期权定价理论(ppt30张)
合集下载
金融期权的定价及应用PPT(79张)
![金融期权的定价及应用PPT(79张)](https://img.taocdn.com/s3/m/9a3ab49ff524ccbff1218459.png)
如果股票价格极低于行使价格(P/X<<1),则 两个N(d)将无限趋近于0,而买权价值也将趋近于 0。
根据OPM,下面的看涨期权的价值是多少? 假设: Pt==$02.57;年X:=$2 2=50; .k1R1F = 6%;
V = $27[N(d1)] - $25e-(0.06)(0.5)[N(d2)].
期权定价原理(2)
计算行使日的所得
在行使日,由于股票价格或为30元,或为50元, 该份买权的价值也可分为两种情况:
低 高 高-低区间
股票价格 30 50 20
行使价格 期权价值
35
0
35
15
15
期权定价原理(3)
等化行使日所得
如果均衡状态存在,则期权价值与其基础资产 ——股票价值之间应当存在等比例关系:
期权术语
看涨期权: 一个在未来某一时期买入特定 数量证券的期权。
看跌期权: 一个在未来某一时期出售特定 数量证券的期权。.
行使价格: 期权合约中规定的证券买或卖 价格。
期权价格: 期权合约的市场价格。 到期日: 期权的到期日。 行使价值: 如果期权在今天被行使,买
权的价值= 当前的股票价格 – 行使价 格。 注释: 如果股票的价格低于行使价格, 行使价值为零。
ln($27/$25) + [(0.06 + 0.11/2)](0.5)
d1 =
(0.3317)(0.7071)
= 0.5736.
d2 = d1 - (0.3317)(0.7071) = d1 - 0.2345 = 0.5736 - 0.2345 = 0.3391.
N(d1) = N(0.5736) = 0.5000 + 0.2168 = 0.7168.
根据OPM,下面的看涨期权的价值是多少? 假设: Pt==$02.57;年X:=$2 2=50; .k1R1F = 6%;
V = $27[N(d1)] - $25e-(0.06)(0.5)[N(d2)].
期权定价原理(2)
计算行使日的所得
在行使日,由于股票价格或为30元,或为50元, 该份买权的价值也可分为两种情况:
低 高 高-低区间
股票价格 30 50 20
行使价格 期权价值
35
0
35
15
15
期权定价原理(3)
等化行使日所得
如果均衡状态存在,则期权价值与其基础资产 ——股票价值之间应当存在等比例关系:
期权术语
看涨期权: 一个在未来某一时期买入特定 数量证券的期权。
看跌期权: 一个在未来某一时期出售特定 数量证券的期权。.
行使价格: 期权合约中规定的证券买或卖 价格。
期权价格: 期权合约的市场价格。 到期日: 期权的到期日。 行使价值: 如果期权在今天被行使,买
权的价值= 当前的股票价格 – 行使价 格。 注释: 如果股票的价格低于行使价格, 行使价值为零。
ln($27/$25) + [(0.06 + 0.11/2)](0.5)
d1 =
(0.3317)(0.7071)
= 0.5736.
d2 = d1 - (0.3317)(0.7071) = d1 - 0.2345 = 0.5736 - 0.2345 = 0.3391.
N(d1) = N(0.5736) = 0.5000 + 0.2168 = 0.7168.
第十二章 期权定价理论 《金融工程学》PPT课件
![第十二章 期权定价理论 《金融工程学》PPT课件](https://img.taocdn.com/s3/m/5c3c6652c4da50e2524de518964bcf84b9d52de7.png)
➢ 由于方程中不存在风险偏好,那么风险将不会对其解产生影响,因此 在对期权进行定价时,可以使用任何一种风险偏好,甚至可以提出一 个非常简单的假设:所有投资者都是风险中性的
12.2布莱克—斯科尔斯(B-S)模型
(6)Black-Scholes期权定价公式 Black-Scholes微分方程,对于不同的标的变量 S 的不同衍生证券,会 有许多解,解这个方程时得到的特定衍生证券的定价公式 f 取决于使用 的边界条件,对于股票的欧式看涨期权,关键的边界条件为: f=Max(ST-K,0) (12—28) 由风险中性可知,欧式看涨期权的价格C是期望值的无风险利率贴现的
第12章 期权定价理论
12.1 期权价格概述
➢ 12.1.1期权定价概述
➢ 在所有的金融工程工具中,期权是一种非常独特的工具。因为期 权给予买方一种权利,使买方既可以避免不利风险又可以保留有 利风险,所以期权是防范金融风险的最理想工具。但要获得期权 这种有利无弊的工具,就必须支付一定的费用,即期权价格
一定的假设条件下得到的,这些条件包括:股票价格满足布朗运动;
股票的收益率服从正态分布;期权的有效期内不付红利。该公式的不
足之处是它允许有负的股票价格和期权价格,这显然和实际是不相符
合的,而且该公式没有考虑货币的时间价值。由于其理论的不完备,
计算结果的不准确,再加上当时市场的不发达,因此该定价公式在当
N(d)=
1
d
e
x2
2
dx
2
(12—3)
这些公式都应有以下假设: (1)没有交易费。 (2)可以按无风险利率借入或贷出资金
12.2布莱克—斯科尔斯(B-S)模型
➢ 对期权的定价理论进行开创性研究的学者是法国的Bachelier。1900
期权定价理论课件
![期权定价理论课件](https://img.taocdn.com/s3/m/c657dc8009a1284ac850ad02de80d4d8d15a0196.png)
引入非金融资产
除了金融资产,现实中还存在许多非金融资产,如房地产、艺术品等。将这些资产的价格和风险特性纳入期权定 价模型中,可以更好地服务于实物期权定价和风险管理。
运用计算机技术提高模型计算效率
采用更高效的算法
随着计算机技术的发展,可以采用更高效的算法来计算期 权价格,如蒙特卡洛模拟算法、有限元方法等。这些算法 可以更快地得到期权价格估计值。
、城市规划、自然资源开发等多个领域。
06
期权定价理论的发展趋势与展望
改进现有模型的局限性
01
引入更复杂的因素
随着金融市场的变化和经济的发展,期权定价理论需要引入更多的影响
因素,如宏观经济因素、市场情绪因素等,以更准确地预测期权价格。
02 03
完善假设条件
现有的期权定价模型通常基于一些假设条件,如无摩擦市场、完全竞争 等。为了更真实地反映市场情况,需要进一步放宽或修改这些假设条件 。
期权类型
按行权时间可分为欧式期 权和美式期权;按交易场 所可分为场内期权和场外 期权。
期权持有者权利
期权持有者具有在到期日 之前按照行权价买入或卖 出标的资产的权利。
期权定价模型的起源与发展
起源
期权定价模型最初由BlackScholes模型和二叉树模型两
种主要方法所主导。
发展历程
随着金融市场的不断发展和完善, 各种新型期权定价模型如随机波动 率模型、跳跃扩散模型等逐渐被引 入。
:P = (1 - e^(-rT)) / (1 + d) - K / (1 + d)^T, 其中P表示期权价格,r表示无风险利率,T表示时间步长,d表 示上涨与下跌的比率。 • 模型应用:基于二叉树模型的数字期权定价方法适用于美式期权和欧式期权的定价,具有较高的计算效率和适 用性。
除了金融资产,现实中还存在许多非金融资产,如房地产、艺术品等。将这些资产的价格和风险特性纳入期权定 价模型中,可以更好地服务于实物期权定价和风险管理。
运用计算机技术提高模型计算效率
采用更高效的算法
随着计算机技术的发展,可以采用更高效的算法来计算期 权价格,如蒙特卡洛模拟算法、有限元方法等。这些算法 可以更快地得到期权价格估计值。
、城市规划、自然资源开发等多个领域。
06
期权定价理论的发展趋势与展望
改进现有模型的局限性
01
引入更复杂的因素
随着金融市场的变化和经济的发展,期权定价理论需要引入更多的影响
因素,如宏观经济因素、市场情绪因素等,以更准确地预测期权价格。
02 03
完善假设条件
现有的期权定价模型通常基于一些假设条件,如无摩擦市场、完全竞争 等。为了更真实地反映市场情况,需要进一步放宽或修改这些假设条件 。
期权类型
按行权时间可分为欧式期 权和美式期权;按交易场 所可分为场内期权和场外 期权。
期权持有者权利
期权持有者具有在到期日 之前按照行权价买入或卖 出标的资产的权利。
期权定价模型的起源与发展
起源
期权定价模型最初由BlackScholes模型和二叉树模型两
种主要方法所主导。
发展历程
随着金融市场的不断发展和完善, 各种新型期权定价模型如随机波动 率模型、跳跃扩散模型等逐渐被引 入。
:P = (1 - e^(-rT)) / (1 + d) - K / (1 + d)^T, 其中P表示期权价格,r表示无风险利率,T表示时间步长,d表 示上涨与下跌的比率。 • 模型应用:基于二叉树模型的数字期权定价方法适用于美式期权和欧式期权的定价,具有较高的计算效率和适 用性。
期权定价理论-PPT课件
![期权定价理论-PPT课件](https://img.taocdn.com/s3/m/03faaa30c281e53a5802ffdc.png)
2019/3/11 11
B-S 期权定价模型是根据ITO过程的特例-几何 布朗运动来代表股价的波动
s x ,( a s , t ) s ,( b s , t ) s t t t t t t d s s d t s d w t t t t
省略下标t,变换后得到几何布朗运动方程
1.在某一小段时间Δt内,它的变动Δw与时段满
足Δt
2019/3/11 5
wt t t
这 里 , w w w , i d N ( 0 , 1 ) t t t 1 t i
(13.1)
2. 在两个不重叠的时段Δt和Δs, Δwt和Δws是独立的, 这个条件也是Markov过程的条件,即增量独立!
利用泰勒展开,忽略高阶段项,f(x,t)可以展开为
2 2 f f 1 f 2 f f ( t x x ) xt 2 t x 2 x xt 2 1 f 2 t 2 (13.8) 2 t
在连续时间下,即 Dt ? 0 从而 Dt 2 ? 0 D t ? 0
b t
2 2
(13.10)
2 且 当时 t 0 , 有 t 0 , 从 而
t 0
l i m D ( x )[ b t ] D ( ) 0 2
2 2 2 2
即Δx2不呈现随机波动!
由(13.10)可得
E ( x ) E ( b t ) b t E () (13.11)
2 f f 1 f 2 d f d t d x 2d x t x 2 x
f f 1 f 2 d t ( a d t b d w ) 2b d t t x 2 x
B-S 期权定价模型是根据ITO过程的特例-几何 布朗运动来代表股价的波动
s x ,( a s , t ) s ,( b s , t ) s t t t t t t d s s d t s d w t t t t
省略下标t,变换后得到几何布朗运动方程
1.在某一小段时间Δt内,它的变动Δw与时段满
足Δt
2019/3/11 5
wt t t
这 里 , w w w , i d N ( 0 , 1 ) t t t 1 t i
(13.1)
2. 在两个不重叠的时段Δt和Δs, Δwt和Δws是独立的, 这个条件也是Markov过程的条件,即增量独立!
利用泰勒展开,忽略高阶段项,f(x,t)可以展开为
2 2 f f 1 f 2 f f ( t x x ) xt 2 t x 2 x xt 2 1 f 2 t 2 (13.8) 2 t
在连续时间下,即 Dt ? 0 从而 Dt 2 ? 0 D t ? 0
b t
2 2
(13.10)
2 且 当时 t 0 , 有 t 0 , 从 而
t 0
l i m D ( x )[ b t ] D ( ) 0 2
2 2 2 2
即Δx2不呈现随机波动!
由(13.10)可得
E ( x ) E ( b t ) b t E () (13.11)
2 f f 1 f 2 d f d t d x 2d x t x 2 x
f f 1 f 2 d t ( a d t b d w ) 2b d t t x 2 x
期权定价理论课件(PPT60页)
![期权定价理论课件(PPT60页)](https://img.taocdn.com/s3/m/31179fbba2161479171128d7.png)
之间的相互作用和看涨期权—看跌期权之
间的平价关系能够造就相对公平的价格。
看涨期权—看跌期权之间的平价关系使期
权之间、期权与标的物之间的价格达到均 衡关系。因此,具有相同标的物、协定价 格和到期日的看涨期权与看跌期权之间存 在一定的价格关系。
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
能排除提前执行的可能性。因此其下限为:
P ≥max(D+X-S,0)
22
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
➢五、看涨期权与看跌期权之间 的平价关系
在期权市场,市场参与者(套利者)
期权价格的下限
美式看涨期权价格的下限
无收益资产美式看涨期权价格的下限
提前执行无收益资产美式看涨期权是不明智的。因此,同 一种无收益标的资产的美式看涨期权和欧式看涨期权的价值是
相同的,即:C=c
我们可以得到无收益资产美式看涨期权价格的下限:
由于r>0,所以C>max(S-X,0)
有收益资产的美式看涨期权下限
17
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权价格的下限
欧式看跌期权价格的下限
无收益资产欧式看跌期权价格的下限
考虑以下两种组合: 组合A:一份欧式看跌期权加上一单位标的资产
组合B:金额为Xe-r(T-t)的现金
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
润,当总利润小于零时,内在价值为零。内在价值反映了期权合约中
间的平价关系能够造就相对公平的价格。
看涨期权—看跌期权之间的平价关系使期
权之间、期权与标的物之间的价格达到均 衡关系。因此,具有相同标的物、协定价 格和到期日的看涨期权与看跌期权之间存 在一定的价格关系。
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
能排除提前执行的可能性。因此其下限为:
P ≥max(D+X-S,0)
22
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
➢五、看涨期权与看跌期权之间 的平价关系
在期权市场,市场参与者(套利者)
期权价格的下限
美式看涨期权价格的下限
无收益资产美式看涨期权价格的下限
提前执行无收益资产美式看涨期权是不明智的。因此,同 一种无收益标的资产的美式看涨期权和欧式看涨期权的价值是
相同的,即:C=c
我们可以得到无收益资产美式看涨期权价格的下限:
由于r>0,所以C>max(S-X,0)
有收益资产的美式看涨期权下限
17
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权价格的下限
欧式看跌期权价格的下限
无收益资产欧式看跌期权价格的下限
考虑以下两种组合: 组合A:一份欧式看跌期权加上一单位标的资产
组合B:金额为Xe-r(T-t)的现金
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
润,当总利润小于零时,内在价值为零。内在价值反映了期权合约中
期权定价理论课件
![期权定价理论课件](https://img.taocdn.com/s3/m/2673de7ab80d6c85ec3a87c24028915f804d84ff.png)
证券业协会
协助证监会和期交所进行 监管,促进期权市场的健 康发展。
期权市场的法规要求
交易规则
规定期权交易的流程、交易方式、交易时间等。
投资者适当性
确保只有符合一定条件的投资者才能参与期权交易。
信息披露
要求期权发行方及时、准确地进行信息披露。
期权市场的道德规范
诚信原则
01
所有参与期权市场的机构和个人都应遵守诚信原则,不得进行
欺诈、内幕交易等行为。
公平原则
02
确保所有投资者在期权交易中享有平等的权利和机会。
公正原则
03
监管机构应对所有市场参与者一视同仁,维护市场的公正性。
THANKS
谢谢您的观看
策略是赚取权利金,获得赚取现金的机会。
日历价差期权组合
策略是赚取权利金,获得赚取现金的机会。
动态对冲策略
动态对冲策略
策略是根据市场走势,不断调整持仓 比例,以降低风险。
动态对冲策略
策略是根据市场走势,不断调整持仓 比例,以降低风险。
05
期权的风险管理
希腊字母在风险管理中的应用
希腊字母
Delta、Gamma、Vega、Theta、Rho、 Lambda
应用
有限差分法广泛应用于金融衍生品定 价、数值分析和科学计算等领域。
03
期权定价的数学基础
概率论基础
概率空间
定义了随机事件、样本空间和概 率测度的概念,为期权定价提供 了基础的概率框架。
随机变量
描述了标的资产价格的可能取值 ,通过随机变量的期望和方差来 评估标的资产的预期收益和风险 。
条件概率与独立性
要点二
详细描述
期权定价是确定期权价值的过程,对于投资者和交易者来 说至关重要。通过合理的期权定价,投资者可以更好地评 估期权的风险和收益,从而做出更明智的决策。同时,对 于交易者来说,了解期权的定价原理和机制有助于制定更 好的交易策略,提高盈利机会。此外,期权定价理论也是 金融工程和风险管理等领域的重要基础。
第九章期权定价ppt可编辑修改课件
![第九章期权定价ppt可编辑修改课件](https://img.taocdn.com/s3/m/916af78a77eeaeaad1f34693daef5ef7ba0d12a1.png)
(一)欧式看涨期权与看跌期权之间的平价关系
1,无收益资产的欧式期权 考虑如下两个组合:
组合A:一份欧式看涨期权加上金额为Xer(T t) 的现金
组合B:一份有效期和协议价格与看涨期权相同的欧式看跌 期权加上一单位标的资产
2024/8/2
在期权到期时,两个组合的价值均为max(ST,X)。由于欧 式期权不能提前执行,因此两组合在时刻t必须具有相等的
2024/8/2
(五)标的资产的收益
由于标的资产分红付息等将减少标的资产的价格, 而协议价格并未进行相应调整,因此在期权有效期内 标的资产产生收益将使看涨期权价格下降,而使看跌 期权价格上升。
2024/8/2
期权价格的影响因素
变量
欧式看涨 欧式看跌 美式看涨 美式看跌
标的资产的市价 +
-
+
-
期权协议价格 -
(9.4)
2024/8/2
例题
考虑一个不付红利股票的欧式看涨期权,此 时股票价格为20元,执行价格为18元,期权价 格为3元,距离到期日还有1年,无风险年利率 10%。问此时市场存在套利机会吗?如果存在, 该如何套利?
(2)有收益资产欧式看涨期权价格的下限
我们只要将上述组合A的现金改为 D Xer(T ,t) 其中D 为期权有效期内资产收益的现值,并经过类似的推导,就 可得出有收益资产欧式看涨期权价格的下限为:
9.1 期权价格的特性
一、期权价格的构成 期权价格等于期权的内在价值加上时间价值。
1,内在价值 内在价值是指期权持有者立即行使该期权合约
所赋予的权利时所能获得的总收益。 看涨期权的内在价值为max{S-X,0} 看跌期权的内在价值为max{X-S,0}
2024/8/2
第十五章 期权定价理论 《金融经济学》PPT课件
![第十五章 期权定价理论 《金融经济学》PPT课件](https://img.taocdn.com/s3/m/6274f42c84868762caaed5b7.png)
时间值的决定因素主要有以下几个方面:
(1)期权合约的有效期。即距离期权合约到期日剩余时 间的长短。
在其他因素不变的情况下,期权剩余期限越长,其时间 价值也就越大。因为对于期权的买方来说,有效期越长,选 择的余地越大,现货价格向买方所期望的方向变动的可能性 越高,买方行使期权的机会也就越多,获利的可能性就越大, 买方愿意支付的权利金就越多。反之,有效期越短,期权的 时间值就越低。因为时间越短,现货价格出现大的波动,尤 其是价格变动发生逆转的可能性越小,买方愿意支付的权利 金就越少。
(三)影响期权价格的因素 如前所述,期权的内在价值越大,期权 的价格越高。因此,任何因素的变动,如果 可以促进内在价值增大,必然会带来期权价 格上升;反之,如果导致内在价值减少,则 会带来期权价格的下降。 我们以S代表期权标的物当前的市场价格; 以X代表期权的履约价格。我们已经知道,多 头买权和多头卖权目前的内在价值分别为:
(1)当看涨期权的履约价格低于当时的 现货价格时,该看涨期权具有正的内函值, 为实值期权。
例如,某种以玉米期货合约为标的资产 的玉米看涨期权合约,其履约价格为3.40美元 /蒲式耳。而玉米期货合约价格为3.60美元/蒲 式耳。此时,看涨期权的购买者便有权利 (并非义务)以3.40 美元/蒲式耳的履约价格 买入玉米期货合约。此看涨期权买入者若履 行期权合约,将实现(3.60-3.40=)0.20美 元/蒲式耳的盈利。因此,这一看涨期权为实 值期权。
(2)当看涨期权的履约价格高于当时的 相关现货价格时,该看涨期权不具有实值, 或者称作具有负的内涵值,为虚值期权。
例如,若玉米期货合约价格为3.60美元/ 蒲式耳,而某交易者拥有一个履约价格为3.80 美元/蒲式耳的该玉米期货合约的看涨期权。 此时,行使期权只能带来损失,损失额为每 蒲式耳0.20 美元(3.80-3.60)。在这种情况 下,该交易者就会放弃这一权利,损失一笔 权利金。若继续想买,就可转而按3.60美元/ 蒲式耳的较低价格买入玉米期货合约。
(1)期权合约的有效期。即距离期权合约到期日剩余时 间的长短。
在其他因素不变的情况下,期权剩余期限越长,其时间 价值也就越大。因为对于期权的买方来说,有效期越长,选 择的余地越大,现货价格向买方所期望的方向变动的可能性 越高,买方行使期权的机会也就越多,获利的可能性就越大, 买方愿意支付的权利金就越多。反之,有效期越短,期权的 时间值就越低。因为时间越短,现货价格出现大的波动,尤 其是价格变动发生逆转的可能性越小,买方愿意支付的权利 金就越少。
(三)影响期权价格的因素 如前所述,期权的内在价值越大,期权 的价格越高。因此,任何因素的变动,如果 可以促进内在价值增大,必然会带来期权价 格上升;反之,如果导致内在价值减少,则 会带来期权价格的下降。 我们以S代表期权标的物当前的市场价格; 以X代表期权的履约价格。我们已经知道,多 头买权和多头卖权目前的内在价值分别为:
(1)当看涨期权的履约价格低于当时的 现货价格时,该看涨期权具有正的内函值, 为实值期权。
例如,某种以玉米期货合约为标的资产 的玉米看涨期权合约,其履约价格为3.40美元 /蒲式耳。而玉米期货合约价格为3.60美元/蒲 式耳。此时,看涨期权的购买者便有权利 (并非义务)以3.40 美元/蒲式耳的履约价格 买入玉米期货合约。此看涨期权买入者若履 行期权合约,将实现(3.60-3.40=)0.20美 元/蒲式耳的盈利。因此,这一看涨期权为实 值期权。
(2)当看涨期权的履约价格高于当时的 相关现货价格时,该看涨期权不具有实值, 或者称作具有负的内涵值,为虚值期权。
例如,若玉米期货合约价格为3.60美元/ 蒲式耳,而某交易者拥有一个履约价格为3.80 美元/蒲式耳的该玉米期货合约的看涨期权。 此时,行使期权只能带来损失,损失额为每 蒲式耳0.20 美元(3.80-3.60)。在这种情况 下,该交易者就会放弃这一权利,损失一笔 权利金。若继续想买,就可转而按3.60美元/ 蒲式耳的较低价格买入玉米期货合约。
投资学第二十一章期权定价PPT课件
![投资学第二十一章期权定价PPT课件](https://img.taocdn.com/s3/m/34ef88bdbb0d4a7302768e9951e79b896802681a.png)
01
法规监管
政府和监管机构制定相关法规,规 范期权市场交易行为。
信息披露
要求企业或个人披露真实、准确、 完整的信息,防止欺诈行为。
03
02
保证金制度
要求投资者按规定缴纳保证金,以 降低违约风险。
风险控制
监管机构对期权交易进行实时监控, 防范市场风险。
04
风险管理工具与技术
止损策略
设定止损点,当价格达到某一阈值时 自动平仓,控制亏损幅度。
二叉树模型则通过模拟股票价 格的上升和下降来计算期权价 格,考虑了股票价格的不确定 性。
二叉树模型
01
二叉树模型是一种离散时间模型,用于模拟股票价格的上升和 下降。
02
在二叉树模型中,股票价格的变化取决于未来可能的上升和下
降幅度,以及这些事件发生的概率。
二叉树模型的优点在于它可以处理股票价格的不确定性,并能
投资学第二十一章期权定价ppt课 件
• 引言 • 期权的基本概念 • 期权定价模型 • 期权策略与交易策略 • 期权市场的风险与监管 • 案例分析与实践
01
引言
课程背景
期权定价理论的发展历程
从早期的Black-Scholes模型到后来的各种扩展和改进模型,期权定价理论经历了不断的发展和完善 。
期权交易的流程
要点一
总结词
期权交易的流程解析
要点二
详细描述
期权交易的流程包括以下几个步骤:首先,确定投资目标 ,明确投资期权的目的是为了投机、对冲风险还是套利等 ;其次,选择合适的期权合约,根据标的资产、行权价格 、到期日和权利金等因素进行选择;再次,进行交易,通 过证券交易所或场外交易市场进行买卖;最后,行权或平 仓,根据市场走势和投资策略选择行权或平仓。
法规监管
政府和监管机构制定相关法规,规 范期权市场交易行为。
信息披露
要求企业或个人披露真实、准确、 完整的信息,防止欺诈行为。
03
02
保证金制度
要求投资者按规定缴纳保证金,以 降低违约风险。
风险控制
监管机构对期权交易进行实时监控, 防范市场风险。
04
风险管理工具与技术
止损策略
设定止损点,当价格达到某一阈值时 自动平仓,控制亏损幅度。
二叉树模型则通过模拟股票价 格的上升和下降来计算期权价 格,考虑了股票价格的不确定 性。
二叉树模型
01
二叉树模型是一种离散时间模型,用于模拟股票价格的上升和 下降。
02
在二叉树模型中,股票价格的变化取决于未来可能的上升和下
降幅度,以及这些事件发生的概率。
二叉树模型的优点在于它可以处理股票价格的不确定性,并能
投资学第二十一章期权定价ppt课 件
• 引言 • 期权的基本概念 • 期权定价模型 • 期权策略与交易策略 • 期权市场的风险与监管 • 案例分析与实践
01
引言
课程背景
期权定价理论的发展历程
从早期的Black-Scholes模型到后来的各种扩展和改进模型,期权定价理论经历了不断的发展和完善 。
期权交易的流程
要点一
总结词
期权交易的流程解析
要点二
详细描述
期权交易的流程包括以下几个步骤:首先,确定投资目标 ,明确投资期权的目的是为了投机、对冲风险还是套利等 ;其次,选择合适的期权合约,根据标的资产、行权价格 、到期日和权利金等因素进行选择;再次,进行交易,通 过证券交易所或场外交易市场进行买卖;最后,行权或平 仓,根据市场走势和投资策略选择行权或平仓。
期权定价理论PPT课件
![期权定价理论PPT课件](https://img.taocdn.com/s3/m/8a206c47ec3a87c24028c4ea.png)
二、期权定价模型与定价方法
期权定价模型 期权定价方法
(一)期权定价模型
Black—Scholes期权定价模型 不变方差弹性(Constant Elasticity of
Variance ,CEV )模型 跳—扩散(Jump-Diffusion)模型 随机波动率(Stochastic Volatility)模型
期权的种类
从交易者的买卖行为划分,期权可以分为买 入期权(又称看涨期权(Call Option))和卖 出期权(又称看跌期权(Put Option))
按照合约所规定的履约时间不同,期权可以 分为欧式期权和美式期权
按照期权标的物性质不同,期权可以分为两 大类,即商品期权和金融期权
新型期权(Exotic Option)
回望期权
回望期权(lookback options)的收益依附 于期权有效期内标的资产达到的最大或 最小价格。欧式回望看涨期权的收益等 于最后标的资产价格超过期权有效期内 标的资产达到的最低价格的那个量。欧 式回望看跌期权的收益等于期权有效期 内标的资产价格达到的最高价格超过最 后标的资产 价格的那个量。
C t rf
SC12S2
S 2
2C S2 rfC
C(T)maxS(T)X,0)
有限差分方法
通过数值方法求解衍生资产所满足的 微分方程来为衍生资产估值,将微分 方程转化为一系列差分方程之后,再 通过迭代法求解这些差分方程总的来 看,有限差分方法的基本思想与二叉 树方法基本相似.
Black-Scholes期权定价法的优缺点
期权定价理论及其应用
期权的基本概念 期权定价模型与定价方法 期权定价模型的参数估计 期权理论的应用
一、期权的基本概念
期权的定义 期权的种类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:
当期:从市场上借入10元,买入该股票,同时卖出一份3个月后到期 的该股票远期合约
3个月后:交割该股票获得11元,偿还贷款本息。 套利者的利润=11-10-(10×10%×3/12)=0.75元
Dr.Ouyang
7
7.1 影响期权价格的因素
因素 现货价格 施权价 期限 价格波动性 无风险利率 预期红利 欧式看涨期权 欧式看跌期权 美式看涨期权 美式看跌期权 + - ? + + - - + ? + - + + - + + + - - + + + - +
Dr.Ouyang
9
7.2 期权价格的上下限
• 看涨期权上限
– 看涨期权给予持有人按照一定价格在将来购买特定股票的权利。 – 看涨期权的价值=PV(股票价格)-PV(施权价) – 所以看涨期权的价值小于当期的股票价值,即 c≤S, 同时, C ≤S
• 看跌期权上限
– 看跌期权给予持有人按照一定价格在将来卖出特定股票的权利。 – 看跌期权的价值=PV(施权价)-PV(股票价格) – 所以看跌期权的价值小于施权价的现值。 p ≤Xe-r(T-t),同时,P ≤X
Dr.Ouyang
10
欧式看涨期权的下限
• 考虑两个资产组合
组合A:一份欧式看涨期权,施权价X,加上现金Xe-r(T-t) 组合B:一份股票。
• 到期时
– 如果ST≥X,组合A和组合B的价值都是ST – 如果ST<X,组合A的价值为X,组合B的价值为ST – 所以组合A的价值大于组合B c + Xe-r(T-t) >S,从而, c > S- Xe-r(T-t)
Dr.Ouyang
8
假设与符号
• 假设
– 不存在交易成本。 – 所有交易盈利都适用同一税率。 – 投资者进行无风险借贷或者投资的利率是一样的。
• 符号
– S: 当期股票价格 – X:施权价格 – T:期权到期的时点 – t:当期时点 – ST:时点T的股票价格 – r:无风险利率 – σ:股票价格波动的标准差 – c,C:欧式及美式看涨期权价值 – p,P:欧式及美式看跌期权价值
期权定价理论
Dr.Ouyang
1
内容提要
• 7.1 影响期权价格的因素 • 7.2 期权价格的上下限 • 7.3 美式看涨期权价格的下限 • 7.4 美式看跌期权价格的下限 • 7.5 期权平价公式 • 7.6 红利的影响
Dr.Ouyang
2
7.1 影响股票期权价格的因素
• 现货价格 • 施权价
Dr.Ouyang 12
欧式看跌期权的下限
• 考虑两个资产组合
组合A:一份欧式看跌期权,施权价为X,加上一份股票 组合B:现金Xe-r(T-t) 。
• 到期时
– 如果ST<X,组合A和组合B的价值都是X – 如果 ST ≥X ,组合A的价值为ST ,组合B的价值为X – 所以组合A的价值大于组合B p + S > Xe-r(T-t) ,从而, p > Xe-r(T-t) - S
– 指交割品在现货市场上的价格。
– 指期权约定的交割价格。
• 期权的期限
– 指当期到期权失效时点的时间长度。
• 股票价格的波动性
• 无风险利率
– 指股票价格变动的剧烈程度,可以用方差来衡量。
– 一般用3月期国债利率来代替,指无风险投资的收益或者借贷的成本。
• 期权有效期内的股票红利
– 作为交割品的现金流入,红利会引起股票价格下跌。
• 红利
– 作为交割品的现金流,派发红利会导致交割品价格下降。 – 预期红利支付越高,看涨期权价格越低,看跌期权价格越高。
Dr.Ouyang
6
套利举例——利率与预期股票价格
例:某股票现货市场价格为10元,3个月后到期的该股票远期合约价 格为11元,目前市场的借贷利率为每年 10%,假设该股票在未来三 个月内都不派发红利,问套利者将如何操作?
Dr.Ouyang
13
示例
• 假设股票A现价20元,某欧式看跌期权施权价为24元,离 到期还有一年时间,无风险利率为10%,问该看跌期权的 最低价值是多少?假如该期权目前报价1.00元,你将如何 操作进行套利? • 答案:
Dr.Ouyang
11
示例
• 假设股票A现价20元,某欧式看涨期权施权价为18元,离 到期还有一年时间,无风险利率为10%,问该看涨期权的 最低价值是多少?假如该期权目前报价3.00元,你将如何 操作进行套利? • 答案:
该看涨期权的价值下限为S-Xe-r(T-t)=20-18e-0.1×1=3.71 该期权报价低于价值下限,因此可以采用下列策略套利:卖空该股 票,获得20元,买入看涨期权,支出3.00元,并将17元按无风险利 率借贷出去 到期时 如果股票价格超过18元,以18元的价格施行期权,回补空头,利 润为17e0.1-18=0.79;如果股票价格低于18元,则以市价回补空 头,利润为17e0.1 -股票市价>0.79。
• 价格的波动性
– 期权的特点在于以较低的价格规避了不利风险,同时保留了有利 风险。 – 不管是对于哪一种期权来说,价格波动性越剧烈,盈利的可能性 就越高,期权价格也越高。
Dr.Ouyang
5
无风险利率与红利
• 无风险利率
– 无风险利率对于期权的所有者来说是资金的成本,或者说是持有 现货的机会成本,因此无风险利率越高,预期的现货价格就越高。 – 但是无风险利率越高,未来利润折现值也越低。 – 两种因素综合,无风险利率越高,看涨期权的价格越高,看跌期 权价格越低。
Dr.Ouyang
3
现货价格与施权价
• 期权到期时的利润:
– 看涨期权=Max(现货价格-施权价,0) – 看跌期权=Max(施权价-现货价格,0)
• 现货价格
– 对于看涨期权来说,现货价格越高,到期时盈利的可能与数额也就越高, 因而期权价格就越高。 – 对于看跌期权来说,现货价格越高,到期时盈利的可能与数额也就越低, 因而期权价格越低。
• 施权价
– 对于看涨期权来说,施权价越高,到期时的盈利空间越低,从而期权价 格越低。 – 对于看跌期权来说,施权价越高,到期时的盈利空间越高,从而期权价 格越高。
Dr.Ouyang
4
到期期限与现货价格的波动性
• 到期期限
– 对于欧式期权来说,由于施行期权的时点是唯一的,因此期限越 长对期权的拥有者来说不一定越好。 – 对于美式期权来说,在到期之间随时可以执行期权,因此期限越 长意味着选择越多,对期权的拥有者越有利。