或离散系统行为的数学工具。

它们广泛应用于物理、工程、生物学等领域,用于分析和预测系统的发展和变化。

6. 概率论与随机过程:概率论与随机过程研究随机现象的数学模型和规律。

它可以帮助研究人员分析风险、评估不确定性,
以及设计和优化随机策略。

除了上述几种方法外,数学建模还可以结合其他学科的方法和技巧,如线性代数、图像处理、机器学习等,来解决复杂的实际问题。

研究人员需要根据问题的特性和需求,选择合适的方法进行建模和求解。

数学建模思想方法大全及方法适用范围

数学建模思想方法大全及方法适用范围

数学建模思想方法大全及方法适用范围数学建模是指运用数学方法和技巧解决实际问题的过程。

不同的问题需要不同的建模方法和思想,下面是一些常用的数学建模思想方法及其适用范围。

1.数学规划方法:包括线性规划、整数规划、非线性规划等。

适用于有约束条件的最优化问题,如资源分配、生产计划等。

2.动态规划方法:适用于具有最优子结构的问题,通过将问题划分为子问题,并利用子问题的最优解构建原问题的最优解。

常用于路径规划、资源管理等。

3.随机过程方法:适用于具有随机特性的问题,如排队论、随机模拟等。

常用于风险评估、金融风险管理等领域。

4.图论方法:适用于用图形表示问题的结构和关系的问题,如网络优化、旅行商问题等。

5.统计建模方法:包括回归分析、时间序列分析、方差分析等。

适用于通过样本数据建立数学模型,分析和预测问题。

6.数据挖掘方法:包括聚类分析、关联规则挖掘、分类预测等。

适用于从大规模数据中发现隐藏的模式和规律。

7.模糊综合评价方法:适用于多指标评价和决策问题,通过模糊数学的方法将主观和客观指标进行综合评价,辅助决策。

8.最优化方法:包括梯度下降法、遗传算法、模拟退火等。

适用于求解无约束优化问题和非线性问题。

9.离散事件系统建模方法:适用于描述离散事件发展过程的问题,如物流调度、生产流程优化等。

10.时空建模方法:适用于描述时空变化和相互作用的问题,常用于交通流动、城市规划等领域。

11.复杂网络建模方法:适用于分析复杂系统中的网络结构和动态特性,如社交网络、生物网络等。

12.随机优化方法:将随机性引入传统的优化方法,如随机梯度下降法、遗传算法等。

以上是一些常用的数学建模思想方法及其适用范围,实际问题的建模过程中可以根据具体情况选择合适的方法,甚至可以综合运用多种方法。

数学建模的关键在于将实际问题抽象为数学问题,并选择合适的数学工具进行求解。

数学建模方法有哪些

数学建模方法有哪些

数学建模方法有哪些模型假设:依据对象的特征和建模目的,对问题进行必要的、合理的简化,用准确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概合计,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和推断力,善于辨认主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

模型分析:对模型解答进行数学上的分析。

"横看成岭侧成峰,远近凹凸各不同',能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。

还要记住,不管那种状况都必须进行误差分析,数据稳定性分析。

模型构成:依据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当铭记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

模型求解:可以采纳解方程、画图形、证实定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。

一道实际问题的解决往往必须要纷繁的计算,许多时候还得将系统运行状况用计算机模拟出来,因此〔编程〕和熟悉数学软件包能力便举足轻重。

2数学建模方法一在教学中渗透数学建模思想:渗透数学建模思想的最大特点是联系实际.高职人才培养的是应用技术型人才,对其数学教学以应用为目的,体现"联系实际、深入概念、注重应用'的思想,不应过多强调灌输其的严密性,思维的严谨性.学数学主要是为了用来解决工作中出现的具体问题.而高职教材中的问题都是现实中存在又必须解决的问题,正是建模案例的最正确选择.因此,作为数学选材并不难,只要我们深入钻研教材,挖掘教材所蕴涵应用数学的,从中加以推广,结合不同专业选编合适的实际问题,创设实际问题的情境,让同学能体会到数学在解决问题时的实际应用价值,激发同学的求知欲,同时在实际问题解决的过程中能很好的掌握知识,培养同学灵活运用和解决问题、分析问题的能力.数学教学中所涉及到的一些重要概念要重视它们的引入,要〔制定〕它们的引入,其中以合适的案例来引入概念、演示方法是将数学建模思想融入数学教学的重要形式.这样在传授数学知识的同时,使同学学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,使同学了解到他们现在所学的那些看来枯燥无味但又似乎天经地义的概念、定理和公式,并不是无本之木、无源之水,也不是人们头脑中所固有的, 而是有现实的来源与背景, 有其原型和表现的.在教学施行中, 我们依据现有成熟的专业教材,选出具有典型数学概念的应用案例,然后按照数学建模过程规律修改和加工之后作为课堂上的引例或者数学知识的实际应用例题.这样使同学既能亲切感受到数学应用的广泛,也能培养同学用数学解决问题的能力.总之,在高职数学教学中渗透数学建模思想,等于教给同学一种好的思想方法,更是给同学一把开启成功大门的钥匙,为同学架起了一座从数学知识到实际问题的桥梁,使同学能灵活地依据实际问题构建合理的数学模型,得心应手地解决问题.但这也对数学〔教师〕的要求就更高,教师要尽可能地了解高职专业课的内容,搜集现实问题与热点问题等等.3数学建模方法二教学方法:功在平常,培养兴趣:在平常的上课期间,老师应该融进一些数学建模的知识和内容,吸引同学对数学建模的兴趣.事实上,数学建模中的题目并不像很多人想象中的那么难,往往只不过在平常接触的问题基础上进行略微的延伸.目前,已经有一些数学建模方而的老师编写了一些简单易懂的通用教材,老师可以依据这些简单的内容在课堂讲课的中间插入这些,其一能够活跃一下课堂的气氛,让同学对数学建模有一个简单的熟悉,并且对数学的应用性进行认可.其二能够培养同学解决问题时的数学思维逻辑,对他们综合素养的提升有很大的帮助.通过平常老师耳濡目染地宣扬和教育,在而临数学建模比赛的时候,肯定会有更多的同学愿意报名参加,然后再进行集中培训,一切也就水到渠成了,即使有的同学没有能够取得好的成绩,在训练的过程中也能学到很多的东西,这就足够了.夯实基础,注重思路:数学建模的大厦是建立在一点一滴的基础知识上的,这一点十分重要.因此,在数学建模教学之前,对同学基础知识的培养和夯实是成功的第一个步骤.只有对学过的知识了如指掌,在见到问题时,心中才干形成比较合理的解决方案.有很多参赛者在参加完比赛后都为自己没有解题思路而后悔,其根本原因就是对知识点或者数学公式的内涵没有真正理解,不知道这个公式或者这个概念还可以变形成为解题的方案.数学建模高于基础知识,但是又源于基础知识,只不过是经过了变形,很多理解不彻底的同学就没看得出来而造成遗憾.扎实的基础知识首先是为解题思路的形成提供帮助,其次才是解题的过程.解题的过程中往往涉及一些必须要舍弃专业的问题,比如对不重要的因素进行舍弃,舍弃后误差的计算等,也是必须要强大的计算能力的,这些都是些在平常进行学习的基础上取得的技巧.4数学建模方法三建模思想的意义:提升线性代数课程的吸引力,增加同学的受益面:数学建模是培养同学运用数学工具解决实际问题的最好表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关数学建模的方法论
数学模型指对于现实世界或虚拟世界的某一特定对象,为了某个特定目的,做出的一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。

该结构能解释特定现象的现实形态,或者能预测对象的未来走向,或者能提供处理对象的最优策略或控制。

在这里数学建模被看作成为一种能实现某一特定目标的有用工具。

从本质上说,数学模型是一个以“系统”概念为基础的,关于目标世界的一小部分或几个方面抽象的“映像”。

数学模型的特征是:
第一,它是某事物为一种特殊目的而作的一个抽象化、简单化的数学结构,这意味着扬弃、筛选,是取舍次要因素,突出主要因素的主要结果;是事物的一种模拟,虽源于现实,但非实际的原型,而又高于现实。

第二,它是数学上的抽象,在数值上可以作为公式的应用,可以推广到与原物相近的一类问题。

第三,可以作为某事物的数学语言,可以译成算法语言,编写程序进入计算机。

数学模型分类有以下几种:
按数学模型的功能可分为定量和定性的。

按数学模型的目的可分为理论研究的,预期结果的和优化的。

按数学模型结构可分为分析的,非分析的和图论的。

按数学模型所研究对象的特性可分为确定的和随机的,静态的和动态的,连续的和离散的,或线性的和非线性的。

当然根据数学建模应用于不同的领域相应的方法也很多,那这里只根据游戏中常见的几个数学建模方法简单介绍下。

建模的一般步骤和原则
一个理想的数学模型必须是能反映系统的全部重要特征,同时在数学上又易于处理,即它满足:
模型的可靠性在允许的误差范围内,它能反映出该系统的有关特性的内在联系。

模型的适用性它易于用数学手段处理和计算。

一个实际问题往往是非常复杂的,而影响它的因素也是很多的。

如果想把它的全部影响因素都反映到数学模型中来,这样的那个很难甚至无法建立,即使能建立也是无法求解的,这样也是达不到要求满足需求的。

根据相关经验做出一个方法论,该方法论建模的一般步骤如下:
1) 模型准备
了解问题的实际背景也就是系统策划提供的规则和相应的逻辑,并通过沟通明确建模的目的。

掌握研究对象的各个信息并针对这些信息弄清并挖掘对象的特征。

在此过程中需要经过与系统设计者长时间深入的沟通并进行细致的调查研究,了解具体实现目的和需求。

2) 模型条件
根据实际系统的特征和建模的目的,在掌握了系统策划提供的需求基础上,对问题进行加工简化,并应用数学中所学到的数学理论做出相关条件假设,这一步是整个建模过程中最为关键的一步。

不同的简化和条件假设会得到不同的模型。

假设做的不合理或过分简单,会导致模型的失败或矛盾冲突。

假设做的过于详细,考虑的因素过多,会使模型变的非常复杂而无法进行下一步的工作。

所以,在此步骤要善于辨别问题的主要矛盾和次要矛盾,主要矛盾中也会有主次因素,果断的抓住主要矛盾中的主要因素,适当摒弃次要因素,尽量将问题均匀化、线性化。

3) 模型建立
根据所做的假设,利用适当的数学工具刻画各变量之间的关系,建立相应的数学结构(公式、表格、图形等)。

在建模时究竟采用什么数学工具根据自己的实际需求而定(说点题外话,政治经济学而知,工具只是提高生产力的效率一种手段),尽量采用简单的数学工具,以得到模型被更多人查看和使用。

4) 模型求解
根据采用的数学工具,对模型求解,包括简单解方程、逻辑推理、稳定性分析和可扩展性的讨论等等。

5) 模型的分析
对模型的结果进行数学上的分析,有时是根据问题的性质,分析各变量之间的依赖关系、稳定关系;有时还需要对结果进行数学上的预测,给出最优决策和控制
6) 模型检验
将模型分析的结果返回实际系统问题中,然后验证合理性和适用性。

即验证模型的正确性。

7) 模型应用
将模型应用到系统中再次验证,然后再根据实际的需求进行细化和修正等工作。

如果检验结果与实际不符或部分不符,一般情况问题出现模型条件假设这一步,就应该修改,重新建模,如果检验结果正确,满足问题所要求的精度,认为模型可用,便可进行最后一步模型的应用。

建模需能力
数学建模是一门高深的把应用数学发挥到极致的艺术,对数值策划要求相对比较高,必须见多识广,善于揣摩别人的思想和需求,多实践、体会和总结。

从以上的方法论来看所需能力包括几个方面:
沟通能力,了解各种策划的需求在提出假设条件的最为重要的,同时也是是否能够有效的建模保证。

λ
理解实际问题的能力,包括广博的知识面,资源整合、分析统计数据能力。

λ
抽象分析问题的能力,包括抓住主要矛盾,选择合适变量,如何进行归纳、类比、联系等创造能力。

λ
运用工具知识的能力,包括数学工具、计算机语言、逻辑推理等。

λ
实验调试能力,有耐心的针对数据反复修改验证的动手过程。

λ
同时在以上必备能力外还要注重培养自己的观察力和想象力,有极高的想象力才能推动游戏开发发展,优化数学建模的过程选择适当的算法等。

由于数值策划是一个跨学科交叉很广的一个工种,俗话说:系统数值策划是不分家的。

能够设计完美数值首先你要对系统中各个环节都把握的非常到位,同时还包含了有趣可玩性高的关卡、引爆整个游戏剧情发展的兴奋点等等。

相关文档
最新文档