五角星

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。

设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为b AC/AB=BC/AC

b^2=a×(a-b)

b^2=a^2-ab

a^2-ab+(1/4)b^2=(5/4)×b^2

(a-b/2)^2=(5/4)b^2

a-b/2=(√5/2)×b

a-b/2=(√5)b/2

a=b/2+(√5)b/2

a=b(√5+1)/2

a/b=(√5+1)/2

把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。另一侧则是3-5^/2。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618

(1-0.618)/0.618=0.618

这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。

作黄金分割点的一种方法作黄金分割点的一种方法

让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。

斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n+1)-→0.618…。由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。

由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。

黄金分割点约等于0.618:1

是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。

利用线段上的两个黄金分割点,可以作出正五角星,正五边形等。

2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分(长的一部分)对于全部之比,等于另一部分(短的一部分)对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,5/ 8,8/13,13/21,...近似值的。

黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。

其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。

因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。

黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。

黄金矩形(Golden Rectangle)的长宽之比为黄金分割率, 1.设已知线段为AB,过点B作BC⊥AB,且BC=AB/2;

2.连结AC;

3.以C为圆心,CB为半径作弧,交AC于D;

4.以A为圆心,AD为半径作弧,交AB于P,则点P就是AB的黄金分割点。

事实上,在一个黄金矩形中,以一个顶点为圆心,矩形的较短边为半径作一个四分之一圆,交较长边与一点,过这个点,作一条直线垂直于较长边,这时,生成的新矩形(不是那个正方形)仍然是一个黄金矩形,这个操作可以无限重复,产生无数个黄金矩形。

五角星

五角星是一个很奇妙的图形,而世界上许多国家的国旗上都有五角星。就像我们的祖国中国,国旗上就有大五角星和小五角星共5颗,美国国旗上有50颗,朝鲜国旗上有1颗等。在儿童画上,我们经常可以看到,画上的星星都被画成了五角星,所以,我们走到哪里,几乎都能看到五角星。

五角星是由10条边围起来的图形,共5个角,内角和是180度,呈辐射性,正因为五角星这种形状,给人们权威、公正、公平的印象。

五角星奇妙的地方在于数学上。大名鼎鼎的黄金分割点大家都知道,其值是√5-1÷2,约等于0.618。一条线段分为两个不同长度的部分,短的部分和长的部分之比等于长的部分与原线段之比,这个比就是黄金分割点。而这个大名鼎鼎的数值,就隐藏在五角星上。看图,五角星上有A、B、C三点,BC:AB=AB:AC,这个比正好等于黄金分割点。

要精确地画五角星,徒手是不可能的。在一些画上,不精确的五角星反而给人轻松的感觉,但是在国旗、国徽、商标上,五角星必须是完全精确的,五角星任意一条线段上的比必须等于黄金分割点。这就要借助工具来。其实,徒手画很难,借助工具画很容易。只需用没有刻度的直尺、一把圆规就可以画出来,利用了尺规作图法。利用下面的方法画出来的五角星是绝对精确的。

1、在白纸上作一定点O,以O为圆心,以适当长度为半径,作圆O。

2、作一条直径AZ,再作一条与之垂直的直径XY。

3、作OY的中点M。

4、以M为圆心,MA为半径,作圆弧⌒AN和半径AX交于N。

5、以A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN。

6、连接AD,AC,EB,EC,BD,就得到一个五角星。

植物叶子,千姿百态,生机盎然,给大自然带来了美丽的绿色世界。尽管叶子形状随种而异,但它在茎上的排列顺序(称为叶序),却是极有规律的。

你从植物茎的顶端向下看,经细心观察,发现上下层中相邻的两片叶子之间约成137.5°角。如果每层叶子只画一片来代表,第一层和第二层的相邻两叶之间的角度差约是137.5°,以后二到三层,三到四层,四到五层……两叶之间都成这个角度数。植物学家经过计算表明:这个角度对叶子的采光、通风都是最佳的。叶子的排布,多么精巧!

叶子间的137.5°角中,藏有什么“密码”呢?我们知道,一周是360°,

360°-137.5°=222.5°

137.5° :222.5° 222≈0.618。

相关文档
最新文档