平面上点的坐标怎样在平面直角坐标系中描点练习解读
《平面直角坐标系》教案 (公开课获奖)教案 2022青岛版 (1)
-3-1BA32《平面直角坐标系》教学目标:1. 理解平面直角坐标系的相关概念;2.在给定的平面直角坐标系中,能根据点的位置写出点的坐标,由点的坐标描出点的位置; 3.经历坐标概念的形成,培养学生的观察归纳能力。
4.理解每个象限及坐标轴上的点的坐标的特征。
5.在探索研究过程中渗透数形结合的数学思想,通过介绍数学家的故事,渗透理想和情感的教育. 教学重点:平面直角坐标系及相关概念及点的位置、点的坐标的确定。
教学难点:平面直角坐标系点的位置与点的坐标相互转化. 教学过程:(一)温故知新,问题引入 1、什么是数轴?2、指出图中A 、B 点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置.3、平面内物体的位置,我们可以用 表示。
如小亮的位置是第5行第3列可表示为 ,小莹的位置是第3行第5列可以表示为 。
【1、2两题主要让学生回顾如何确定一个点在一条直线上位置,3题复习刚学过有有序数对表示位置,引出认知冲突为新课的进行作铺垫。
】 (二)笛卡尔故事引入课内探究探究一 ----平面直角坐标系(一)学生自学课本第168页,思考并完成 1、画平面直角坐标系:(1)我们要画几条数轴?它们要具有什么特征? (2)哪一条叫x 轴?正方向向哪?y 轴呢?(3) 统称坐标轴, 叫做坐标原点。
【这一环节主要培养学生自主学习的能力,让学生在自学中初步认识概念。
在学案提示下,学生先自学掌握平面直角坐标系的相关概念及画直角坐标系的要求,通过材料的阅读,活动的实践,让学生在自画、自纠中,加深对概念的理解,培养学生良好的画图习惯。
然后出示幻灯片对基础知识掌握情况进行检查。
】2、根据上面的要求在空白处建立平面直角坐标系并标出第一象限、第二象限、第三象限和第四象限。
【采用一生板演,其余自主练习画法的方式,既能通过板演学生发现问题,强调问题又能让每一名学生有动手实践的机会。
】(二)出示幻灯片,学生判断屏幕上建立的直角坐标系是否正确。
第七章 平面直角坐标系知识点
第七章 平面直角坐标系知识点本周我们所学的知识主要是平面直角坐标系,其中有以下主要知识点(需熟记)一、点的坐标:⑴在坐标系中已知点标出它的坐标:过点分别作x 轴与y 轴的垂线,在x 轴上的垂足所表示的数即是点的横坐标,在y 轴上的垂足所表示的数即是纵坐标,坐标需写成(x,y),(横坐标在前,纵坐标在后。
⑵已知点的坐标在坐标系中描出点。
分别在x 轴与y 轴上找到表示横坐标与纵坐标的点,过这两点分别作x 轴y 轴的垂线,两线的交点即是所求的点。
二、不同位置下点的坐标特征: a 、象限点:第一象限点(+,+),第二象限点(-,+)第三象限点(-,-)第四象限点(+,-)b 、坐标轴上的点:x 轴上点(x,0),y 轴上点(0,y)注:坐标轴上的点不属于任何象限三、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。
即A(x,y),到x 轴的距离=|y|,到y 轴的距离=|x| 四、对称两点的坐标特征:1、 关于x 轴对称两点:横坐标相同,纵坐标互为相反数。
2、关于y 轴对称两点:横坐标互为相反数,纵坐标相同。
3、关于原点对称两点:横、纵坐标均互为相反数。
五、同一水平线(平行于x 轴的直线)、铅直线(平行于y 轴的直线)上点的坐标特征:1、同一水平线(平行于x 轴的直线)上的点:纵坐标相同,2、同一铅直线(平行于y 轴的直线)上的点:横坐标相同。
即若A (a,b), B(a,c)则点A 、B 在同一水平线(平行于x 轴的直线)上,若M (a,b),N(c,b),则点M 、N 在同一铅直线(平行于y 轴的直线)上。
六、水平线段(在水平线上的线段)与铅直线段(在铅直线上的线段)的长度:水平线段长度=两端点横坐标之差的绝对值,铅直线段长度=两端点纵坐标之差的绝对值。
七、用坐标表示平移:1、点的平移规则:平移a 个单位长度:向左平移→横坐标减a,向右平移→横坐标+a,向上平移→纵坐标+a,向下平移→纵坐标-a,反之亦然。
4平面直角坐标系-点的坐标的确定基础题和培优题
平面直角坐标系【点的坐标的确定】【基础练习】1.已知点P的坐标为(﹣2,a2+1),则点P一定在()A.第一或第三象限B.第二或第四象限C.第二象限D.第三象限2.点P(m+3,m+1)在直角坐标系x轴上,则点P坐标为()A.(0,﹣2)B.(0,2)C.(﹣2,0)D.(2,0)3.点B(﹣3,4)关于y轴的对称点为A,则点A的坐标是()A.(3,4)B.(﹣4,﹣3)C.(4,﹣3)D.(﹣3,﹣4)4.已知A(2,﹣5),AB平行于y轴,则点B的坐标可能是()A.(﹣2,5)B.(2,6)C.(5,﹣5)D.(﹣5,5)5.点M(﹣4,3)关于y轴对称的坐标为()A.(4,3)B.(﹣4,﹣3)C.(4,﹣3)D.(﹣4,3)6.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)7.点M(3,﹣4)关于x轴的对称点M′的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)8.已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0) B.(0,5)或(0,﹣5) C.(0,5) D.(5,0)或(﹣5,0)9.若|m|=2,|n|=3,则点A(m,n)()A.四个象限均有可能B.在第一象限或第三象限或第四象限C.在第一象限或第二象限D.在第二象限或第三象限或第四象限10. 点M (1,2)关于x 轴对称点的坐标为( )A 、(-1,2)B 、(-1,-2)C 、(1,-2)D 、(2,-1)11. 在直角坐标系中,如果a 为正数,那么点(0,a )在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上12. 在y 轴上且到点A (0,4)的线段长度为5的点B 的坐标是( )A .(0,9)B .(0,-1)C .(9,0)或(-1,0)D .(0,9)或(0,-1)13. 点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )A .(5,-3)或(-5,-3)B .(-3,5)或(-3,-5)C .(-3,5)D .(-3,-5)14. 若4,5==b a ,且点M (a ,b )在第二象限,则点M 的坐标是( )A .(5,4)B .(-5,4)C .(-5,-4)D .(5,-4)15. 如果点P (x ,y )满足xy=0,那么点P 必定在( )A .原点上B .x 轴上C .y 轴上D .坐标轴上16. 在平面直角坐标系中,点P (2,﹣3)关于原点对称点P′的坐标是 .17. 在平面直角坐标系上,若点M (a+5,a ﹣3)在y 轴上,则点M 的坐标为 .18. 已知A (x+5,2x+2)在x 轴上,那么点A 的坐标是 .19. 一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 .20. 有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为 .21. 已知AB 在y 轴上,A 点的坐标为(0,﹣3),并且AB=7,则B 的坐标为 .22. 点A (3,﹣2)关于y 轴对称的点的坐标是 ;点A 关于原点对称的点的坐标是 .点A 关于x 轴对称的点的坐标为 .23. 若点A 在第二象限,且到x 轴的距离为3,到y 轴的距离为2,则点A 的坐标为_______.24. 点P (3,5)关于y 轴对称的点的坐标是 .25. 点M (-3,-8)到x 轴的距离为_____,到y 轴的距离为______.26. 已知点A (1,1),B (2,2),C (3,3),D (4,4),这些点的横坐标x 和纵坐标y 的关系是______.27. 如果点P (a ,2)在第二象限,那么点Q (-3,a )在_______.28. 点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为 ;点B 在y 轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为 ;点C 在y 轴左侧,在x 轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标为 .29. 通过平移把点A (2,-1)移到点A'(2,2),按同样的平移方式,点B (-3,1)移动到点B',则点B’的坐标是 .30. 已知点M 在轴上,则点M 的坐标为_____.【培优练习】31. 已知△ABC 在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC 关于y 轴对称,那么点A 的对应点A′的坐标为( )A . (﹣4,2)B . (﹣4,﹣2)C . (4,﹣2)D . (4,2)32. 已知点P (x ,y )在第二象限|x+1|=2,|y ﹣2|=3,则点P 的坐标为( )A . (﹣3,5)B . (1,﹣1)C . (﹣3,﹣1)D . (1,5)33. 如图的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( ) A .(-1,1) B .(-1,2) C .(-2,1) D .(-2,2)()a a -+4,3y 图3相帅炮34. 已知点P 坐标为(2-a ,3a+6),且P 点到两坐标轴的距离相等,则点P 的坐标是( )A .(3,3)B .(3,-3)C .(6,-6)D .(3,3)或(6,-6)35. 点A (-2,-3)与点B (-3,-2)在直角坐标系中( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .不关于坐标轴和原点对称36. 已知点A ,如果点A 关于轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( )A .B .C .D .37. 一只小虫子在一个小方格的线路上爬行,它起始的位置是A (2,2),先爬到B (2,4),再爬到C (5,4),最后爬到D (5,5),则小虫一共爬行了( )个单位.A .7B . 6C . 5D . 438. 已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位后,与点P 对应的点为Q ,则点Q 的坐标为( )A .(3,2)B .(6,2)C .(6,4)D .(3,5)39. 已知点M 1(-1,0)、M 2(0,-1)、M 3(-2,-1)、M 4(5,0)、 M 5(0,5)、M 6(-3,2),其中在x 轴上的点的个数是( )A .1 个B .2 个C .3个D .4个40. 如果点P (,)与点P 1(,)关于轴对称,则,的值分别为( )A .B .C .D .41. 小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向42. 点A (1,0),B (0,2),点P 在x 轴上,且三角形PAB 的面积为5,则P 点坐标为( )A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定43. 一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)()2,2-x ()2,2()2,2-()1,1--()2,2--m -35-n y m n 3,5=-=n m 3,5==n m 3,5-=-=n m 5,3=-=n m44.在直角坐标中有两点M(a,b),N(a,-b),则这两点()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.上述结论都不正确45.由坐标平面内的三点A(1,1),B(3,-1),C(1,-3)构成的△ABC是()A.钝角三角形 B.直角三角形; C.锐角三角形 D.等腰直角三角形46.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为.47.已知点A(-2,2),B(-1,1),C(0,0),D(1,-1),E(2,-2),这些点的横坐标x和纵坐标y的关系是_______.48.ABC中,A(-4,-2),B(-1,-3),C(-2,-1),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,则对应点A′,B′,C′的坐标分别为_____,_____,_______.49.已知AB∥x轴,A的坐标为(3,2),并且AB=4,则B的坐标为________.50.已知点A(-2,6),B(-1,5),C(0,4),D(1,3),E(2,2),这些点的横坐标x 和纵坐标y的关系是_________.【课后练习】1.到x轴的距离等于2的点组成的图形是()A.过点(0,2)且与x轴平行的直线B.过点(2,0)且与y轴平行的直线C.过点(0,-2)且与x轴平行的直线D.分别过(0,2)和(0,-2)且与x轴平行的两条直线2.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)3.已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)4.线段CD是由线段AB平移得到的。点A(–1,4)的对应点为C(4,7),则点B(–4,– 1)的对应点D的坐标为()A.(2,9) B.(5,3)C.(1,2) D.(– 9,– 4)5.在平面直角坐标系中,点A(-1,0)与点B(0,2)的距离是.6.由坐标平面内的三点A(-2,-1),B(-1,-4),C(5,-2)构成的三角形是_____三角形.7.如图的围棋盘,放在某个平面直角坐标系内,白棋②的坐标是(-7,-4),白棋④的坐标是(-6,-8),那么黑棋①的坐标是.。
平面直角坐标系内点的坐标特征
横坐标的绝 对值
③点P(a,b)与坐标原点的距离是 a2 b2
学习文档
练一练
1.点M〔-5,12〕到x轴的距离是__1_2_;到y轴的距 离是__5__;到原点的距离是__1_3_. 2.点M〔m,-5〕. ①点M到x轴的距离是__5__; ②假设点M到y轴的距离是4;那么 m 为±_4___.
学习文档
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标. 〔3〕点Q的坐标为〔1,5〕,直线PQ∥y轴;
解:∵点Q的坐标为(1,5),直线PQ∥y轴, ∴a-2=1, 解得 a=3, 故2a+8=14,那么P(1,14);
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标.
2
学习文档
问题3:如图,在平面直角坐标系中你能画出点A关 于y轴的对称点吗?
y
A′(-2,3)
A (2,3)
你能说出点A 与点A'坐标的 关系吗?
O
x
学习文档
做一做:在平面直角坐标系中画出以下各点关于y轴
的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2)
O
C '(-3,-4)
-4 -3 -2 -1O 1 2 3 4 5 x
E
-1 -2
H
F
-3 -4
Q
G
学习文档
总结归纳 y
O L(-x,-y)
M〔x,y〕 x
关于原点对称的两点,横坐标和纵坐标都互为 相反数.
学习文档
做一做
点〔4,3〕与点〔4,- 3〕的关系是〔 B 〕 A.关于原点对称 B.关于 x轴对称 C.关于 y轴对称 D.不能构成对称关系
平面直角坐标系知识点、题型总结讲义
4.平面直角坐标系知识点讲义1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,)一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;坐标轴上的点不属于任何象限; 4、 四个象限的点的坐标具有如下特征:小结:(1)点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性;(2)点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;5、 在平面直角坐标系中,已知点P ),(b a ,则(1) 点P 到x 轴的距离为b ; (2)点P 到y 轴的距离为a ; (3) 点P 到原点O 的距离为PO =22b a6、 平行直线上的点的坐标特征:a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;象限横坐标x 纵坐标y 第一象限正 正 第二象限负 正 第三象限负 负 第四象限 正 负 P (b a ,) a b xy O -3 -2 -1 0 1 a b 1 -1 -2 -3 P(a,b)Y x XY A B mXY C D n a b7、 对称点的坐标特征:a) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等;b) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上基本练习:练习1:在平面直角坐标系中,已知点P (2,5-+m m )在x 轴上,则P 点坐标为 练习2:在平面直角坐标系中,点P (4,22-+m )一定在 象限; 练习3:已知点P ()9,12--a a 在x 轴的负半轴上,则P 点坐标为 ;练习4:已知x 轴上一点A (3,0),y 轴上一点B (0,b ),且AB=5,则b 的值为 ; 练习5:点M (2,-3)关于x 轴的对称点N 的坐标为 ; 关于y 轴的对称点P的坐标为 ;关于原点的对称点Q 的坐标为 。
人教版初中数学平面直角坐标系典型例题及答题技巧
人教版初中数学平面直角坐标系典型例题及答题技巧单选题1、在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2)B.(2,2)C.(−2,2)D.(2,−2)答案:D解析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为D2、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意故选:D小提示:本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.3、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.4、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.5、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.6、在下列所给出坐标的点中,在第二象限的是A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)答案:B解析:解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(-2,3)、(-2,-3)、(2,-3)中只有(-2,3)在第二象限.故选:B.7、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.8、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.填空题9、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.10、在平面直角坐标系中,将点A(−1,−2)向右平移7个单位长度,得到点B,则点B的坐标为__________.答案:(6,-2)解析:根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点B的坐标为(-1+7,-2),进而可得答案.解:将点A(-1,-2)向右平移了7个单位长度得到点B,则点B的坐标为(-1+7,-2),即(6,-2),所以答案是:(6,-2).小提示:此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.11、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.12、若点A(m+3,m−3)在x轴上,则m=__________.答案:3解析:由题意直接根据x轴上的点的纵坐标为0列出方程求解即可.∵点A(m+3,m−3)在x轴上,∴m-3=0,∴m=3.所以答案是:3.小提示:本题考查点的坐标,熟记x轴上的点的纵坐标为0是解题的关键.13、如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是___.答案:(10,8√3)解析:根据题意建立如图所示的直角坐标系,则OA=2,AB=16,∠ABC=30°,所以AC=8,BC=8√3,则OC=OA+AC=10,所以B(10,8√3),故答案为(10,8√3).解答题14、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.15、如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.(1)在图中建立直角坐标系,使点A、B的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x轴上是否存在点C,使△ABC为等腰三角形(其中AB为腰)?若存在,请直接写出所有满足条件的点C的坐标.答案:(1)答案见解析;(2)存在,点C的坐标(-6,0)或(4,0)或(7,0).解析:(1)根据点B(-1,0),判断x轴经过点B,且B右侧的点就是原点,建立坐标系即可;(2)分情形求解即可.(1)∵点B(-1,0),∴x轴经过点B,且B右侧的点就是原点,建立坐标系如图1所示;(2)存在,点C的坐标(-6,0)或(4,0)或(7,0).理由如下:∵A(3,3),B(-1,0),∴AB=√(3−(−1))2+(3−0)2=5,当AB为等腰三角形的腰时,(1)以B为圆心,以BA=5为半径画弧,角x轴于两点,原点左边的C1,右边为C2,∵AB=5,点B(-1,0),∴C1(-6,0),C2(4,0);(2)以A为圆心,以AB=5为半径画弧,角x轴于一点,原点的右边为C3,∵AB=5,点A到x轴的距离为3,(-1,0),∴等腰三角形AB C3的底边长为2√52−32=8,∴C3(7,0);综上所述,存在,点C的坐标(-6,0)或(4,0)或(7,0).小提示:本题考查了平面直角坐标系的建立,等腰三角形的判定,勾股定理,熟练掌握坐标系的特点,等腰三角形的判定,科学分类求解是解题的关键.。
【知识解读+练习】初一下数学第三章:平面直角坐标系
第三节 平面直角坐标系知识解读一、 有序数对1.概念:用含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作:(),a b .注:有序数对是强调顺序的,a 与b 表示不同的含义.因此(),a b 与(),b a 顺序不同,含义也不同.二、 平面直角坐标系1.概念:在平面内画两条互相垂直,原点重合的数轴,就组成了平面直角坐标系.(1)水平的数轴称为x 轴或横轴,习惯取向右为正方向;(2)竖直的数轴称为y 轴或纵轴,取向上为正方向;(3)两坐标轴的交点称为平面直角坐标系的原点.2.坐标系中的点及点的坐标:有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.确定坐标系中点的坐标只需从这点分别向x 轴和y 轴作垂线,垂足在坐标轴上对应的数就是这一点的横坐标和纵坐标,我们把横坐标和纵坐标写成有序数对的形式就是这一点的坐标.如图:P 点的坐标为()3,2,Q 点坐标为()2,3.注:书写坐标的时候一定要把横坐标写在前面,纵坐标写在后面.3.平面内点与有序数对的关系:对于平面内任意一点M ,都有惟一的一对有序数对(),x y 和它对应对于任意一对有序数对(),x y ,在坐标平面内都有注:考察到坐标轴距离问题要注意多解,例如:横坐标3,到x 轴距离为4的点为(3,4)或(3,-4)5.象限:在直角坐标系中,两条坐标轴把平面分成四个区域,按照逆时针顺序分别称第一、二、三、四象限.注:坐标轴上的点不属于任何一个象限.原点属于两条坐标轴.6.点的位置与坐标特征(1)第一象限(),++、第二象限(),−+、第三象限(),−−、第四象限(),+−;(2)x 轴(),0x 、y 轴()0,y ;(3)一三象限角平分线(),x x 、二四象限角平分线(),x x −.巩固练习一.选择题1.在平面直角坐标系中,点(2,3)P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.点(4,2)−所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)4.将某图形的各点的横坐标减去2,纵坐标保持不变,可将该图形( )A .横向向右平移2个单位B .横向向左平移2个单位C .纵向向上平移2个单位D .纵向向下平移2个单位5.若点(1,1)P a b +−在第二象限,则点(,1)Q a b −在第( )象限.A .一B .二C .三D .四6.在平面直角坐标系xOy 中,点P 在第二象限,且点P 到x 轴的距离是4,到y 轴的距离是5,则点P 坐标是( )A .(5,4)−B .(4,5)−C .(4,5)D .(5,4)−7.在平面直角坐标系xOy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y ,则点P 的坐标为( )A.1)−B .( C.(1, D.(−8.在平面直角坐标系xOy 中,(2,4)A ,(2,3)B −,(4,1)C −,将线段AB 平移得到线段CD ,其中点A 的对应点是C ,则点B 的对应点D 的坐标为()A .(4,8)−B .(4,8)−C .(0,2)D .(0,2)−9.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x 轴、y 轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是( )A .(3.2,1.3)B .(1.9,0.7)−C .(0.7, 1.9)−D .(3.8, 2.6)−10.如图,把图①中的A 经过平移得到O (如图②),如果图①中A 上一点P 的坐标为(,)m n ,那么平移后在图②中的对应点P '的坐标为( )A .(2,1)m n ++B .(2,1)m n −−C .(2,1)m n −+D .(2,1)m n +− 二.填空题11.平面直角坐标系中,已知点(2,1)A −,线段//AB x 轴,且3AB =,则点B 的坐标为 .12.在平面直角坐标系中,点(3,1)A −−关于y 轴的对称点的坐标为 .13.点A 到x 轴的距离是3,到y 轴的距离是1,且点A 在x 轴下方,则点A 的坐标为 .14.在平面直角坐标系中,点(3,42)P m m −−不可能在第 象限.15.如图,直线12l l ⊥,在某平面直角坐标系中,x 轴1//l ,y 轴2//l ,点A 的坐标为(2,4)−,点B 的坐标为(4,2)−,那么点C 在第 象限.16.将点(2,3)P −先向右平移2个单位,再向上平移3个单位后,则平移后点P的坐标是.17.已知点(3,0)A ,点B 在y 轴上,6ABO S ∆=,则B 点坐标为 .18.若点(2,31)P m m −+在y 轴上,则点P 的坐标是 .19.若点(4,26)P a a −−在x 轴上,则点P 的坐标为 .20.在平面直角坐标系xOy 中,(4,0)A ,(0,3)B ,(,7)C m ,三角形ABC 的面积为14,则m 的值为21.平面直角坐标系xOy 中,已知线段AB 与x 轴平行,且5AB =,若点A 的坐标为(3,2),则点B 的坐标是 .22.今年清明假期164万游客游园,玉渊潭、动物园、天坛公园游客最多,如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(6,1)−,表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为 .23.在平面直角坐标系中,我们定义,点P 沿着水平或竖直方向运动到达点Q 的最短路径的长度为P ,Q 两点之间的“横纵距离”.如图所示,点A 的坐标为(2,3),则A ,O 两点之间的“横纵距离”为5.(1)若点B 的坐标为(3,1)−−,则A ,B 两点之间的“横纵距离”为 ;(2)已知点C 的坐标为(0,2),D ,O 两点之间的“横纵距离”为5,D ,C 两点之间的“横纵距离”为3.请写出两个满足条件的点D 的坐标: ,.三.解答题24.如图,在平面直角坐标系中,三角形ABC 的三个顶点分别是(1,6)A −,(4,3)B −,(1,4)C .将三角形ABC 先向右平移4个单位,再向下平移3个单位,得到三角形A B C '''.(1)请在图中画出平移后的三角形A B C ''';(2)三角形A B C '''的面积是 .25.在平面直角坐标系xOy 中,ABC ∆的三个顶点分别是(2,0)A −,(0,4)B ,(3,0)C .(1)在所给的图中,画出这个平面直角坐标系;(2)点A 经过平移后对应点为(3,3)D −,将ABC ∆作同样的平移得到DEF ∆,点B 、C 分别与点E 、F 对应,画出平移后的DEF ∆;(3)在(2)的条件下,在坐标轴上找到点Q ,使得DFQ ∆的面积与ABC ∆的面积相等,则ABC ∆的面积为 ,点Q 的坐标为 .26.已知点(36,1)A a a −+,试分别根据下列条件,求出点A 的坐标,(1)点A 在x 轴上;(2)点A 在过点(3,2)P −,且与y 轴平行的直线上.27.如图,在正方形网格中,横、纵坐标均为整数的点叫做格点,点A 、B 、C 、O 均在格点上,其中O 为坐标原点,(3,3)A −.(1)点C 的坐标为 ;(2)将ABC ∆向右平移6个单位,向下平移1个单位,对应得到△111A B C ,请在图中画出平移后的△111A B C ,并求△111A B C 的面积;(3)在x 轴上有一点P ,使得△11PA B 的面积等于△111A B C 的面积,直接写出点P 坐标.28.如图,这是某市部分建筑分布简图,若火车站的坐标为(1,2)−,市场的坐标为(3,5),请在图中画出平面直角坐标系,并分别写出超市、体育场和医院的坐标.超市的坐标为 ;体育场的坐标为 ;医院的坐标为 .29.在平面直角坐标系xOy 中,点(0,4)A ,(6,4)B ,将点A 向右平移两个单位得到点C ,将点A 向下平移3个单位得到点D .(1)依题意在下图中补全图形并直接写出三角形ABD 的面积.(2)点E 是y 轴上的点A 下方的一个动点,连接EC ,直线EC 交线段BD 于点F ,若DEF ∆的面积等于三角形ACF 面积的2倍.请画出示意图并求出E 点的坐标.30.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单−.位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(3,2)(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;−−,请在坐标系中标出中国人民大学的位(2)若中国人民大学的坐标为(3,4)置.。
专题11 平面直角坐标系(归纳与讲解)(解析版)
专题11平面直角坐标系【专题目录】技巧1:点的坐标变化规律探究问题技巧2:巧用坐标求图形的面积技巧3:活用有序数对表示点的位置技巧4:巧用直角坐标系中点的坐标特征解相关问题【题型】一、用有序数对表示位置【题型】二、求点的坐标【题型】三、距离与点坐标的关系【题型】四、象限角的平分线上的点的坐标【题型】五、与坐标轴平行的直线上的点的坐标特征【题型】六、点的坐标的规律探索【题型】七、函数图象的应用【考纲要求】1、会画平面直角坐标系,并能根据点的坐标描出点的位置,掌握坐标平面内点的坐标特征.2、了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.3、能确定函数自变量的取值范围,并会求函数值.【考点总结】一、平面直角坐标系【考点总结】二、函数有关的概念及图象【注意】1、坐标轴上的点不属于任何象限点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
2、确定出数自变量力的取值范围的方法 (1)整式:取全体实数 (2)有分母:取值使分母不为零(3)有二次根式:取值使被开方数不小于0 (4)有很多情况:取它们的公共部分 (5)在实际问题中:取值要符合实际意义 【技巧归纳】技巧1:点的坐标变化规律探究问题【类型】一、沿坐标轴运动的点的坐标规律探究1.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2 019秒时,点P 的坐标是( )(第1题)A .(2 018,0)B .(2 019,-1)C .(2 019,1)D .(2 020,0)2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2 017次运动后,动点P 的坐标是________,经过第2 018次运动后,动点P 的坐标是________.3.如图,一个粒子在第一象限内及x 轴、y 轴上运动,第一分钟从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),然后它接着按图中箭头所示的方向运动(在第一象限内运动时,运动方向与x 轴或y 轴平行),且每分钟移动1个单位长度.(1)当粒子所在位置是(2,2)时,所经过的时间是________; (2)在第2 017分钟时,这个粒子所在位置的坐标是________.【类型】二、绕原点呈“回”字形运动的点的坐标规律探究4.将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x ,y),其中x ,y 均为整数,如数5对应的坐标为(-1,1),则数2 018对应的坐标的( )A .(16,22)B .(-15,-22)C .(15,-22)D .(16,-22) 【类型】三、图形变换的点的坐标规律探究5.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称中心重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2 018的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)6.(探究题)如图,在平面直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将三角形OA 3B 3变换成三角形OA 4B 4,则点A 4的坐标是________,点B 4的坐标是________;(2)若按(1)题中的规律,将三角形OAB 进行n(n 为正整数)次变换,得到三角形OA n B n ,比较每次变换前后三角形顶点坐标有何变化,找出规律,推测点A n 的坐标是__________,点B n 的坐标是__________. 参考答案1.B 点拨:半径为1个单位长度的圆的周长的一半为12×2π×1=π,因为点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,所以点P 1秒走12个半圆.当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0);当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0); ….因为2 019÷4=504……3,所以第2 019秒时,点P 的坐标是(2 019,-1). 2.(2 017,1);(2 018,0) 3.(1)6分钟 (2)(44,7)4.C 点拨:以原点为中心,数阵图形成多层正方形(不完整),观察图形得出下表:正方形在第四象限的顶点 因为442<2 018<452=(2×22+1)2=2 025, 所以数2 025对应的坐标为(22,-22). 所以数2 018对应的坐标为(15,-22).5.D 点拨:设P 1(x ,y),因为点A(1,-1),点P(0,2)关于A 的对称点为P 1,所以x2=1,y +22=-1,解得x =2,y =-4,所以P 1(2,-4).同理可得P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,所以每6个点循环一次.因为2 018÷6=336……2,所以点P 2 018的坐标是(-4,2).故选D . 6.(1)(16,3);(32,0)(2)(2n ,3);(2n +1,0) 技巧2:巧用坐标求图形的面积 【类型】一、直接求图形的面积1.如图,已知A(-2,0),B(4,0),C(-4,4),求三角形ABC 的面积.【类型】二、利用补形法求图形的面积2.已知在四边形ABCD中,A(-3,0),B(3,0),C(3,2),D(1,3),画出图形,求四边形ABCD 的面积.3.如图,已知点A(-3,1),B(1,-3),C(3,4),求三角形ABC的面积.【类型】三、利用分割法求图形的面积4.在如图所示的平面直角坐标系中,四边形OABC各顶点分别是O(0,0),A(-4,10),B(-12,8),C(-14,0),求四边形OABC的面积.【类型】四、已知三角形的面积求点的坐标5.已知点O(0,0),点A(-3,2),点B在y轴的正半轴上,若三角形AOB的面积为12,则点B 的坐标为()A.(0,8) B.(0,4) C.(8,0) D.(0,-8)6.已知点A(-4,0),B(6,0),C(3,m),如果三角形ABC的面积是12,求m的值.7.已知A(-2,0),B(4,0),C(x,y).(1)若点C在第二象限,且|x|=4,|y|=4,求点C的坐标,并求三角形ABC的面积;(2)若点C在第四象限,且三角形ABC的面积为9,|x|=3,求点C的坐标.参考答案1.解:因为C点坐标为(-4,4),所以三角形ABC 的AB 边上的高为4. 又由题易知AB =6, 所以S 三角形ABC =12×6×4=12.2.解:如图所示.过点D 作DE 垂直于BC ,交BC 的延长线于点E ,则四边形DABE 为直角梯形. S 四边形ABCD =S 梯形DABE -S 三角形C DE =12×(2+6)×3-12×1×2=11.3.解:方法一:如图,作长方形CDEF ,则S 三角形ABC =S 长方形CDEF -S 三角形ACD -S 三角形ABE -S 三角形BCF =CD·DE -12·AD·CD -12AE·BE -12BF·CF =6×7-12×3×6-12×4×4-12×2×7=18.方法二:如图,过点B 作EF ∥x 轴,并分别过点A 和点C 作EF 的垂线,垂足分别为点E ,F.易知AE =4,BE =4,BF =2,CF =7,EF =6,所以S 三角形ABC =S 梯形AEFC -S 三角形ABE -S 三角形BFC =12(AE +CF)·EF -12AE·BE -12BF·CF =12×(4+7)×6-12×4×4-12×2×7=18. 方法三:如图,过点A 作DE ∥y 轴,并分别过点C 和点B 作DE 的垂线,垂足分别为点D ,E. 易知AE =4,BE =4,AD =3,CD =6,DE =7,所以S 三角形ABC =S 梯形BEDC -S 三角形ABE -S 三角形ADC=12(BE +CD)·DE -12AE·BE -12AD·CD =12×(4+6)×7-12×4×4-12×3×6=18.4.解:如图,过点A 作AD ⊥x 轴,垂足为点D ,过点B 作BE ⊥AD ,垂足为点E.易知D(-4,0),E(-4,8),且BE =-4-(-12)=8,AE =10-8=2,CD =-4-(-14)=10,所以S 四边形OABC =S 三角形AOD +S 三角形ABE +S 梯形DEBC =12OD·AD +12AE·BE +12(BE +CD)·DE =12×4×10+12×2×8+12×(8+10)×8=20+8+72=100.点拨:本题的解题技巧在于把不规则的四边形OABC 分割为几个规则图形,实际上分割的方法是不唯一的,并且不仅可以用分割法,还可以用补形法. 5.A6.解:AB =6-(-4)=10.根据三角形的面积公式,得12AB·|m|=12,即12×10·|m|=12,解得|m|=2.4. 因为点C(3,m),所以点C 在第一象限或第四象限. 当点C 在第一象限时,m >0, 则m =2.4;当点C 在第四象限时,m <0,则m =-2.4.综上所述,m 的值为-2.4或2.4.7.解:(1)因为点C 在第二象限,且|x|=4,|y|=4,所以点C 的坐标为(-4,4). 又易知AB =6,所以S 三角形ABC =12×6×4=12.(2)由题意可知AB =6.因为点C 在第四象限,|x|=3,所以x =3.因为S 三角形ABC =12×6×|y|=9,所以|y|=3.所以y =-3.所以点C 的坐标为(3,-3). 技巧3:活用有序数对表示点的位置 【类型】一、利用有序数对表示座位号1.如图,王明同学的座位是1组2排,如果用有序数对(1,2)表示,那么张敏同学和石玲同学的座位怎样用有序数对表示?【类型】二、利用有序数对表示棋子位置2.五子棋深受广大棋友的喜爱,其规则是:在正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙对弈时的部分示意图(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记为(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?【类型】三、利用有序数对表示地理位置3.如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立两条互相垂直的数轴,如果用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置,根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?【类型】四、利用有序数对表示运动路径4.如图,小军家的位置点A在经5路和纬4路的十字路口,用有序数对(5,4)表示;点B是学校的位置,点C是小芸家的位置,如果用(5,4)→(5,5)→(5,6)→(6,6)→(7,6)→(8,6)表示小军家到学校的一条路径.(1)请你用有序数对表示出学校和小芸家的位置;(2)请你写出小军家到学校的其他几条路径.(写3条)参考答案1.解:张敏同学的座位可以表示为(3,3),石玲同学的座位可以表示为(4,5).2.解:甲必须在(1,7)或(5,3)处落子,因为若甲不先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则下一步不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.3.解:(1)湖心岛的位置可表示为(2.5,5);光岳楼的位置可表示为(4,4);山陕会馆的位置可表示为(7,3).(2)不是同一个位置,因为前面一个数字代表横向,后一个数字代表纵向,交换数字的位置后,就会表示不同的位置.4.解:(1)学校和小芸家的位置分别可表示为(8,6),(3,3).(2)答案不唯一,如:①(5,4)→(5,5)→(6,5)→(7,5)→(8,5)→(8,6);②(5,4)→(6,4)→(7,4)→(8,4)→(8,5)→(8,6);③(5,4)→(6,4)→(6,5)→(7,5)→(8,5)→(8,6).技巧4:巧用直角坐标系中点的坐标特征解相关问题【类型】一、象限内的点的坐标1.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定2.在平面直角坐标系中,若点P(m,m-2)在第一象限内,则m的取值范围是________.【类型】二、坐标轴上的点的坐标3.若点M的坐标为(-a2,|b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上4.已知点P(a-1,a2-9)在y轴上,则点P的坐标为________.【类型】三、平面直角坐标系中一些特殊点的坐标5.已知点P(2m-5,m-1),当m为何值时,(1)点P在第二、四象限的角平分线上?(2)点P在第一、三象限的角平分线上?6.已知A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围.【类型】四、点的坐标与点到x轴、y轴的距离之间的关系7.已知点A(3a,2b)在x轴上方,y轴的左侧,则点A到x轴、y轴的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a8.已知点P到x轴和y轴的距离分别是2和5,求点P的坐标.【类型】五、关于坐标轴对称的点9.点P(-3,4)关于x轴对称的点的坐标是()A.(-4,3)B.(3,-4)C.(-3,-4) D.(3,4)10.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=________.11.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).【类型】六、关于特殊直线对称的点12.点P(3,5)关于第一、三象限的角平分线对称的点为点P1,关于第二、四象限的角平分线对称的点为点P2,则点P1,P2的坐标分别为()A.(3,5),(5,3)B.(5,3),(-5,-3)C.(5,3),(3,5) D.(-5,-3),(5,3) 13.点M(1,4-m)关于过点(5,0)且垂直于x轴的直线对称的点的坐标是____________;若点M关于过点(0,-3)且平行于x轴的直线对称的点的坐标为(1,7),则m=________.参考答案1.B2.m>2点拨:第一象限内的点的横、纵坐标必须同时为正,所以m>2.3.C点拨:由-a2可确定a=0,所以-a2=0. 又|b|+1>0,所以点M(-a2,|b|+1)在y轴正半轴上.4.(0,-8)5.解:(1)根据题意,得2m-5+m-1=0,解得m=2.所以当m=2时,点P在第二、四象限的角平分线上.(2)根据题意,得2m-5=m-1,解得m=4.所以当m=4时,点P在第一、三象限的角平分线上.点拨:第一、三象限的角平分线上的点的横、纵坐标相等,第二、四象限的角平分线上的点的横、纵坐标互为相反数.6.解:因为AB∥x轴,所以m=4.因为A,B不重合,所以n≠-3.点拨:与x轴平行的直线上的点的纵坐标相等.7.C点拨:由点A(3a,2b)在x轴上方,y轴的左侧可知点A在第二象限,故3a是负数,2b是正数,所以点A到x轴、y轴的距离分别为2b,-3a.8.解:设点P的坐标为(x, y),依题意,得|x|=5,|y|=2,所以x=±5,y=±2.所以点P的坐标为(5,2)或(5,-2)或(-5,2)或(-5,-2).点拨:(1)点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.(2)写点P的坐标时,横、纵坐标的前后顺序不能随意改变.(3)找全满足条件的点P的坐标,不要遗漏.9.C10.-611.-2;312.B点拨:任意点A(a,b)关于第一、三象限的角平分线对称的点的坐标为(b,a),关于第二、四象限的角平分线对称的点的坐标为(-b,-a).13.(9,4-m);17点拨:点A(a,b)关于过点(k,0)且垂直于x轴的直线对称的点的坐标为(2k-a,b),关于过点(0,k)且平行于x轴的直线对称的点的坐标为(a,2k-b).【题型讲解】【题型】一、用有序数对表示位置例1、小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.【题型】二、求点的坐标例2、如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:①O ,D 两点的坐标分别是()0,0,()0,6,①OD =6,①四边形OBCD 是正方形,①OB ①BC ,OB =BC =6 ①C 点的坐标为:()6,6, 故选:D .【题型】三、距离与点坐标的关系例3、在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)-C .(4,3)-D .()3,4-【答案】C 【解析】 由题意,得 x=-4,y=3,即M 点的坐标是(-4,3), 故选C .【题型】四、象限角的平分线上的点的坐标例4、若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(-2,2)或(2,-2)【答案】C 【解析】已知点M 在第一、三象限的角平分线上,点M 到x 轴的距离为2,所以点M 到y 轴的距离也为2.当点M 在第一象限时,点M 的坐标为(2,2);点M 在第三象限时,点M 的坐标为(-2,-2).所以,点M 的坐标为(2,2)或(-2,-2).故选C . 【题型】五、与坐标轴平行的直线上的点的坐标特征例5、已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ①y 轴,则a 的值是( ) A .1 B .3C .﹣1D .5【答案】B 【详解】 解:①AB①y 轴,①点A 横坐标与点A 横坐标相同,为1, 可得:a -2=1,a=3 故选:B .【题型】六、点的坐标的规律探索例6、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+,则2019A 的坐标是()1009,0, 故选C .【题型】七、函数图象的应用例7、如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为s ,则s 关于t 的函数图象大致为( ).【答案】C【分析】利用函数关系和图象分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,探求变量和函数之间的变化趋势,合理地分析变化过程,准确地结合图象解决实际问题. 【详解】本题是典型的数形结合问题,通过对图形的观察,可以看出s 与t 的函数图象应分为三段:(1)当蚂蚁从点O 到点A 时,s 与t 成正比例函数关系;(2)当蚂蚁从点A 到点B 时,s 不变;(3)当蚂蚁从点B 回到点O 时,s 与t 成一次函数关系,且回到点O 时,s 为零.平面直角坐标系(达标训练)一、单选题1.在平面直角坐标系中,点A (a ,2)在第二象限内,则a 的取值可以是( ) A .1 B .-3C .4D .4或-4【答案】B【分析】根据第二象限的坐标特征判断即可; 【详解】解:①点A (a ,2)在第二象限内, ①a <0, A .不符合题意;B .符合题意;C .不符合题意;D .不符合题意; 故选: B .【点睛】本题考查了象限的坐标特征,掌握第二象限内点的横坐标为负数,纵坐标为正数是解题关键. 2.若点(),1A a a -在x 轴上,则点()1,2B a a +-在第( )象限. A .一 B .二 C .三 D .四【答案】D【分析】由点A 在x 轴上求得a 的值,进而求得点B 坐标,进而得到答案. 【详解】解:点(),1A a a -在x 轴上, 10a ∴-=,即1a =,则点B 坐标为()2,1-, ∴点B 在第四象限,故选:D .【点睛】本题主要考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点. 3.如图,在围棋棋盘上有3枚棋子,如果黑棋①的位置用有序数对(0,−1)表示,黑棋①的位置用有序数对(−3,0)表示,则白棋①的位置可用有序数对表示为( )A .()2,1-B .()1,2-C .()2,1-D .()1,2-【答案】C【分析】根据黑棋①的坐标向上1个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋①的坐标即可.【详解】解:建立平面直角坐标系如图,白棋①的坐标为(-2,1).故选:C.【点睛】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【答案】D【分析】根据方位角的概念并结合平行线的性质,可得答案.【详解】解:过点B作BD①AC,①①1=①A=40°①港口A相对货船B的位置可描述为(北偏东40°,35海里),故选:D.【点睛】本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.5.某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修,如图所示的图像反映了他骑车上学的整个过程,则下列结论正确的是()A .修车花了25分钟B .小明家距离学校1000米C .修好车后骑行的速度是200米/分钟D .修好车后花了15分钟到达学校【答案】C【分析】根据横坐标,可得时间;根据函数图像的纵坐标,可得路程.【详解】解:A .由横坐标看出,小明修车时间为25-10=15(分钟),故本选项不符合题意; B .由纵坐标看出,小明家离学校的距离2000米,故本选项不合题意;C .小明修好车后骑行到学校的平均速度是:(2000-1000)÷5=200(米/分钟),故本选项符合题意;D .由横坐标看出,小明修好车后花了30-25=5(分钟)到达学校,故本选项不合题意. 故选:D .【点睛】本题考查了函数图像,观察函数图像得出相应的时间,函数图像的纵坐标得出路程是解题关键.二、填空题6.已知点()29,62A m m --在第三象限.则m 的取值范围是______. 【答案】3<m <4.5【分析】在第三象限内的点的横纵坐标均为负数,列式求值即可. 【详解】解:①点A (2m −9,6−2m )在第三象限, ①2m −9<0且6−2m <0, ①3<m <4.5, 故答案为: 3<m <4.5【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,此特点常与不等式、方程结合起来求一些字母的取值范围.7.如图,两只福娃的发尖所处的位置的坐标分别为M (-2,2)、N (1,-1), 则A 、B 、C 三个点中为坐标系原点的是____.【答案】A【分析】利用平移规律,从M(-2,2)向右平移2个单位长度,向下平移2个单位长度,可得A是坐标原点.【详解】解:①M(-2,2),①A是坐标原点.故答案为A.【点睛】本题考查了平面直角坐标系,利用平移逆向推理是解题关键.三、解答题8.某学校STEAM社团在进行项目化学习时,根据古代的沙漏模型(图1)制作了一套“沙漏计时装置”,该装置由沙漏和精密电子秤组成,电子秤上放置盛沙容器.沙子缓慢匀速地从沙漏孔漏到精密电子称上的容器内,可以通过读取电子秤的读数计算时间(假设沙子足够).该实验小组从函数角度进行了如下实验探究:实验观察:实验小组通过观察,每两小时记录一次电子秤读数,得到表1.表1探索发现:(1)建立平面直角坐标系,如图2,横轴表示漏沙时间x,纵坐标表示精密电子称的读数y,描出以表1中的数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,请你建立适当的函数模型,并求出函数表达式,如果不在同一条直线上,请说明理由.结论应用:应用上述发现的规律估算:(3)若漏沙时间为9小时,精密电子称的读数为多少?(4)若本次实验开始记录的时间是上午7:30,当精密电子秤的读数为72克时是几点钟? 【答案】(1)作图见解析(2)在同一直线上.函数表达式为:66y x =+ (3)漏沙时间为9小时,精密电子称的读数为60克 (4)下午6:30【分析】(1)根据表中各点对应横、纵坐标,描点即可.(2)通过连线可知这些点大致分布在同一直线上,满足一次函数表达式,所以可假设一次函数表达式,利用待定系数法求解函数表达式.(3)根据(2)中的表达式可求出当9x =时,精密电子秤的读数.(4)根据(2)中的表达式可求出当72y =时,漏沙的时间,然后根据起始时间可求出读数为72克的时间. (1) 解:如图所示(2)解:如图所示,连线可得,这些点在同一线上,并且符合一次函数图像. 设一次函数表达式为:y kx b =+将点(0,6),(2,18)代入解析式中可得6218b k b =⎧⎨+=⎩解得66a b =⎧⎨=⎩∴函数表达式为:66y x =+(3)解:由(2)可知函数表达式为:66y x =+ ∴当9x =时,60y =∴漏沙时间为9小时,精密电子称的读数为60克.(4)解:由(2)可知函数表达式为:66y x =+ ∴当72y =时,11x =起始时间是上午7:30∴经过11小时的漏沙时间为下午6:30.【点睛】本题考查一次函数的实际应用,要求掌握描点法画函数图象,待定系数法求解析式,会求函数自变量或函数值是解决本题的关键.平面直角坐标系(提升测评)一、单选题1.如图,小石同学在正方形网格图中建立平面直角坐标系后,点A 的坐标为(1,1)-,点B 的坐标为(2,0),则点C 的坐标为( )A .(1,2)-B .(2,1)-C .(1,2)--D .(1,1)-【答案】A【分析】利用已知点A 、B 的坐标确定平面直角坐标系,进而可得答案. 【详解】解:根据题意,建立如图所示的直角坐标系, ①点C 的坐标为(1,﹣2). 故选:A .【点睛】此题主要考查了点的坐标的确定,属于基本题型,正确得出原点位置是解题关键. 2.如图所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短( )A .(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B .(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C .(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2)→(4,0)D .以上都不对 【答案】A【分析】要想线路最短,就应从小明家出发向右及向下走,而不能向左或向上走,所以选A . 【详解】解:要想路线最短,就只应向右及向下走, 故选:A【点睛】本题考查了平面直角坐标系的应用以及数学在实际生活的应用,理解线路最短,应始终向着目标靠近,并明白平面直角坐标系中点的坐标的表示是解题关键.3.道路两旁种植行道树,选择行道树的因素有很多,比如:树形要美、树冠要大、存活率要高、落叶要少…现在只考虑树冠大小、存活率高低两个因素,可以用如下方法将实际问题数学化:设树冠直径为d ,存活率为h .如图,在平面直角坐标系中画出点(d ,h ),其中甲树种、乙树种、丙树种对应的坐标分别为A (d 1,h 1)、B (d 2,h 2)、C (d 3,h 3),根据坐标的信息分析,下列说法正确的是( )A .乙树种优于甲树种,甲树种优于丙树种B .乙树种优于丙树种,丙树种优于甲树种C .甲树种优于乙树种,乙树种优于丙树种D .丙树种优于甲树种,甲树种优于乙树种 【答案】B【分析】根据图象,比较A 、B 、C 三点的存活率和树冠直径即可得出答案. 【详解】根据题意和图象可得,213h h h >>,231d d d >>, ①乙树种是最优的,①甲树种的存活率略高于丙树种,基本相等,但丙树种的树冠直径远远大于甲树种的树冠直径, ①丙树种优于甲树种,①乙树种优于丙树种,丙树种优于甲树种, 故选:B .【点睛】本题考查规律型:点的坐标,准确读出坐标中的信息是解题的关键.4.点A 在第二象限,距离x 轴3个单位长度,距离y 轴5个单位长度,则点A 的坐标为( ) A .()5,3- B .()3,5-C .()5,3-D .()3,5-【答案】A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标. 【详解】解:①点A 在第二象限, ①点的横坐标为负数,纵坐标为正数,①点距离x 轴3个单位长度,距离y 轴5个单位长度, ①点的坐标为(-5,3). 故选:A .【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.如图,雷达探测器发现了A ,B ,C ,D ,E ,F 六个目标.目标C ,F 的位置分别表示为C (6,120°),F (5,210°),按照此方法表示目标A ,B ,D ,E 的位置时,其中表示正确的是( )A .A (4,30°)B .B (1,90°)C .D ( 4,240°) D .E (3,60°)【答案】C【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别写出坐标A (5,30°),B (2,90°),D (4,240°),E (3,300°),即可判断.【详解】解:按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数, 由题意可知A 、B 、D 、E 的坐标可表示为:A (5,30°),故A 不正确;B (2,90°),故B 不正确;D (4,240°),故C 正确;E (3,300°),故D 不正确.故选择:C .【点睛】本题考查新定义坐标问题,仔细分析题中的C 、F 两例,掌握定义的含义,抓住表示一个点,。
北师版八年级数学上册课件 第3章 第2课时 建立平面直角坐标系确定点的坐标
C
●
12 345 x
∴ S△ABC =
1 2
·BC·AD
=
1 2
×6×5=15.
新课讲解
【例2】如图,已知点A(2,-1),B(4,3),C(1,2),求△ABC
的面积.
解:如图,过点A作x轴的平行线,过点C 作y轴的平行线,两条平行线交于点E,过 点B分别作x轴、y轴的平行线,分别交EC 的延长线于点D,交EA的延长线于点F. ∵A(2,-1),B(4,3),C(1,2), ∴BD=3,CD=1,CE=3,AE=1,AF=2,BF=4, ∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA
① (-6,5),(-10,3),(-9,3),(-3,3),(-2,3); ② (-9,3),(-9,0),(-3,0),(-3,3); ③ (3.5,9),(2,7),(3,7),(4,7),(5,7); ④ (3,7),(1,5),(2,5),(5,5),(6,5); ⑤ (2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).
B
4 x 的坐标分别为: A(0,0), B(4,0), C(4,4), D(0,4).
新课讲解
【想一想】还可以建立其他平
面直角坐标系,表示正方形的四
y
个顶点A,B,C,D的坐标吗?
D
C
A(0,--4,0), B(0,0),C(0,4), D(-4,4).
5
4
·(4,4)
3
2
·(3,2)
1
· -4
-3
-2
-1
O
-1
12345
x
-2
·(3,-2)
平面直角坐标系(知识讲解)八年级数学上册基础知识讲与练(北师大版)
专题3.3 平面直角坐标系(知识讲解)【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系;2.能在平面直角坐标系中,根据坐标确定点,以及由点的位置求出坐标;3.掌握点位置与其坐标的符号特征;3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).特别说明::有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是8排9号,可以写成(8,9)的形式,而(9,8)则表示9排8号.要点二、平面直角坐标系与点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).特别说明::平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.特别说明::(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.特别说明::(1)坐标轴x 轴与y 轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律特别说明::(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x 轴上的点的纵坐标为0;y 轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a ,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a ,-a).3.平行于坐标轴的直线上的点平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同.要点五、两点之间距离公式及中点坐标公式1. 两点之间距离公式1122(,),A B x y AB =点(x ,y )则2.中点坐标公式12121122(,),;22x x y y A B x y AB C y ++=点(x ,y )线段中点为(x,y ),则x= 【典型例题】类型一、建立平面直角坐标系并求点的坐标(建系)1.如图,正三角形ABC 的边长为 4 , 建立适当的直角坐标系 ,并写出各个顶点的坐标 .【答案】A (0,,B (-2,0 ),C (2,0)解:如图,以边BC 所在的直线为x 轴,以边BC 的中垂线为y 轴建立直角坐标系. 由正三角形的性质可知AO =ABC 各个顶点A ,B ,C 的坐标分别为A(0,,B (-2,0 ),C (2,0).举一反三:【变式1】如图,点A 、B 、C 都在方格纸的格点上,若点A 的坐标为()0,2,点B 的坐标为()2,0,试建立恰当的直角坐标系,写出点C 的坐标.【答案】图见分析,()2,1C【分析】根据点的坐标建立坐标系,再确定坐标.解:如图所示建立直角坐标系:∴点C 的坐标为(2,1).【点拨】本题考查了坐标系及其点的坐标,正确建立平面直角坐标系是解题的关键.【变式2】如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C -和(0,0)的坐标分别为(4,0)(1)请直接写出A,D,E,F的坐标;(2)求正方形CDEF的面积.【答案】(1)A(﹣6,3),D(2,1),E(1,3),F(﹣1,2)(2)5【分析】(1)先利用点B和点C的坐标画出平面直角坐标系,然后根据点的坐标的意义即可得到点A、D、E、F的坐标;(2)利用正方形的面积公式和勾股定理解答即可.(1)解:如图所示:∴A(﹣6,3),D(2,1),E(1,3),F(﹣1,2).(2)解:∴ CD∴正方形CDEF的面积=5.【点拨】本题考查了坐标与图形性质:利用点的坐标求线段长和判断线段与坐标轴的位置关系;记住坐标系中坐标特征是解题的关键.类型二、点到坐标轴的距离2.已知点(23,4)A a a -+在第一象限,且点A 到x 轴和y 轴的距离相等,求点A 的坐标.【答案】(11,11)【分析】直接利用第一象限内点的坐标特点,横纵坐标的符号关系,结合点A 到x 轴和y 轴的距离相等,得出横纵坐标相等,进而得出答案. 解:点(23,4)A a a -+在第一象限,点A 到x 轴和y 轴的距离相等,234a a ∴-=+,解得:7a =,故2327311a -=⨯-=,411a +=,则点A 的坐标为:(11,11).【点拨】本题主要考查了第一象限内点的坐标特点,解题的关键是结合点A 到x 轴和y 轴的距离相等,得出横纵坐标相等,进而得出答案.举一反三:【变式1】已知平面直角坐标系中有一点(21,3)M m m --.(1)当点M 到y 轴的距离为1时,求点M 的坐标;(2)当点M 到x 轴的距离为2时,求点M 的坐标.【答案】(1)点M 的坐标是(1,2)-或(1,3)--;(2)点M 的坐标是(9,2)或(1,2)-【分析】根据点到坐标轴的距离为其横坐标或纵坐标的绝对值求解即可.解:(1)|21|1m -=,211m ∴-=或211m -=-,解得1m =或0m =,∴点M 的坐标是(1,2)-或(1,3)--.(2)|3|2m -=,32m ∴-=或32m -=-,解得5m =或1m =,∴点M 的坐标是(9,2)或(1,2)-.【点拨】本题考查的知识点是根据点到坐标轴的距离求点的坐标,需注意多解问题,不要漏解.【变式2】已知平面直角坐标系中有一点M(m -1,2m +3).(1) 当m 为何值时,点M 到x 轴的距离为1?(2) 当m 为何值时,点M 到y 轴的距离为2?【答案】(1)m =-1或m =-2.(2)m =3或m =-1.试题分析:(1)让纵坐标的绝对值为1列式求值即可;(2)让横坐标的绝对值为2列式求值即可.解:(1)∴|2m+3|=12m+3=1或2m+3=-1∴m=-1或m=-2;(2)∴|m -1|=2m -1=2或m -1=-2∴m=3或m=-1.考点:点的坐标.类型三、判断点所在的象限3.已知点(3,22)-+A a b ,以点A 为坐标原点建立直角坐标系.(1) 求a ,b 的值;(2) 判断点(24,31)--B a b 、点(3,)-+C a b 所在的位置.【答案】(1)a =3,b =−1(2)B (2,−4)在第四象限;C (0,−1)在y 轴的负半轴上且到x 轴的距离为1.【分析】(1)根据点A 为原点,则点A 的横纵坐标都为0,解答即可;(2)把a =3,b =−1分别代入B ,C 即可求解.(1)解:∴点A 为原点,∴a −3=0,2b +2=0,解得:a =3,b =−1;(2)解:把a =3,b =−1代入点B 得:2a −4=2×3−4=2,3b −1=3×(−1)−1=−4,∴B (2,−4)在第四象限;把a =3,b =−1代入点C 得:−a +3=−3+3=0,b =−1,∴C (0,−1)在y 轴的负半轴上且到x 轴的距离为1.【点拨】本题考查了点的坐标,解题的关键是掌握x 轴,y 轴上点的坐标特征. 举一反三:【变式1】已知a ,b 都是实数,设点P (a ,b ),若满足3a =2b +5,则称点P 为“新奇点”.(1) 判断点A (3,2 )是否为“新奇点”,并说明理由;(2) 若点M (m -1,3m +2)是“新奇点”,请判断点M 在第几象限,并说明理由.【答案】(1)点A (3,2)是“新奇点”,理由见分析,(2)点M 在第三象限,理由见分析.【分析】(1)根据题目中“新奇点”的判断方法,将3a =,2b =,代入判断325a b =+,即可证明;(2)根据点()132M m m -+,是“新奇点”,可得()()312325m m -=++,求解代入得出4m =-,即可确定点的坐标,然后判断在哪个象限即可.(1)解:点()32A ,是“新奇点”,理由如下: 当A (3,2)时,3a =,2b =,∴39a =,259b +=,∴325a b =+.∴点()32A ,是“新奇点”; (3) 点M 在第三象限,理由如下:∴点()132M m m -+,是“新奇点”, ∴1a m =-,32b m =+,∴()()312325m m -=++,解得:4m =-,∴15m -=-,3210m +=-,∴点()5,10M --在第三象限.【点拨】题目主要考查求代数式的值及解一元一次方程,判定点所在象限,理解题中新的定义是解题关键.【变式2】在图中建立适当的平面直角坐标系,使A 、B 两点的坐标分别为(-4,1)和(-1,4),写出点C 、D 的坐标,并指出它们所在的象限.【分析】首先根据点A 、B 的坐标确定坐标原点和x 、y 轴的正方向,进而建立平面直角坐标系,再结合图形得出C 、D 两点的坐标,进而判断这两个点所在的象限.解:建立平面直角坐标系如图:得C (-1,-2)、D (2,1).由图可知,点C 在第三象限,点D 在第一象限.【点拨】本题考查了已知两点确定直角坐标系的知识,根据两点的坐标建立平面直角坐标系是解题的关键.类型四、已知点的象限求参数4.在平面直角坐标系中,有一点M (a -2,2a +6),试求满足下列条件的a 值或取值范围.(1) 点M 在y 轴上;(2) 点M 在第二象限;(3) M 到x 轴的距离为2.【答案】(1)a =2(2)-3<a <2(3)a =–2或–4【分析】(1)点在y 轴上,该点的横坐标为0即可求解;(2)根据第二象限的点的横坐标小于0,纵坐标大于0即可求解;(3)根据点到x 轴的距离为2,则该点的纵坐标的绝对值为2,据此计算即可.(1)解:由题意得,a ﹣2=0,解得a =2;(2)解:由20260a a -⎧⎨+⎩<>, 解得,﹣3<a <2;(3)解:由|2a +6|=2,解得a =–2或–4.【点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限内点的坐标的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).举一反三:【变式1】已知点()39,210A m m --,分别根据下列条件解决问题:(1) 点A 在x 轴上,求m 的值;(2) 点A 在第四象限,且m 为整数,求点A 的坐标.【答案】(1)5m = (2)()3,2A -【分析】(1)根据x 轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据第四象限点的符号特征(),+-,列出不等式组求出m 的值,求出点A 坐标;(1)解:由2100m -=,得5m =;(2)∴点()39,210A m m --在第四象限,∴3902100m m ->⎧⎨-<⎩①②, 解不等式∴得3m >,解不等式∴得5m <,所以,m 的取值范围是35m <<,∴m 为整数,∴4m =,∴()3,2A -.【点拨】本题考查平面直角坐标中点的坐标,x 轴上的点的纵坐标等于零,各象限点的特征,解题关键是熟记点的特征.【变式2】已知平面直角坐标系中一点()25,3A a a -+,分别求出满足下列条件的点A 的坐标.(1) 点A 在过点()3,3-且平行于x 轴的直线上;(2) 点A 在第一、三象限的角平分线上;(3) 点A 在第二象限,且到两坐标轴的距离之和为10.【答案】(1)()17,3--(2)()11,11(3)()9,1-【分析】(1)根据平行于x 轴的直线上点的纵坐标相同,即可求解;(2)根据在第一、三象限的角平分线上的点横纵坐标相同,即可求解;(3)根据点A 在第二象限,可得25030a a -<⎧⎨+>⎩,再由点A 到两坐标轴的距离之和为10,可得52310a a -++=,即可求解.(1)解:∴点A 在过点()3,3-且平行于x 轴的直线上,∴33a +=-,解得:6a =-,∴2517,33a a -=-+=-,∴点A 的坐标为()17,3--;(2)解:∴点A 在第一、三象限的角平分线上,∴253a a -=+,解得:8a =,∴25311a a -=+=,∴点A 的坐标为()11,11;(3)解:∴点A 在第二象限,∴25030a a -<⎧⎨+>⎩,解得:532a -<<, ∴点A 到两坐标轴的距离之和为10,25310a a -++=,∴52310a a -++=,解得:2a =-,∴259,31a a -=-+=,∴点A 的坐标为()9,1-.【点拨】本题主要考查了平面直角坐标系中各象限内点的坐标的特征及点到坐标轴的距离的应用,点在第一、三象限的角平分线上的坐标特征,熟练掌握相关知识点是解题的关键.类型五、坐标系中描点5.在平面直角坐标系中,把以下各组点描出来,并顺次连接各点.(0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).解:如图:举一反三:【变式1】如图,点A 、B 在单位长度为1的正方形网格的格点上,建立平面直角坐标系,使点A 、B 的坐标分别为(3,0)(2,0)-、(1)请在图中建立平面直角坐标系.(2)若C 、D 两点的坐标分别为(1,2)、(2,2)-,请描出C 、D 两点.C 、D 两点的坐标有什么异同?直线CD 与x 轴有什么关系?(3)若点(24,1)E m m +-为直线CD 上的一点,则m =___________,点E 的坐标为___________.【答案】(1)答案见分析 (2)答案见分析 (3)3;()10,2E【分析】(1)根据A 、B 两点的坐标即可建立坐标系;(2)直接描出C 、D 两点坐标即可,根据横、纵坐标即可找到规律;(3)根据直线CD 上点的坐标规律即可求出m .(1)解:如图所示,(2)解:C 、D 两点如图所示,由图可知C 、D 两点横坐标不同,纵坐标相同;直线CD 与x 轴平行;(3)解:由(2)可知//CD x 轴,点(24,1)E m m +-为直线CD 上的一点,12m ∴-=,3m ∴=,2410m ∴+=,()10,2E ∴ .【点拨】本题主要考查坐标与图形,平面直角坐标系等知识,解题的关键是正确作出平面直角坐标系.【变式2】已知平面直角坐标系内有4个点:A (0,2),B (-2,0),C (1,-1),D (3,1).(1)在平面直角坐标系中描出这4个点;(2)顺次连接A 、B 、C 、D 组成四边形ABCD ,请用两种方法求出四边形ABCD 的面积.【答案】(1)见分析(2)8【分析】(1)根据平面直角坐标系描出点的坐标;(2)根据ΔΔΔΔAEB BFC CGD DHA EFGH ABCD S S S S S S =----长方形四边形,ΔΔΔΔABP BCQ CDM ADN PQMN ABCD S S S S S S =++++正方形四边形求面积即可求解.(1)解:如图所示:点A 、B 、C 、D 为所描的点.(2)方法一:如图所示,作长方形EFGH :则有ΔΔΔΔAEB BFC CGD DHA EFGH ABCD S S S S S S =----长方形四边形111153221322132222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯ 8=方法二:如图所示,将四边形ABCD 分割为△ABP 、△BCQ 、△CMD 、△AND 和正方形PQMN ,则有ΔΔΔΔABP BCQ CDM ADN PQMN ABCD S S S S S S =++++正方形四边形11111221322132222=+⨯⨯+⨯⨯+⨯⨯+⨯⨯ 8=.【点拨】本题考查了坐标与图形,数形结合是解题的关键.类型六、坐标与图形6.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(a , 0),点C 的坐标为(0,b ),且a 、b 满足8a -+|b - 12|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →A →B →C →O 的路线移动.(1) 点B 的坐标为________;当点 P 移动5秒时,点P 的坐标为(2) 在移动过程中,当点P 移动11秒时,求△OPB 的面积.(3) 在(2)的条件下,坐标轴上是否存在点Q ,使△OPQ 与△OPB 的面积相等.若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)(8,12),(8,2);(2)当点P 移动11秒时,△OPB 的面积为12;(3)(0,4)、(0,-4)、(2,0)、(-2,0).【分析】(1)利用非负数的性质求出a ,b ,可得B 点坐标,再求出点P 移动5秒的路程,可得P 点坐标;(2)求出点P 的坐标,可得PB =2,然后根据三角形面积公式计算即可;(3)分情况讨论:∴当点Q 在y 轴上时,∴当点Q 在x 轴上时,分别根据S △OPQ =S △OPB列式求出OQ ,即可得到对应的点Q 的坐标.(1)解:120b -=,∴80a -=,120b -=,∴8a =,12b =,∴A (8,0),B (0,12),∴OA =BC =8,OC =AB =12,∴B (8,12),∴点P 移动5秒时,移动的路程为5×2=10,∴P (8,2),故答案为:(8,12),(8,2);(2)当点P 移动11秒时,移动的路程为:11×2=22,∴P (6,12),∴PB =8-6=2,∴S △OPB =1212122⨯⨯=; (3)分情况讨论:∴当点Q 在y 轴上时,∴点P 移动11秒时,P 点坐标为(6,12),S △OPB =12,∴由S △OPQ =S △OPB 得:16122OQ ⨯=,∴4OQ =,∴点Q 的坐标为:(0,4)或(0,-4);∴当点Q 在x 轴上时,∴点P 移动11秒时,P 点坐标为(6,12),S △OPB =12,∴由S △OPQ =S △OPB 得:112122OQ ⨯=,∴2OQ ,∴点Q 的坐标为:(2,0)或(-2,0),综上,点Q 坐标为:(0,4)或(0,-4)或(2,0)或(-2,0).【点拨】本题考查了算术平方根和绝对值的非负性,坐标与图形,三角形面积计算等知识,熟练掌握数形结合思想与分类讨论思想的应用是解题的关键.举一反三:【变式1】如图,长方形OABC 的顶点O 为平面直角坐标系的原点,点A 和点C 分别在x 轴和y 轴的正半轴上,点B 的坐标为(),a b ,且20a b -+=.(1) 求点B 的坐标;(2) 点D 是线段AB 的中点,求OAD △的面积;【答案】(1 ) ()3,5B (2)154OAD S =△【分析】(1)由绝对值和算术平方根的非负性质得2032190a b a b -+=⎧⎨+-=⎩,即可得出结论; (2)由矩形的性质得到90OAB ∠=︒,3OA = 5AB =, 再求出AD 的长,即可解决问题.(1)解:∴20a b -+,∴2032190a b a b -+=⎧⎨+-=⎩ 解得35a b =⎧⎨=⎩, ∴()3,5B ;(2)解:()3,5B ,四边形OABC 是矩形,90OAB ︒∴∠=,3OA =,5AB =,∴点D 是线段AB 的中点, ∴1522AD AB == , ∴15153224OAD S =⨯⨯=△. 【点拨】本题主要考查矩形的性质,绝对值和算术平方根的非负性,二元一次方程组的解法,熟练掌握矩形的性质是解题的关键.【变式2】有一张图纸被损坏,但上面有如图的两个标志点A (-3,1),B (-3,-3)可认,而主要建筑C (3,2)破损.(1) 建立直角坐标系;(2) 标出图中C 点的位置;(3) 求出线段AC 的长.【答案】(1)作图见分析;(2)作图见分析;.【分析】(1)以点A向右3个单位,向下1个单位为坐标原点建立平面直角坐标系;(2)根据C(3,2)确定出点C的位置即可;(3)利用勾股定理即可求得线段AC的长.(1)解:建立直角坐标系如下图所示,(2)解:图中C点的位置如下图所示,(3)解:如下图,∴在Rt ∴ACF 中,∴AFC =90°,CF =1,F A =6,∴AC =【点拨】考查了确定坐标系中点的位置及勾股定理,根据已知点的坐标准确确定出坐标原点的位置是解题的关键.类型七、点坐标的规律7.如图,每个小方格边长为1,已知点1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,6(2,2)A ,7(2,2)A -,8(2,2)--A ,…(1)将图中的平面直角坐标系补画完整;(2)按此规律,请直接写出点的坐标:9A ,10A ;(3)按此规律,则点2022A 的坐标为 .【答案】(1)见分析(2)(3,2)-,(3,3)(3)(506,506)【分析】(1)根据点的坐标确定坐标轴即可;(2)根据图示及坐标系各象限横纵坐标符号特点即可得出结果;(3)观察图象及各点的坐标特点得出A 4n +2(n +1,n +1),再由2022=4×505+2,即可确定点的坐标.(1)解:根据题意补画得平面直角坐标系如图所示:(2)根据图示坐标系各象限横纵坐标符号特点可得:A 9(3,-2),A 10(3,3); (3)观察图形发现,下标为4n +2的点落在第一象限的对角线上,∴A 2(1,1), A 6(2,2),∴A 4n +2(n +1,n +1),∴2022=4×505+2,∴A 2022(506,506),故答案为:(506,506).【点拨】题目主要考查坐标系中点的特点,确定坐标系等,理解题意,确定坐标系中点的坐标变化规律是解题关键.举一反三:【变式1】在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (______,______),8A (______,______);(2)写出点4n A 的坐标(n 是正整数)4n A (______,______);(3)求出2022A 的坐标.【答案】(1) 2,0,4,0(2) 2,0n (3) ()1011,1【分析】(1)观察图形,即可求解;(2)观察图形,由(1)发现规律,即可求解;(3)由(1)发现规律:44142(2,0),(2,1),(21,1)n n n A n A n A n +++,即可求解.解:(1)观察图形得∴12834567(0,1),(1,1),(1,0),(2,0),(2,1),(3,1),(3,0),(4,0)A A A A A A A A ,故答案为:2,0,4,0;(2)由(1)发现规律:4(2,0)n A n ,故答案为:2,0n ;(3)解:由(1)发现规律:44142(2,0),(2,1),(21,1)n n n A n A n A n +++,∴202245052=⨯+,∴2022A 的坐标为()20221011,1A .【点拨】本题主要考查规律型:点的坐标,读懂题意,准确找出点的坐标规律是解答此题的关键.【变式2】如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,1A 的坐标为()2,2,2A 的坐标为()5,2.(1)3A 的坐标为______,n A 的坐标为______(用含n 的代数式表示);(2)若护栏长为2020,则需要小正方形______个,大正方形______个.【答案】(1)(8,2);(3n ﹣1,2)(2)674;673【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A 1,A 2,A 3,…,An 各点的纵坐标均为2,横坐标依次比前一个增加3,继而即可求解;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020包含多少这样的长度,进而便可求出结果.解:(1)∴A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,An 各点的纵坐标均为2,∴小正方形的边长为1,∴A 1,A 2,A 3,…,An 各点的横坐标依次比前一个增加3,∴A 3(5+3,2),An (233...3++++,2),即A 3(8,2),An (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)由已知可得,所有小正方形和大正方形之间的直角三角形是全等的等腰直角三角形 ∴直角三角形的直角边长等于小正方形边长,长度是1,∴一个小正方形与一个大正方形所构成的护栏长度:1+1+1=3,∴2020÷3=673…1,∴需要小正方形673+1=674(个),大正方形673个.故答案为:674;673.【点拨】本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.。
七下数学《平面直角坐标系》坐标系中描点画图综合
七下数学《平面直角坐标系》坐标系中描点画图综合学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图.(1)画出△ABC 关于x 轴对称的图形△1A 1B 1C (点A 、B 、C 分别对应1A 、1B 、1C );(2)写出1A 、1B 、1C 坐标:1A ,1B ,1C ;(3)求△1A 1B 1C 的面积;(4)请在y 轴上找出一点P ,满足线段AP +1B P 的值最小,并写出P 点坐标.2.在平面直角坐标系中,已知ABC 的三个顶点的坐标分别是()()()0,12,1,,4,4A B C -.(1)请在所给的坐标系中画出ABC ;(2)画出ABC 关于y 轴对称的A B C '''(其中A '、B '、C '分别是A 、B 、C 的对应点).3.已知平面直角坐标系xOy 中,点A ,B ,C 的坐标分别为(1,0)-、(2,3)-、(3,1)-.(1)作出ABC 关于y 轴对称的A B C ''',直接写出B ',C '两点的坐标:B '( ),C '(); (2)直接写出A B C '''的面积,A B C S '''=△________;(3)若点(,2)P a a +与点Q 关于y 轴对称,且8PQ =,则点P 的坐标________.4.如图,在正方形网格中,每个小正方形的边长都为1,点A 、点B 在网格中的位置如图所示,(1)建立适当的平面直角坐标系,使点A 、点B 的坐标分别为(﹣2,3)、(﹣1,﹣4).(2)点C 的坐标为(﹣5,﹣1),在平面直角坐标系中标出点C 的位置,连接AB 、BC 、CA .(3)作出△ABC 关于y 轴对称的图形△A 1B 1C 1.(4)直接写出△ABC 是何特殊的三角形.5.如图,在77⨯网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系,使点()3,4A ,则点C 的坐标为______;(2)将AOC △向左平移5个单位,向上平移2个单位,则点C 的坐标变为______;(3)若将AOC △的三个顶点的横纵坐标都乘以12,请画出11A OC △; (4)图中格点AOC △的面积是______;(5)在x 轴上有一点P ,使得PA PC +最小,请画出点P 的位置,并直接写出PA PC +的最小值是______.6.如图所示,在平面直角坐标系中,已知()01A ,,()20B ,,()43C ,.(1)在图中画出ABC ,ABC 的面积是____;(2)若点D 与点C 关于y 轴对称,则点D 的坐标为____;(3)已知Q 为y 轴上一点,若ACQ 的面积为10,求点Q 的坐标.7.在如图所示的直角坐标系中.(1)描出点A(–3,2)、B(–2,5)、O(0,0), 并用线段顺次连接点A、B、O,得ABO;A B O;(2)在直角坐标系内画出ABO关于y轴对称的11(3)分别写出点A1、点B1的坐标.8.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(每个小正方形的边长均为1).(1)若点D与点A关于y轴对称则点D的坐标为.(2)将点B向右平移5个单位,再向上平移2个单位得到点C,则点C的坐标为.(3)请在图中表示出D、C两点,顺次连接ABCD,并求出A、B、C、D组成的四边形ABCD的面积.9.如图,方格纸中每个小方格都是边长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B (﹣1,﹣2),解答以下问题:(1)在图中标出平面直角坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.10.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(-4,3)、(-1,1)(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B'的坐标;(4)△ABC的面积.11.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,﹣1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标.12.已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求P的坐标.13.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系,写出点B和点C的坐标;(2)求△ABC的面积.14.四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C(7,3)、D(2,5).(1)在如图所示的平面直角坐标系画出该四边形;(2)四边形ABCD的面积是________;(3)四边形ABCD内(边界点除外)一共有_____个整点(即横坐标和纵坐标都是整数的点).15.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标16.如图,ABC 的三个顶点的坐标分别是33A (,),11B (,),41C -(,).(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1( , )A , 1( , )B ,1( , )C ;(2)在图中作出ABC 关于y 轴对称的图形222A B C △.(3)求ABC 的面积.17.已知:A (0,1),B (2,0),C (4,3)(1)在坐标系中描出各点,画出△ABC ;(2)求△ABC 的面积.18.如图,在平面直角坐标系中描出四个点()4,0A -,()6,0B ,()2,4C ,()3,2D -.(1)顺次连接A ,B ,C ,D ,组成四边形ABCD ;(2)求四边形ABCD 的面积;(3)在y 轴上找一点P ,使APB △的面积等于四边形ABCD 的一半.求P 点坐标19.已知:(0,1)A ,(2,0)B ,(4,3)C(1)在坐标系中描出各点,画出ABC ∆.(2)求ABC ∆的面积;(3)设点P 在坐标轴上,且ABP ∆与ABC ∆的面积相等,求点P 的坐标.20.平面直角坐标系中,O 为原点,点()0,2A ,()2,0B-,()4,0C .(1)如图△,则三角形ABC 的面积为______;(2)如图△,将点B 向右平移7个单位长度,再向上平移4个单位长度,得到对应点D . △求ACD △的面积;△点(),3P m 是一动点,若三角形PAO 的面积等于三角形CAO 的面积.请直接写出点P 坐标.21.如图,用()1,1-表示A 点的位置,用()3,0表示B 点的位置.(1)画出直角坐标系.(2)点E 的坐标为______.(3)CDE △的面积为______.22.ABC 在直角坐标系中如图所示.(1)请写出点A 、B 、C 的坐标;(2)求ABC 的面积.23.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标;(2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 .24.已知:在平面直角坐标系中,()0,1A ,()2,0B ,()4,3C(1)求ABC 的面积;(2)设点P 在x 轴上,且ABP △与ABC 的面积相等,求点P 的坐标.25.在平面直角坐标系中(单位长度为1cm),已知()M a,0,()N b,0,其中a ,b 满足2a 3(b 6)0++-=. ()1填空:a =__,b =__;()2若点E 是第一象限内一点,且EN x ⊥轴,点E 到x 轴的距离为4,过点E 作x 轴的平行线a ,与y 轴交于点A.点P 从点E 处出发,以每秒2cm 的速度沿直线a 向左移动,点Q 从原点O 同时出发,以每秒1cm 的速度沿x 轴向右移动.△经过几秒PQ 平行于y 轴?△若某一时刻以A ,O ,Q ,P 为顶点的四边形的面积是210cm ,求此时点P 的坐标.26.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b |6|0b -=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S .(3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.27.如图,在平面直角坐标系中,点A ,B 的坐标分别为(2,0)A -,(4,0)B ,现将线段AB 平移到线段CD ,其中点C 坐标为(0,a),点D 坐标为(,4)b ,连接AC ,BD ,CD .(1)直接写出点C ,D 的坐标;(2)在x 轴上是否存在一点F ,使得SS ABC DFB ∆=,若存在,请求出点F 的坐标;若不存在,请说明理由.28.如图,已知平面直角坐标系中,点A 在y 轴上,点B 、C 在x 轴上,S △ABO =8,OA =OB ,BC =10,点P 的坐标是(-6,a )(1)求△ABC 三个顶点A 、B 、C 的坐标;(2)连接P A 、PB ,并用含字母a 的式子表示△P AB 的面积(a ≠2);(3)在(2)问的条件下,是否存在点P ,使△P AB 的面积等于△ABC 的面积?如果存在,请求出点P 的坐标;若不存在,请说明理由.29.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O 出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.30.在平面直角坐标系中,A、B点的位置如图所示;(1)写出点A、B两点的坐标;(2)若C(-3,-4)、D(3,-3),请在图示坐标系中标出C、D两点;(3)求出A、B、C、D四点所形成的四边形面积。
总第21课时——2 平面直角坐标系(第2课时)
课件目录
首页
末页
总第21课时——2 平面直角坐标系(第2课时)
分层作业
点击进入word链接
课件目录
首页
末页
总第21课时——2 平面直角坐标系(第2课时)
答案
点击进入答案PPT链接
点击进入答案word链接
课件目录
首页
末页
第4题答图 (2)根据规律,纵坐标比横坐标大1,点(100,y)也符合此规律,则y=101. (3)a+1=b.
课件目录
首页
末页
总第21课时——2 平面直角坐标系(第2课时) 5.如图21-5,每个小正方形的边长为单位长度1. (1)写出多边形ABCDEF各个顶点A,B,C,D,E,F的坐标; (2)点C与E的坐标有什么关系? (3)直线CE与两坐标轴有怎样的位置关系?
图2
课件目录
首页
末页
总第21课时——2 平面直角坐标系(第2课时) 解:如答图.
第5题答图
课件目录
首页
末页
总第21课时——2 平面直角坐标系(第2课时)
(1)AB∥CD,AB=CD,其理由是: ∵A(-2,1),B(3,1), ∴A,B的纵坐标相同, ∴AB∥x轴,同理,CD∥x轴, ∴AB∥CD. ∵AB=5,CD=5, ∴AB=CD. (2)顺次连接A,B,C,D四点组成的图形像字母“Z”.
课件目录
首页
末页
总第21课时——2 平面直角坐标系(第2课时)
(4)∵点P(3m-6,m+1)在过点A(-1,2)且与x轴平行的直线上, ∴m+1=2, 解得m=1, ∴3m-6=3×1-6=-3, ∴点P的坐标为(-3,2).
课件目录
首页
末页
总第21课时——2 平面直角坐标系(第2课时)
平面直角坐标系内点的坐标特征
平⾯直⾓坐标系内点的坐标特征1、平⾯直⾓坐标系内点的坐标特征2、《平⾯直⾓坐标系》错解剖析3、坐标、棋盘、考题4、坐标⽅法的应⽤5、《平⾯直⾓坐标系》考点聚焦6、《平⾯直⾓坐标系》考点例析1、平⾯直⾓坐标系内点的坐标特征在平⾯内画两条互相垂直、原点重合的数轴,组成平⾯直⾓坐标系。
平⾯直⾓坐标系将平⾯分成四个象限,在坐标轴上以及四个象限内的各点的坐标各有特征。
现就有关点的坐标特征归纳如下。
⼀、各象限内点的坐标特征如图,点P(a,b)在各象限内的特点:①点P在第⼀象限?a>0,b>0;②点P在第⼆象限?a<0,b>0;③点P在第三象限?a<0,b<0;④点P在第⼆象限?a>0,b<0;例1 、若a>0,则点P(-a,2)应在()A.第⼀象限内B.第⼆象限内C.第三象限内D.第四象限内解析:因为a>0,所以-a<0.根据各象限内的坐标特点可知,点P(-a,2)应在第⼆象限内,故应选(C)。
⼆、坐标轴上的点的坐标特征在x轴上的点的纵坐标为0,即x轴上的点的坐标可记作(x,0),如点(-3,0)在x 轴上;在y轴上的点的横坐标为0,即y轴上的点的坐标可记作(0,y),如点(0,-3)在y 轴上;原点的坐标为(0,0)。
归纳:点P(a,b)在坐标轴上的特点:①点P在x轴上?a为任何实数,b=0;②点P在y轴上?a=0,b为任何实数;③点P在原点?a=0,b=0;例2、若点A(2、n)在x轴上则点B(n-2 ,n+1)在()A.第⼀象限B.第⼆象限C.第三象限D.第四象限析解:因为点A(2、n)在x轴上,所以n=0,所以n-2 =-2,n+1=1,因此点B的坐标为(-2,1),故点B在第⼆象限内,选(B).三、点的坐标与点到坐标轴的距离的关系点到直线的距离,也就是这⼀点到直线的垂线段的长度。
根据点在平⾯直⾓坐标系中的特点,点P(a,b)到x轴的距离为|b|,到y轴的距离为|a|。
如图点A(-2,3)到x轴的距离为AD=OE=|3|=3,到y轴的距离为AE=OD=|-2|=2.例3 、P(3,-4)到x轴的距离是.解析:根据上⾯的结论可知,点P到x轴的距离为|-4|=4,到y轴的距离为|3|=3,所以应填4.四、象限⾓的平分线上的点的坐标特征①若P(a,b)在第⼀、三象限的⾓平分线上?横、纵坐标相等,即a=b;②若P(a,b)在第⼆、四象限的⾓平分线上?横、纵坐标互为相反数,即a=-b或a+b=0;例4 已知点P(a+3,7-a)位于象限的⾓平分线上,则点P的坐标为_______。
北师大版八年级上册数学第3章位置与坐标 第2节平面直角坐标系
知2-讲
感悟新知
知2-讲
2. 平面上的点与有序实数对的 关系 在直角坐标系 中,对于 平面上 的任意一点, 都有唯一的一个有序实数对(即点的坐 标)与它对应;反过来,对于任意一个有序实数对,都有平面 上唯一的一点与它对应 . 因此,平面上的点与有序实数对是 一一对应关系 .
知2-讲
1.定义 如图 3-2-2,对于平面内任意一点 P,过点 P 分别 向 x轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数 a, b 分别叫做点 P 的横坐标、纵坐标,有序数对( a, b)叫做 点 P 的坐标 .
感悟新知
特别解读 1.点的坐标是有序实数对,有序要求“横坐标在前,
纵坐标在后”. 2.根据点的坐标的定义,已知点的位置可以读出点的
知4-讲
(1)使图形中尽量多的点在坐标轴上;
(2)以某条特殊线段所在的直线为 x 轴或 y 轴,如三角形
的高、中线等;
(3)以对称图形的对称轴为 x 轴或 y 轴;
(4)以某个已知点为原点,使其坐标为( 0,0 ) .
感悟新知
知4-讲
特别解读 根据条件建立适当的直角坐标系是确定点的坐标的
必经过程,只有在建立适当的直角坐标系的基础上,点 的位置才能被确定,这是数形结合思想的体现 .
感悟新知
方法点拨:确定点的坐标的方法
知2-练
先从该点向 x 轴作垂线,垂足在 x 轴
上表示的数为该点的横坐标;再从该点向
y 轴作垂线,垂足在 y 轴上表示的数为该
点的纵坐标;最后用有序实数对将它表示
出来 .
感悟新知
知2-练
例3 请你在如图 3-2-4 的平面直角坐标系中,描出以下 各点: A(3,2), B(0,3), C(-1, -2), D(2, - 1) .
3.2《平面直角坐标系第2课时》北师大版数学八年级上册精品教案
第三章位置与坐标2 平面直角坐标系第2课时一、教学目标1.知道在坐标轴上的点以及与坐标轴平行的直线上点的坐标的特征.2.知道不同象限内点的坐标的特征.3.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展数形结合意识.4.通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣.二、教学重难点重点:探究坐标轴上的点的横、纵坐标的特征,以及各象限内点的横、纵坐标的特征.难点:体会点的坐标的含义并能灵活运用坐标的特征描述点的位置.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】教师活动:教师出示课件,学生思考后回答.1.什么是平面直角坐标系?预设:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系(简称直角坐标系).2.两条坐标轴把坐标平面分成了哪几部分?(不包括坐标轴)预设:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成第一、二、三、四象限.3.在给定的直角坐标系中,由点的位置如何写出它的坐标?预设:对于平面内任意一点P,过点P分认真思考后回答通过回忆已学知识,一方面加深理解,另一方面为后面学习新知识做铺垫.别向x 轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标.4.根据坐标如何描出点的位置?如(-3,-4).环节二探究新知【探究】教师活动:通过探究活动,引导学生探究各象限内点的坐标的特征和坐标轴上点的坐标的特征.下图是一个笑脸.(1)在“笑脸”上找出几个位于第一象限的点,指出它们的坐标,说说这些点的坐标有什么特征.提示:教师鼓励学生找出第一象限中的点,并指出它们的坐标.预设:第一象限的点的坐标:A(5,2),B(2,3),C(1,1)等.提问:这些第一象限内的点坐标有什么特观察与思考,并交流讨论.以笑脸为背景,引领学生探索同一象限内点的坐标的特征,培养学生合情推理的能力,同时发展数形结合意识.征呢?预设:它们的横坐标与纵坐标都是正实数.(2)在其他象限内分别找几个点,看看其他各个象限内的点的坐标有什么特征.提示:仿照(1)的方法进行探究第二、三、四象限内点的坐标特征.预设:第二象限的点的坐标:D(-2,3),E(-5,2),F(-2,1)等.第二象限内点的坐标的特征:它们的横坐标是负实数,纵坐标是正实数.第三象限的点的坐标:G(-1,-1),H(-3,-3)等.第三象限内点的坐标的特征:它们的横坐标与纵坐标都是负实数.第四象限的点的坐标:I(1,-1),J(3,-3)等.第四象限内点的坐标的特征:它们的横坐标是正实数,纵坐标是负实数.提问:同学们,你们能归纳下各个象限内点的坐标特征吗?预设:各象限内点的坐标的特征合作探究,交流反馈思考并交流讨论明确各象限内点的坐标的特征,培养学生合作交流,总结概括的能力.(3)在“笑脸”上找出位于坐标轴上的点,说说这些点的坐标有什么特征.预设:在x轴上的点的坐标:A1(-3,0),B1(-2,0),C1(2,0),D1(3,0).在y轴上的点的坐标:E1(0,5),F1(0,-2).提问:这些坐标有什么特征呢?预设:在x轴上的点,它们的纵坐标相同,都是0.在y轴上的点,它们的横坐标相同,都是0.【议一议】在平面直角坐标系中,坐标轴上的点的坐标有什么特征?预设:注:原点既在x轴上,又在y轴上,是x、y轴的公共点,所以它的坐标是(0,0).简单来说:坐标轴上的点的坐标中至少有一个是0,即横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.合作探究,交流反馈独立思考,交流讨论以笑脸为背景,进一步引领学生探索坐标轴上的点的坐标特征,培养学生合情推理的能力,发展数形结合意识.归纳出坐标轴上点的坐标的特征.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例2 (1)不描点,判断下面各点在平面直角坐标系的位置?①D(-3,5),E(-7,3),C(1,3),D(-3,5);②F(-6,3),G(-6,0),A(0,0),B(0,3);(2)在直角坐标系中描出以上各点,并将各组内这些点依次用线段连接起来.(3)观察所描出的图形,它像什么?(4)线段EC与x轴的位置有什么关系?点E和点C的坐标有什么特征?线段EC上其他点的坐标呢?(5)点F和点G的横坐标有什么共同特征?线段FG与y轴有怎样的位置关系?解:(1)C(1,3)在第一象限;D(-3,5),E(-7,3),F(-6,3)在第二象限;A(0,0)在原点,既在x轴上,又在y轴上;B(0,3)在y轴上;G(-6,0)在x轴上.(2)如图:(3)它像一个房子.明确例题的做法,尝试独立解答,并交流讨论进一步掌握在平面直角坐标系中由坐标找到点的位置,并让学生初步感受坐标轴上的点、与坐标轴平行的直线上点的坐标的特征.(4)线段EC平行于x轴,点E和点C 的纵坐标相同.线段EC 上其他点的纵坐标相同,都是3.(5)点F和点G的横坐标相同,线段FG与y 轴平行.归纳:与坐标轴平行的直线上点的坐标的特征.①在与x轴平行的直线上的点,纵坐标相等;②在与y轴平行的直线上的点,横坐标相等.环节四巩固新知【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.在平面直角坐标系中,点P(-1,2)的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限2. 点A(m+3,m+1)在x轴上,则A点的坐标为( )A.(0,-2) B.(2,0)C.(4,0) D.(0,-4)3.在直角坐标系中描出各组点,并将各组内的点用线段依次连接起来.①(2,5),(0,3),(4,3),(2,5);②(1,3),(-2,0),(6,0),(3,3);③(1,0),(1,-6),(3,-6),(3,0).(1)观察得到的图形,你觉得它像什么?(2)找出图形上位于坐标轴上的点,与同伴进行交流;(3)上面三组点分别位于哪个象限?你是如何判断的?(4)图形上一些点之间具有特殊的位置关自主完成练习,再集体通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.系,找出几对,它们的坐标有何特征?说说你的发现.答案:1.B;2.B;3.(1)如图:它像一棵树.(2)x轴上的点有:(-2,0),(1,0),(3,0),(6,0);y轴上的点有:(0,3);(3)点(2,5),(4,3),(1,3),(3,3)在第一象限内,因为它们的横坐标与纵坐标都是正实数;点(1,-6),(3,-6)在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数.(4)点(0,3)与(3,3)的纵坐标相同,它们的连线段与x轴平行;点(1,3),(1,0),(1,-6)的横坐标相同,它们的连线段与y轴平行.交流评价.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第64页习题3.3 第3、4题学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
人教版七年级下册数学第7章 平面直角坐标系 用坐标表示地理位置 (4)
坐标为(0,-1),表示九龙壁的点的坐标为(4,1),
则表示下列宫殿的点的坐标正确的是()
A.景仁宫(4,2)
B.养心殿(-2,3)
B
C.保和殿(1,0)
D.武英殿(-3.5,-4)
感悟新知
知2-练
4. 【2017·六盘水】如图,已知A(-2,1),B(-6,0), 若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为 (______,_______). -11
知2-讲
各个景点的位置均是以中心广场为参照点来描述
的,故选中心广场为原点,取东西方向为x轴方
向(向东为正),南北方向为y轴方向(向北为正),
建立直角坐标系,并规定一个单位长度代表50m
长,根据行走方向和距离确定各景点的位置,标
上坐标和名称.
感悟新知
解:如图,选中心广场所在位置为原点,分别以正 知2-讲
感悟新知
如图,选学校所在位置为原点,分别以正东、正北方 知2-讲 向为x轴、y轴正方向建立平面直角坐标系,规定一个 单位长度代表1m长.依题目所给条件,点(1500,2000) 就是小刚家的位置. 类似地,请你在图上画出小 强家、小敏家的位置,并标 明它们的坐标.
感悟新知
归纳
知2-讲
利用平面直角坐标系绘制区域内一些地点分布 情况平面图的过程如下: (1)建立坐标系,选择一个适当的参照点为原点,确 定x轴、y轴的正方向; (2)根据具体问题确定单位长度; (3)在坐标平面内画出这些点,写出各点的坐标和各 个地点的名称.
东、正北方向为x轴、y轴正方向建立平面直角坐标 系,规定一个单位长度代表50m长.
感悟新知
归纳
知2-讲
建立平面直角坐标系描述物体的位置时,要选择 一个适当的参照点作为原点,一般将正北方向作为y轴 正方向,将正东方向作为x轴正方向,选取适当的长度 为单位长度,建立的平面直角坐标系不同,各个点的 坐标一般也不同;建立的坐标系在符合题意的基础上, 应尽量使较多的点落在坐标轴上.
北师大版八年级数学上册3.2 平面直角坐标系 第2课时 平面直角坐标系中点的坐标特征
B.(-3,2)
C.(3,2)
D.(3,-2)
3. (中考·广安)点 M(x-1,-3)在第四象限,则 x 的 取值范围是 x>1 .
知识点 坐标轴上的点的坐标特征
4. 在平面直角坐标系中,点 A(-4,0)在( B )
A.x 轴正半轴上
B.x 轴负半轴上
C.y 轴正半轴上
D.y 轴负半轴上
5. 平面直角坐标系中,在 x 轴上的点是( B )
7. 过点 A(-3,2)和点 B(-3,5)作直线,则直线
AB( A ) A.平行于 y 轴
B.平行于 x 轴
C.与 y 轴相交
D.与 y 轴垂直
8. 如图,每个小正方 形的边长为单位长度 1.
(1) 写 出 多 边 形 ABCDEF 各个顶点的坐标;
(2)点 C 与 E,点 B 与 C 的坐标有什么关系?
与 y 轴垂直,则 l 也会通过下列哪
一点?( D )
A.A
B.B
C.C
D.D
19. (中考·阜新)如图,在平
面直角坐标系中,将△ABO 沿
x 轴向右滚动到△AB1C1 的位
置,再到△A1B1C2 的位置……
依次进行下去,若已知点 A(4,0),B(0,3),则点 C100
的坐标为( B )
A.(1200,12) 5
A.(3,-2)
B.(2,4)
C.(-3,2)
D.(-3,-4)
13. 如图,正方形 ABCD 在平面直角坐标系中,其 中三个顶点的坐标分别为 A(-2,3),B(-2,-2),C(3, -2),则第四个顶点 D 的坐标为 (3,3) .
14. (教材 P62 例 2 变式)在如图的平面直角坐标系中 描出下列各点,并将各点用线段顺次连接起来.