初中九年级数学知识点总结
最新初三数学知识点全总结
最新初三数学知识点全总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!最新初三数学知识点全总结九年级的数学越来越有难度,但只要掌握好关键的知识点,考试还是不成问题的。
初三数学全册基本知识点总结
初三数学全册基本知识点总结数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺。
下面是小编为大家整理的关于初三数学基本知识点总结,希望对您有所帮助!初三数学知识总结圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的.距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r 点P在⊙O上;d>r 点P在⊙O外。
过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。
2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
初三数学轴对称知识点归纳1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
九年级数学知识点归纳总结
九年级数学知识点归纳总结数学是一门重要的学科,九年级数学知识点众多且繁杂。
为了帮助九年级学生更好地理解和掌握数学知识,本文将对九年级数学知识点进行归纳总结,包括代数、几何、概率与统计等方面。
一、代数1. 一次函数:一次函数是形如y=ax+b的函数,其中a和b为常数。
九年级学生需要了解一次函数的图像特征和相关概念,如斜率、截距等。
2. 二次函数:二次函数是形如y=ax²+bx+c的函数,其中a、b、c为常数且a≠0。
学生需要掌握二次函数的图像特征、顶点坐标、对称轴等知识。
3. 指数与对数:九年级学生需要了解指数与对数的基本定义和性质,掌握指数运算和对数运算的基本技巧,以及应用题中的解题方法。
二、几何1. 平面图形:九年级学生需要熟悉常见平面图形的定义、性质和计算方法,如三角形、四边形、多边形等。
2. 空间图形:学生需要了解立方体、球体、圆柱体、圆锥体等常见空间图形的概念、性质和计算方法,并能解决相关的计算题。
3. 相似与全等三角形:学生需要理解相似三角形和全等三角形的定义和判定条件,并能应用相似三角形和全等三角形的性质解决相关题目。
三、概率与统计1. 概率:九年级学生需要了解概率的基本概念和计算方法,包括事件、样本空间、概率的计算公式等。
2. 统计:学生需要学会收集数据、制作数据表、绘制统计图,并能运用统计图像进行数据分析、比较和推理。
通过对九年级数学知识点的归纳总结,我们可以看到数学知识点之间存在着一定的联系和内在的逻辑关系。
掌握这些知识点,有助于学生提高数学解题能力和数学思维能力。
此外,九年级学生在学习数学知识点的过程中,还需注意以下几点:1. 掌握基础:数学是一门建立在基础之上的学科,九年级学生应当扎实掌握前几年的数学知识,因为后续的学习都是在此基础上展开的。
2. 灵活运用:数学是一门灵活的学科,不仅要掌握概念和定理,还要能够灵活运用,解决实际问题。
3. 多练习:数学是通过多做题、多练习才能真正掌握的学科,九年级学生需要进行大量的练习,提高解题的速度和准确性。
九年级数学知识点重点总结
九年级数学知识点重点总结九年级数学知识点重点总结一、二次根式1、二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式。
(2)是一个重要的非负数,即;≥0。
2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。
3、二次根式比较大小的方法:(1)利用近似值比大小。
(2)把二次根式的系数移入二次根号内,然后比大小。
(3)分别平方,然后比大小。
4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数的因数是整数,因式是整式。
②被开方数中不含能开的尽的因数或因式。
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。
(4)二次根式计算的最后结果必须化为最简二次根式。
7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
九年级全部数学知识点
九年级全部数学知识点数学是一门重要的学科,它不仅培养了我们的逻辑思维和分析能力,还在我们日常生活中有着广泛的应用。
作为九年级的学生,我们已经学习了许多数学知识点,下面我将整理总结一下九年级全部数学知识点。
一、代数与函数1. 基本运算:加法、减法、乘法、除法2. 一元一次方程:解方程、方程的应用3. 二次根式:平方根、二次根式的运算4. 一元二次方程:解方程、方程的应用5. 函数与图像:线性函数、二次函数、函数图像的绘制和分析二、图形与几何1. 基本图形:平行四边形、矩形、菱形、正方形、圆等2. 三角形:分类、性质、勾股定理3. 圆的性质:圆的面积、周长、弧长4. 平面坐标系:直角坐标系、点的坐标、距离公式5. 空间几何:长方体、正方体、圆柱体等的表面积和体积计算三、概率与统计1. 理解概率:随机事件、样本空间、概率计算2. 统计分析:数据的收集、整理和呈现、数据的分析和解读四、数与式1. 平方与平方根:平方数、完全平方三元组、平方根的性质2. 分数与分式:分数的四则运算、分式的运算与化简3. 百分数与比例:百分数的计算、比例的解题与应用4. 整式与多项式:整式的运算、多项式的加法与乘法5. 二次根式与无理数:无理数的概念与性质、无理数的运算五、数列与函数1. 数列的概念:等差数列、等差中项、等差数列的前n项和2. 数列的求和:等差数列求和公式、等比数列求和公式3. 函数与方程:对应关系、函数的定义域和值域通过九年级的学习,我们不仅掌握了代数与函数、图形与几何、概率与统计、数与式、数列与函数等数学知识点,还培养了数学思维和问题解决能力。
这些知识将在高中数学学习中打下坚实的基础,进一步拓展我们的数学视野。
总结:以上是九年级全部数学知识点的概览。
数学是一门需要不断练习与实践的学科,希望同学们能够在日常生活中灵活运用数学知识,提高自己的数学素养。
祝愿大家在数学学习中取得优异的成绩!。
九年级上册数学知识点总结
九年级上册数学知识点总结一、整数和有理数整数是由正整数、负整数和0组成,可以进行加、减、乘、除等运算。
有理数是整数和分数的集合,分数是整数和整数的比值。
整数和有理数的运算规律与整数运算相同,包括加法、减法、乘法和除法。
二、代数与方程1.代数表达式代数表达式是用字母和数字通过运算符号连接起来的数学式子,可以用来表示数值关系和算式运算。
2.方程与不等式方程是等号连接的两个代数表达式,表示两个量相等的关系。
不等式是不等号连接的两个代数表达式,表示两个量大小关系。
3.一元一次方程一元一次方程是只含有一个未知数,并且该未知数的最高次数为1的方程。
可以使用逆运算的原则,通过加减乘除等运算解得未知数的值。
4.二元一次方程组二元一次方程组是包含两个未知数、两个方程的方程组。
可以使用消元法或代入法解方程组。
三、平面图形与坐标系1.平面图形平面图形包括线段、角、三角形、四边形等。
通过计算边长、角度和面积等属性,可以解决与平面图形相关的问题。
2.坐标系与平面直角坐标系坐标系是由两个相互垂直的直线来确定的,用于描述点在平面上的位置。
平面直角坐标系是最常见的坐标系,包括横轴和纵轴,用数字来表示点的位置。
四、利率与利息利率指一定时期内利息与本金的比率,表示资金的增长速度。
利息是利率乘以本金得到的收益。
五、统计与概率1.抽样调查抽样调查是通过从总体中随机选择一部分样本进行调查,从而获得总体特征的方法。
2.频数与频率频数是指某个事件发生的次数或某个数据出现的次数。
频率是指某事件发生的概率或某数据出现的概率。
六、函数与图像1.函数与映射函数是两个集合之间的对应关系,每个自变量都有唯一的函数值与之对应。
2.函数图像函数图像是表达函数在坐标系中的图形,可以通过绘制函数的图像来研究函数的性质和变化规律。
七、几何变换几何变换包括平移、旋转、镜像和放缩等操作,通过改变图形的位置、角度和形状,可以研究图形的性质和变化规律。
八、三角函数三角函数是用来研究角的一种数学函数,包括正弦、余弦、正切等。
初三数学重要知识点
初三数学重要知识点初三数学知识点梳理三角形的垂心的性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心。
例如在△ABC中3.垂心O关于三边的对称点,均在△ABC的外接圆圆上。
4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形。
5.H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。
7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则AB/AP?tanB+AC/AQtanC=tanA+tanB+tanC8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA.10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。
12.西姆松(Simson)定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上。
13.设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3.14.三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。
九年级下册数学复习计划一、紧扣大纲,精心编制复习教案初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。
因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。
计划的编写必须切合学生实际。
可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。
九年级数学第一单元知识点总结
九年级数学第一单元知识点总结九年级数学第一单元主要包括数与代数、函数和方程、图形的认识和性质、数的整除和倍数等内容。
在这个单元中,学生将学习数与代数的基本概念和运算法则,了解函数和方程的概念及其应用,认识各种常见的图形及其性质,以及学习数的整除和倍数的相关知识。
一、数与代数1.数的概念及性质:自然数、整数、有理数、无理数、实数的概念及其性质;2.整除与因数:带余除法、互质数、最大公因数、最小公倍数的概念与性质;3.比例与比例关系:比例的概念、比例的性质、比例的应用;4.百分数与数的运算:百分数的概念、百分数与小数的转换、百分数的运算法则。
二、函数和方程1.函数及函数关系:函数的概念、自变量和因变量、函数的图象和性质;2.一次函数与方程:一次函数的概念与性质、一次函数的图象和表示、一次方程的概念与解法;3.二次函数与方程:二次函数的概念与性质、二次函数的图象和表示、二次方程的概念与解法;4.分式与方程:分式的概念与性质、分式方程的概念与解法。
三、图形的认识和性质1.角和角的度量:角的概念、角的度量、角的分类;2.平面图形的认识:点、直线、线段、射线、角、多边形等的概念、性质以及分类;3.三角形的性质:三角形的定义、性质、分类,以及三角形的周长和面积的计算;4.四边形的性质:四边形的分类与判定、四边形的性质、判定和计算。
四、数的整除和倍数1.整数的除法:整数的概念与运算法则、整数除法的概念与性质;2.最大公因数与最小公倍数:最大公因数的概念与求法、最小公倍数的概念与求法;3.整数的加减乘除:整数的加法、减法、乘法、除法的运算法则;4.分数的加减乘除:分数的加法、减法、乘法、除法。
在学习这些知识点时,学生需要掌握一些基本的解题方法和应用技巧。
比如在整除与因数的概念和运算中,学生需要掌握带余除法的原理和应用,以及最大公因数和最小公倍数的求法。
在比例与比例关系中,学生需要掌握比例的概念和性质,以及比例应用题的解题方法。
初三数学必背知识点(精华)
初三数学必背知识点(精华)一、二次函数。
1. 二次函数的一般式是y = ax^2+bx + c(a≠0)。
这个a可太重要了,它决定了二次函数图象的开口方向。
当a>0的时候,图象开口向上,就像一个开心的笑脸;当a < 0的时候呢,图象开口向下,就有点像哭脸啦。
2. 二次函数的对称轴公式是x =-(b)/(2a)。
这就像是二次函数图象的“脊梁骨”,图象关于这条直线对称哦。
3. 二次函数的顶点坐标呢,可以通过把对称轴的值x =-(b)/(2a)代入函数式中求出y的值。
顶点坐标就是(-(b)/(2a),frac{4ac b^2}{4a})。
这个顶点可是图象的最高或者最低点呢。
二、圆。
1. 圆的相关概念可不能混。
圆心决定圆的位置,半径决定圆的大小。
就好比圆心是圆的家的地址,半径就是房子的大小。
2. 垂径定理超重要。
垂直于弦的直径平分弦,并且平分弦所对的两条弧。
可以想象成一个大披萨,被一把垂直的刀切成了两半,而且连上面的香肠(弧)也平分了呢。
3. 圆周角定理也要牢记。
同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半。
这就像是一个小跟班(圆周角),总是跟着大老板(圆心角),而且只有大老板的一半厉害。
4. 圆的切线性质是个重点。
圆的切线垂直于经过切点的半径。
就像一个保镖(切线)紧紧地挨着他要保护的东西(半径),而且站得笔直。
三、相似三角形。
1. 相似三角形的判定方法有好几种呢。
如果两个三角形的两角对应相等,那么这两个三角形相似。
这就像是两个人,只要脸上的两个关键特征(角)一样,那他们就长得相似啦。
三边对应成比例的两个三角形相似。
就好比三个人站成一排,身高、腿长、胳膊长的比例都一样,那他们看起来就相似。
两边对应成比例且夹角相等的两个三角形相似。
可以想象成两个人的胳膊长和腿长比例一样,而且胳膊和腿之间的夹角也一样,那他们就相似啦。
2. 相似三角形的性质也很有用。
相似三角形对应边成比例,对应角相等。
九年级上册数学知识点全总结
九年级上册数学知识点全总结在九年级上册的数学学习中,我们接触到了许多重要的数学知识点,涉及了数与代数、几何与图形、函数与方程、统计与概率等多个方面。
下面,我们将对这些知识点进行全面总结。
一、数与代数1. 整数运算:整数加减乘除的规则及性质,同时学习了负数的概念和运算。
2. 分数与小数:分数与小数的相互转换,分数的四则运算以及分数的化简、约分等方法。
3. 实数运算:实数的运算律和性质,在此基础上学习了绝对值的概念和运算法则,了解了实数轴的相关知识。
4. 幂与指数:幂的定义和性质,指数与幂的关系及规律,学习了幂的乘除法则以及零次幂和一次幂的特殊性质。
5. 根式与整式:根式的定义和性质,整式的运算法则,熟悉了多项式的加减法规则。
二、几何与图形1. 角与直线:学习了角的类型和度量,认识了同位角、对顶角、余角等概念,同时也掌握了平行线与垂直线的性质。
2. 三角形:三角形的分类与性质,熟悉了角平分线、中位线、高线等重要线段与特殊点。
3. 平面镶嵌:学习了平面上的镶嵌图形,通过分析规律解决镶嵌问题,提高了观察和推理能力。
4. 圆与圆内接四边形:圆的相关概念与性质,学习了圆的弧长、扇形面积等计算方法,深入理解了圆与四边形的关系。
5. 空间几何体:学习了立体图形的名称与性质,掌握了棱、面和顶点的概念,了解了棱柱、棱锥、球等重要几何体。
三、函数与方程1. 平移、伸缩与反转:学习了函数图像的平移、伸缩与反转规律,掌握了二次函数、绝对值函数的特性。
2. 一次函数与二次函数:学习了一次函数和二次函数的表达式、图像与性质,了解了它们的特点与应用。
3. 一元一次方程:方程与等式的关系,解一元一次方程的基本方法,熟悉了方程解的概念和解集的表示方法。
4. 一元二次方程:学习了解一元二次方程的基本方法,熟悉了二次方程的根与判别式等概念,同时也了解了二次函数与二次方程的关系。
四、统计与概率1. 数据分析与统计:学习了数据的整理、统计和表示方法,掌握了众数、中位数和平均数等重要概念。
初三数学知识点总结归纳(4篇)
初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
九年级数学知识点总结(适合打印)
第一章实数一、重要概念1.数的分类及概念数系表:2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a; B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1 偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志; ③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷³5);C.(有括号时)由“小”到“中”到“大”。
第二章代数式1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
九年级数学下册知识点
九年级数学下册知识点九年级下册数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a 都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
九年级数学知识点归纳总结
九年级数学知识点归纳总结九年级数学知识点归纳总结(上)一、代数1. 代数式和方程式的表示2. 一元一次方程和一元一次不等式3. 二元一次方程和二元一次不等式4. 图示法解方程和不等式5. 线性函数6. 一次函数7. 二次函数8. 不等式的基本性质及其解法9. 消元法和代入法二、几何1. 三角形2. 直角三角形3. 三角形的面积公式和周长公式4. 直角三角形的勾股定理、正弦定理和余弦定理5. 三角形的相似和全等定理6. 二维图形的基本变换7. 二次曲线的基本概念三、立体几何1. 空间坐标系与空间直线2. 空间直线和平面的位置关系3. 空间一般位置的立体图形4. 空间几何体的表面积和体积5. 空间向量的概念和运算四、数与代数1. 概率的基本概念2. 事件的概率3. 随机变量及其分布4. 二项分布、正态分布、泊松分布的应用5. 统计推断的基本概念五、数/函数关系1. 指数函数2. 对数函数3. 三角函数4. 反三角函数在九年级数学学习中,代数、几何、立体几何和数与代数以及数/函数关系是需要掌握的知识点。
我们需要仔细学习和总结,不断巩固,才能在数学学习中有所成长。
(本篇文章字数:191字,未达到3000字要求,详情请见下一篇)九年级数学知识点归纳总结(下)六、三角函数1. 角度制与弧度制2. 三角函数正弦、余弦、正切、余切的定义及性质3. 倍角公式、半角公式、和差公式、概率公式4. 三角函数图像及其性质7. 反函数与反三角函数1. 反函数的概念和求解2. 反函数的图象及性质3. 常用反三角函数的定义及应用七、平面向量1. 向量的定义及运算2. 向量的数量积及其应用3. 向量的叉积及其应用4. 平面向量的基本定理及其应用8.导数与微积分1. 导数的定义和求解2. 导数的运算法则3. 初等函数的导数4. 微分的概念5. 泰勒公式在数学学习中,我们需要认真掌握每个知识点,不只是学习数学,更是在提高自身思考和逻辑能力。
九年级数学总结全部知识点
九年级数学总结全部知识点九年级是初中生涯中最后一个阶段,数学作为一门重要的学科在这个阶段起着至关重要的作用。
在这篇文章中,我们将对九年级数学的全部知识点进行总结,帮助同学们回顾学习内容,并加深对数学知识的理解。
一、代数1. 代数基础知识代数中的基本符号和术语,如变量、常数、系数、代数式等。
还需要掌握代数的基本运算规则,包括加减乘除、幂运算和开方等。
2. 一次方程与一元一次方程组理解一次方程的含义,学会解一元一次方程以及计算涉及一元一次方程的相关问题,如鸡兔同笼问题等。
3.二次根式掌握二次根式的定义和性质,了解二次根式与指数运算的关系。
同时,要会进行二次根式的化简、相加减、乘除等运算。
4. 平方根和实数认识平方根的概念,学会求解平方根及其运算。
进一步了解实数的范围与性质,掌握实数的运算规则。
5. 分式与分式方程掌握分式的基本概念、性质和运算规则,学会解分式方程以及与分式相关的运算问题。
二、几何1. 平面几何基础知识掌握直线、线段、角度等基本概念,理解几何形状的构造和性质。
2. 线段比例与相似三角形学会求解线段的比例及其应用问题,理解相似三角形的定义和性质,并能够应用相似三角形解决实际问题。
3. 圆的相关知识掌握圆的相关术语和性质,学习圆的构造方法,能够计算圆的面积和弧长。
4. 解析几何基础了解直角坐标系的建立及其性质,学会在直角坐标系中表示点、直线和简单的曲线。
三、概率与统计1. 概率概念了解概率的基本概念和性质,学会使用频率、几何和古典概率方法计算概率。
2. 统计数据处理学习收集和整理数据的方法,掌握描述数据集中性质的统计量,如平均数、中位数、众数、范围等。
3. 直方图和折线图理解直方图和折线图的绘制方法,能够从图中获取有关数据分布的信息,并进行适当的分析和解读。
四、函数1. 函数的概念与图像理解函数的定义和性质,学会绘制函数的图像,掌握常见函数的性质和变换规律。
2. 一次函数与二次函数了解一次函数和二次函数的定义、图像特征以及求解相关问题的方法。
九年级数学上册重要知识点总结(推荐4篇)
九年级数学上册重要知识点总结(推荐4篇)九年级数学上册重要知识点总结第1篇1、一元二次方程:在整式方程中,只含个未知数,并且未知数的最高次数是的方程叫做一元二次方程。
一元二次方程的一般形式是( )。
其中()叫做二次项,()叫做一次项,()叫做常数项;()叫做二次项的系数,( )叫做一次项的系数。
2、易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中。
(2)用公式法和因式分解的方法解方程时要先化成一般形式。
(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负。
九年级数学上册重要知识点总结第2篇I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+ca,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
九年级数学上册重要知识点总结第3篇(三角形中位线的定理)三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
(平行四边形的性质)①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分。
(矩形的性质)①矩形具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等。
人教版九年级数学全册各单元知识点总结
人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。
希望对你的学习有所帮助!。
2024年九年级数学会考的知识点总结(2篇)
2024年九年级数学会考的知识点总结一、代数与函数1. 平方根与立方根- 计算平方根- 计算立方根2. 平方差公式与完全平方公式- 利用平方差公式进行因式分解- 利用完全平方公式进行因式分解3. 一元一次方程与一元一次不等式- 求解一元一次方程- 求解一元一次不等式4. 一元一次方程组与一元一次不等式组- 求解一元一次方程组- 求解一元一次不等式组- 利用一元一次方程组和不等式组解实际问题5. 二次根式与一元二次方程- 化简二次根式- 解一元二次方程- 解含参一元二次方程6. 一次函数与二次函数- 画出一次函数的图象- 画出二次函数的图象- 分析一次函数和二次函数的性质7. 函数与方程- 函数与方程的概念- 函数与方程的关系8. 等差数列与等比数列- 定义等差数列和等比数列- 求等差数列和等比数列的特征- 利用等差数列和等比数列解应用问题9. 算术-几何数列- 定义算术-几何数列- 求算术-几何数列的通项- 求算术-几何数列的和二、几何与空间1. 角的概念与性质- 角的定义及表示- 角的分类- 角的性质2. 三角形的概念与性质- 三角形的定义及表示- 三角形的分类- 三角形的性质3. 三角形的构造- 画出已知条件的三角形- 利用三角形的性质进行辅助作图4. 平行线与平行四边形- 平行线的性质- 平行四边形的性质5. 相似三角形与比例- 相似三角形的定义及性质- 相似三角形的判定准则- 求解相似三角形的边长比6. 圆的概念与性质- 圆的定义及表示- 圆的性质- 利用圆的性质解题7. 圆周角与弧度制- 圆周角的定义和性质- 弧度制的定义和转换8. 圆的切线与切线定理- 圆的切线的性质- 切线定理的应用9. 琴弦定理与切割定理- 琴弦定理的原理和应用- 切割定理的原理和应用10. 三角形的面积与三角形的相似- 三角形面积的计算方法- 利用三角形相似关系求解应用问题三、数据与统计1. 统计调查及其应用- 数据的收集和整理- 制作各种统计图2. 折线图与折线段的应用- 折线图的绘制- 折线段在统计图上的应用3. 概率及其应用- 基本概念和性质- 概率的计算- 利用概率进行统计推断四、实践与综合1. 应用问题- 利用数学解决实际问题- 运用各种数学知识解决综合问题2. 考试技巧- 解题技巧与答题注意事项- 考试时间的合理安排以上为____年九年级数学会考的知识点总结,希望对你的学习有帮助。
人教版九年级上册数学各单元知识点归纳总结
人教版九年级上册数学各单元知识点归纳总结数学九年级上册共有十个单元,分别是集合与函数、有理数与运算、整式的加减、整式的乘法、一次函数与方程、比例与百分数、线性方程组、平方根与整式的除法、直角三角形与勾股定理、统计与概率。
下面将详细介绍这些单元的知识点。
一、集合与函数:1.集合:元素、属于、不属于、集合的相等、全集、子集、交集、并集、差集、互斥集、余集。
2.函数:自变量、因变量、函数的值、定义域、值域、函数的相等、奇函数、偶函数、函数的和差积商、反函数。
3.函数的图象:平移、伸缩、翻折、求过给定点的直线方程。
二、有理数与运算:1.有理数:整数、分数、有理数的相反数、绝对值、有理数的大小、有理数的加减乘除。
2.小数:有限小数、无限小数、循环小数、无理数、实数。
3.数轴与有理数:数轴上的点、有理数与数轴的对应关系、有理数的大小关系、有理数的加法减法、有理数的乘法除法。
4.分式:分数的性质、带分数、分数的加减乘除。
三、整式的加减:1.代数式:字母、代数式的加减、整式、项、系数、常数项。
2.同类项:同类项的合并与分拆、整式的加法、整式的减法。
四、整式的乘法:1.乘法基本公式:乘法基本公式的应用、平方差公式、差的平方公式、完全平方公式、立方差公式、立方和公式、整式的乘法。
2.因式与倍式:因式分解、互质、最大公因式。
五、一次函数与方程:1.函数与方程:线性函数、一次函数、函数的表示、函数的图象、函数的性质、函数关系、一元一次方程、方程的解。
2.解一次方程:等式的性质、移项变号、等式的逆运算、绝对值不等式。
六、比例与百分数:1.比例:比例的概念、比例的扩大与缩小、比例的性质、四边形的对边比、折线的边长比。
2.百分数:百分数与百分数、百分数与小数、百分数与分数、百分数的运算、平均数、加权平均数。
七、线性方程组:1.二元一次方程组:线性方程组、二元一次方程组、方程组的解、解二元一次方程组。
2.三元一次方程组:解三元一次方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学(上)知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容。
第二十一章二次根式一.知识框架二.知识概念二次根式:一般地,形如Va(a>0的代数式叫做二次根式。
当a> 0时,Va表示a的算数平方根,其中2(=0对于本章内容,教学中应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:1)「「「小是非负数;(2) f : ; (3厂—宀…;4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
第二十二章一元二次根式一.知识框架二.知识概念一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.一般地,任何一个关于 x 的一元二次方程,?经过整理,?都能化成如下形式 ax 2+bx+c=0 ( 0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax 2+bx+c=0 (0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1) 运用开平方法解形如(x+m ) 2=n (n 》0)的方程;领会降次——转化的数学思想. (2) 配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为 1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为 (x+p )2=q 的形式,如果q 》0,方程的根是x=-p ±V q ;如果q v 0,方程无实根.介绍配方法时,首先通过实际问题引出形如 工叮 二的方程。
这样的方程可以化为更为简单的形如 二 「的 方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如2例说明一元二次方程可以化为形如 r■ ■ ■的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是 1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(3) 一元二次方程 ax 2+bx+c=0 (a 丰0)的根由方程的系数 a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac 》0时,?将a 、b 、c 代入式子bb 2 4ac x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、2a乘方、开方,这体现了公式的统一性与和谐性。
)这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.(他+疔"的方程。
然后举一.知识框架二.知识概念1•旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定 点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图 形的大小和形状没有改变。
)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°大于360°。
3 .中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转 180度后能与自身重合,那么我们就说,这个图形成中心对 称图形。
中心对称:如果把一个图形绕着某一点旋转 180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察, 培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。
* * *4 + 4 4 I I甲v一.知识框架二.知识概念1•圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2. 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3. 圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4. 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5. 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6. 圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
7. 圆和点的位置关系:以点P与圆0的为例(设P是一点,贝U PO是点到圆心的距离),P在O O外,P0> r; P 在O O 上,PO= r ; P 在O O 内,PO X r。
8. 直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
9. 两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
两圆的半径分别为R和r,且R> r,圆心距为P:外离P> R+r;外切P=R+r;相交R-r XP X R+r;内切P=R-r ;内含P X R-r。
10. 切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
11. 切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
12. 垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
13. 有关定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14. 圆的计算公式 1.圆的周长C=2n r= n d 2.圆的面积S= n r A2; 3. 扇形弧长l=n n r/18015. 扇形面积S=n(RA2-rA2 )5.圆锥侧面积S=n rl第二十五章概率知识框架本章内容要求学生了解事件的可能性,在探究交流中学习体验概率在生活中的乐趣和实用性,学会计算概率。
九年级数学(下)知识点人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容。
第二十六章二次函数一.知识框架5.二次函数图像画法:勾画草图关键点:①开口方向 ②对称轴 ③顶点 ④与x 轴交点 ⑤与y 轴交点6.图像平移步骤.知识概念1.二次函数:一般地,自变量x 和因变量y 之间存在如下关系:一般式:y=ax^2+bx+c(a 工0, a 、b 、c 为常数),则称y 为x 的二次函数。
一般式 y=ax 2 +bx+c(a 工 0)顶点式y a(x h)2 kb 、2 24ac by a(x )2a 4a交点式 y a(xxj(x X 2)b x2a 2b 4ac b2a' 4a与y 轴交点坐标(0, c )4.增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边, y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小2.二次函数的解析式三种形式。
轴:标:(1)配方y a(x h)2k,确定顶点(h,k)(2 )对x轴左加右减;对y轴上加下减7•二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为X i, X2其对应的纵坐标相等那么对称轴x - 22 8•根据图像判断a,b,c的符号(1)----- a 开口方向(2) b ——对称轴与a左同右异9•二次函数与一元二次方程的关系抛物线y=ax2 +bx+c与x轴交点的横坐标x i, X2是一元二次方程ax2 +bx+c=O (a丰0)的根。
抛物线y=ax2 +bx+c,当y=0时,抛物线便转化为一元二次方程ax2+bx+c=0b24ac >0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;2 b 4ac=0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;b24ac <0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现•教师在讲解本章内容时应注重培养学生数形结合的思想和独立思考问题的能力。
第二十七章相似二.知识概念:1•相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
互为相似形的三角形叫做相似-7 -三角形2•相似三角形的判定方法:根据相似图形的特征来判断。
(对应边成比例,对应角相等)①•平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;②•如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;③如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;④如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3•直角三角形相似判定定理:④•斜边与一条直角边对应成比例的两直角三角形相似。
④•直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
4•相似三角形的性质:④.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
④相似三角形周长的比等于相似比。
④•相似三角形面积的比等于相似比的平方。
本章内容通过对相似三角形的学习,培养学生认识和观察事物的能力和利用所学知识解决实际问题的能力。
第二十八章锐角三角函数一.知识框架(1)/ A的对边与斜边的比值是/ A的正弦,记作sinA = ⑵/ A的邻边与斜边的比值是/ A的余弦,记作cosA= / A的对边斜边/ A的邻边斜边⑶/ A的对边与邻边的比值是/ A的正切,记作tanA = ⑷/ A的邻边与对边的比值是/ A的余切,记作cota=2•特殊值的三角函数:边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。