初中数学规律题解题基本方法---图形找规律

合集下载

(完整版)初中数学规律题解题基本方法------图形找规律

(完整版)初中数学规律题解题基本方法------图形找规律

初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。

⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。

4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。

个数 1 2 3 4 5 6 7…n32121 41 811611126.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。

……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。

……8.观察与分析下面各列数的排列规律,然后填空。

①5,9,13,17, , 。

②4,5,7,11,19, , 。

③10,20,21,42,43, , ,174,175。

④4,9,19,34,54, , ,144。

⑤45,1,43,3,41,5, , ,37,9。

⑥6,1,8,3,10,5,12,7, , 。

初中数学规律题解题基本方法1

初中数学规律题解题基本方法1

初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3n =4n =5……数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

初中数学找规律方法

初中数学找规律方法

初中数学找规律方法
有以下几种常见的方法可以帮助初中生找规律:
1. 列举法:将问题中的数据逐个列出来,观察数据之间的变化规律。

可以将数据写在表格中,帮助整理和比较。

2. 画图法:将问题中的数据用图形表示出来,可以是折线图、条形图等等。

观察图形的形状、趋势和关系,看是否能够找到规律。

3. 规律性观察法:观察问题中的数据,看是否有一些明显的数学规律。

例如,是否存在等差数列、等比数列等等。

可以通过计算差、比等来推断规律。

4. 逆向思维法:如果无法直接找到规律,可以尝试逆向思考,即从问题的答案出发,推断出问题中的规律。

通过反向推理,可以发现一些隐藏的规律。

5. 试错法:尝试不同的方法和假设,然后验证它们是否符合问题的要求。

如果结果不正确,再进行调整和尝试。

综合运用以上方法,可以帮助初中生更好地找到数学问题中的规律。

初中数学规律探究题的解题方法

初中数学规律探究题的解题方法

初中数学规律探究题的解法指导一、数式规律探究1.一般地,常用字母n表示正整数,从1开始。

2.在数据中,分清奇偶,记住常用表达式。

正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律① 1、4、9、16......n2② 1、3、6、10……(1)2n n+③ 1、3、7、15……2n -1 ④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 ⑥ 2+4+6+…+2n=n(n+1)⑦ 12+22+32….+n2=16n(n+1)(2n+1) ⑧ 13+23+33….+n3=14n2(n+1)(...... 2n数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:3.观察法例1.观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第几个等式为(用含n的式子表示)分析:将等式竖排:①1×12=1-12观察相应位置上变化的数字与序列号②②2×23=2-23的对应关系(注意分清正整数的奇偶)③3×34=3-34易观察出结果为:③4×45=4-45例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么32009的个位数字是。

3200 的个位数字是。

分析:这类问题,主要是通过观察末位数字,找出其循环节共几位,然后用指数除以循环节的位数,结果余几,就和第几个数的末位数字相同,易得出本题结果为:4.作差法例3.将一正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成更小的正三角形…,如此继续下去,结果如下表:则a n= (用含n的代数式表示)分析:对结果数据做求差处理(相邻两数求差,大数减小数)例4.有一组数:1、2、5、10、17、26……请观察这组数的构成规律,用你发现的规律确定第8个数为。

(完整版)初中数学规律题解题基本方法------图形找规律

(完整版)初中数学规律题解题基本方法------图形找规律

(完整版)初中数学规律题解题基本方法------图形找规律初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。

⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。

4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是例8.观察下列图形并填表。

个数1 2 3 4 5 6 7…n32121 41 811611126.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第n 个图案中有白色地面砖块。

……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子来表示。

……8.观察与分析下面各列数的排列规律,然后填空。

①5,9,13,17,,。

②4,5,7,11,19,,。

③10,20,21,42,43,,,174,175。

④4,9,19,34,54,,,144。

⑤45,1,43,3,41,5,,,37,9。

⑥6,1,8,3,10,5,12,7,,。

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。

图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。

图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。

数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。

图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。

综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。

解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。

•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。

•联想:将题目与以前学过的知识联系起来,寻找解题思路。

•归纳:根据观察和比较的结果,归纳出一般性的规律。

•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。

注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。

•遇到困难时,可以尝试从不同的角度去观察和分析。

初一数学找规律经典题技巧解析

初一数学找规律经典题技巧解析

初一数学找规律经典题技巧解析
1. 嘿,你知道吗?有些初一数学找规律的题就像隐藏的宝藏等你去发现!比如说那道找数字规律的题,5、10、15、20,这不是很明显每个数都在递增嘛,这不就是等差数列嘛,哈哈,是不是很简单?技巧就是要先观察数字的变化趋势哟!
2. 哇塞,同学们,找规律的时候可要看仔细啦!像那种图形规律题,一堆图形摆在一起,可别眼花缭乱啦!比如三角形、圆形、正方形这样排列的,那肯定是有一定周期的呀,你得从这些图形中找到那个关键的点啊!记住了没?
3. 哎呀呀,初一数学找规律也没那么难嘛!就好比那道找式子规律的题,先别急着下手,好好看看式子之间的关系呀!为啥这个式子会这样变化,这里面肯定有门道的呀!你难道不想把它弄明白?
4. 嘿,初一的小朋友们,找规律的时候要大胆去猜呀!好比那道根据已知条件猜下一个数的题,不要怕错,先大胆猜一个,说不定就猜对了呢!这就像是在探险,勇敢迈出第一步才可能找到宝藏呀!
5. 哇哦,有时候找规律真的超有趣的!比如说那道找规律填数字,前几个数是2、4、6、8,这不是偶数序列嘛,简单得很呐!大家可别想得太复杂啦!
6. 哈哈,初一数学找规律的经典题,那就是一个个小挑战呀!就像那道要你根据几个数推出下一组数的,你就得像个小侦探一样去分析,去推理呀!能不能行呀你?
7. 哎哟喂,找规律可是门技术活呀!比如说那道通过几个算式找规律的,那算式里肯定藏着线索呢,瞪大眼睛好好找呀,你肯定能行的!
8. 哼,初一数学找规律一点都不可怕!像有些先递增后递减的规律题,多想想,多分析,肯定能找到突破口!加油吧同学们,这些题都能被你们拿下的!
我的观点结论就是:初一数学找规律需要细心观察、大胆猜测、认真分析,只要掌握了技巧,这些题都不在话下!。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)初一数学规律题应用知识汇总有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

因此,将变量和序列号放在一起比较,就更容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例如,对于数列4、10、16、22、28……,求第n位数。

我们可以发现,从第二位数开始,每位数都比前一位数增加6,增幅都是6.因此,第n位数是4+(n-1)6=6n-2.二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

例如,古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它们之间有一定的规律性。

要求第24个三角形数与第22个三角形数的差,我们可以通过求出第24个和第22个三角形数的值,再相减得到答案。

除了基本方法外,还可以用分析观察的方法求解。

例如,在一个面积为S的等边三角形中,我们将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形。

当n=5时,共向外作出了4个小等边三角形;当n=k时,共向外作出了k-2个小等边三角形。

中考规律类试题在素材选取、文字表述、题型设计等方面都别具一格,旨在考察学生的创新意识与实践能力。

初一数学找规律解题方法及技巧

初一数学找规律解题方法及技巧

初一数学找规律解题方法及技巧一、概述初中数学作为学生学习的重要课程之一,对学生的逻辑思维能力和数学素养有着重要的提升作用。

在学习数学的过程中,找规律解题是一个重要的能力,也是数学学习的重点之一。

本文将围绕初一数学找规律解题的方法和技巧展开探讨,帮助学生更好地掌握这一技能。

二、初一数学找规律解题的意义1.培养逻辑思维通过找规律解题,可以培养学生的逻辑思维能力,提高他们的分析和问题解决能力。

2.激发学生学习兴趣找规律解题是一种富有趣味和挑战性的数学思维活动,可以激发学生学习数学的兴趣,增强他们的学习动力。

3.提高数学素养通过掌握找规律解题的方法和技巧,可以提高学生的数学素养,为他们的学习打下坚实的基础。

三、初一数学找规律解题的方法1.观察法观察法是最基本的找规律解题方法,通过观察题目中的数学关系和规律,找出规律并加以总结。

2.列举法通过列举一些具体的例子,找出其中的规律,从中归纳总结出通用的规律。

3.推理法通过对题目中的数学关系进行推理,找出其中的规律并进行证明。

四、初一数学找规律解题的技巧1.多练习找规律解题需要透过大量的练习,培养学生的敏锐观察力和分析能力。

学生应该多做相关的练习题,提高解题的能力。

2.注重分析在解题过程中,学生要善于分析题目中的数学关系和规律,从中找出一般性的规律。

3.善于归纳学生应该善于总结和归纳题目中的规律,形成固定的模式,并不断丰富和拓展。

4.多角度思考在解答问题时,学生要善于从不同的角度去思考问题,寻找不同的解题路径。

五、结语初一数学找规律解题是学习数学过程中的一个重要环节,它在培养学生的逻辑思维、激发学生学习兴趣和提高学生的数学素养方面发挥着重要作用。

学生要注意培养这一技能,提高自己的解题能力。

希望通过本文的讨论,能够帮助学生更好地掌握初一数学找规律解题的方法和技巧。

六、初一数学找规律解题的实例分析为了更好地理解初一数学找规律解题的方法和技巧,接下来我们通过几个具体的实例来进行分析和探讨。

图形规律的解题技巧

图形规律的解题技巧

图形规律的解题技巧(一)固定累加的图形规律解题技巧表现形式:大图案中由一种同类小元素构成,且大图案规律性变化时增加的小元素个数相同。

方法:构造一次函数模型步骤:第一步:设大图案的次数为x,大图案中小元素的个数为y,建立一次函数模型:y=kx+b;第二步:用待定系数法求得解析式;第三步:代入解析式,求值。

例题讲解例1:如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5个图中共有个_______菱形……,第n个图中共有______________个菱形。

解析:设大图案的次数为x,大图案中菱形的个数为y,则y=kx+b将(1,1),(2,4)代入得y=3x-2∴当x=5时,菱形个数为43个,当x=n时,菱形个数为(3n-2)个例2:观察下列图形:它们是按一定规律排列的,依照此规律,第2021个图形共有个★.例3:如图是一组有规律的图案,第①个图案中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形…依此规律,第⑦个图案中有( )个三角形A.19B.21C.22D.2例4:用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).例5:按如下规律摆放三角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________.《固定累加的图形规律解题技巧》演练题1.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第个图形中面积为1的正方形有9个,第2 个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个A.400B.401C.402D.4032.如图是由相同大小的圆圈按照一定规律摆放而成,按此规律,则第n 个图形中圆圈的个数为( )A.n+1B. n n 2C.4n+1D. 2n-13.小明家的窗户上有一些精致花纹,小明对此非常感兴趣,他观察发现窗格的花纹排列呈现一定规律,如图,其中“○”代表的就是精致的花纹,请问有47个精致花纹的是第( )个图。

初中数学找规律问题

初中数学找规律问题

规律探索【1、数字问题】例1 观察一列数:1,-,3611,259,167,95,43--……根据规律,请你写出第10个数是 。

解: 正负控制:1(1)n +- 形式一致:1357,,, (14916), 分子规律:21n - 分母规律:2n则该数列的规律为:12(21)(1)n n n +-- ,令n=10,第10个数为:19100-例2 古希腊数学家把1,3,6,10,15,21,… 叫做三角形数,根据它的规律,则第100个与第98个的差为 ________解:第1个数:1第2个数:1+2=3 第3个数:1+2+3=6 第4个数:1+2+3+4=10 依次类推。

第98个数:1+2+3+….+98 第100个数:1+2+3+…+100则第100个与第98个的差为:100+99=199 练习:(1)观察一列数:21,52-,103,174-,265,376-……根据规律,请你写出第10个数是?解:正负控制:1(1)n +- 分子规律:n分母规律 2211=+,2521=+,21031=+,以此类推………则该数列的规律为:12(1)1n n n +⨯-+,令n=10,第10个数为:10101- (2)按一定规律排列的一列数依次为11113102635---11,,,,,,,215按此规律排列下去,这列数中第七个数是解:正负控制:(1)n - 分子规律:1 分母:2,3,10,15…….分母规律:2222211,321,1031,1541=+=-=+=-,以此类推:2(1)n n --则该数列的规律为:2(1)(1)n nn ---,令n=7,第7个数为:150- (3)某种细胞开始有2个,1小时后分裂成4并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活数是____,n 小时后细胞存活数是____ 解:读题该数列为: 3,5,9,17……..(一般一个数列知道前3个可推出规律,再知道第4个进行验证) 不难发现:123321,521,92 1......=+=+=+,故该数列规律:21n + 令n=5,第5个数为:52132133+=+=【2、图形规律】例3 观察图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为( )A 、32n -B 、31n -C 、41n +D 、43n -解:第1个图:1=1+4×0 第2个图:1+4=1+4×1 第3个图:1+4+4=1+4×2以此类推 第n 个图:1+4×(n -1)=4n -3例4 若按下图方式摆放餐桌和椅子,请探索规律并填表:餐桌张数 1 234 ….. 10 n可坐人数 6+4×06+4×1=10 6+4×2=1418…..4242n +练习:(1)观察下列图形,则第n 个图形中三角形的个数是( )A 、22n +B 、44n +C 、44n -D 、4n解:第1个图:4个 第2个图:8个 第3个图:12个 规律:4n(2) 如图是一组有规律的图案, 第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……第8个图案由_____个基础图形组成,第n (n 是正整数)个图案中由 ___ 个基础图形组成。

数学中考规律题诀窍

数学中考规律题诀窍

数学中考规律题诀窍数学中考规律题诀窍在数学考试中,规律题是一种非常具有挑战性的题型,要想在考试中得到高分,必须深入理解题目本质,掌握一些技巧和方法。

下面是我对这种题型的一些心得总结和分享。

一、题目分类在面对规律题时,首先要了解题目分类,这有助于我们更好地理解题意,掌握套路。

规律题可以分为以下几类:1. 拼图类规律题这种题目通过给出一系列几何图形图案的变化规律,要求我们预测下一个图案。

其关键点在于找出图案之间的规律,这需要我们有较强的观察力和总结能力。

2. 数字列类规律题这种题目要求我们根据数列给出的规律,预测下一个数字。

我们需要通过逐个分析数字之间的规律,找出数字之间的规律,从而预测出下一项数字。

3. 其他类型规律题其他类型的规律题包括一些特殊类型的规律题,例如字母排列、符号组合等。

二、解题技巧在了解了规律题的分类之后,我们还需要掌握一些解题技巧,让我们更好地应对这种题型。

1. 观察图形,寻找特征对于拼图类规律题,我们需要认真观察图案之间的差异,找出它们之间的共同特征。

通常,规律题中的几何图形具有以下几点特点:(1)图形内部的元素在数量、大小、形状上的变化规律。

(2)图形之间的空间位置的变化规律。

(3)图形的对称性。

2. 提炼数字规律,建立方程式对于数字列类规律题,我们需要逐个分析数字之间的规律,并将其用公式表示出来,这有助于我们预测下一项数字。

例如:3. 快速排除无效选项在解题过程中,我们需要学会快速排除无效选项,这有助于我们提高作答效率。

通常,我们可以通过逐个分析选项中的数字或图案,基于规律来排除显然不符合规律的选项。

三、题目练习最后,题目练习是我们掌握规律题的关键。

我们需要多加练习不同类型的规律题目,逐渐积累解题的经验,提高解题的准确性和速度。

在练习中,我们应该注意:(1)有针对性地选择题目类型,逐步提高难度。

(2)对于解答错误的题目,要逐一分析错误原因,加以总结。

(3)在练习中搜集常见类型题的解题思路和方法,建立自己的解题思路体系。

七年级上册数学找规律题技巧 -回复

七年级上册数学找规律题技巧 -回复

七年级上册数学找规律题技巧在七年级的数学学习中,找规律题是一个非常重要的部分。

通过找规律题,学生可以培养自己的逻辑思维能力,提高数学解题的能力。

今天我们就来探讨一下七年级上册数学找规律题的解题技巧。

1. 理解题目在解决找规律题之前,首先要仔细阅读题目,理解题目的要求。

找规律题的题目形式多种多样,可能需要找出图形、数字或者符号之间的规律,因此理解题目是解题的第一步。

2. 分析规律在理解题目的基础上,我们需要对题目中的图形、数字或者符号进行分析。

可以尝试列举一些具体的例子,观察规律,找出其中的共同点和规律性的变化。

这个过程可能需要一些耐心和细心,但是只有通过逐步分析,才能找到规律的线索。

3. 归纳总结在分析规律的基础上,我们需要逐步总结规律,并尝试用简洁的语言描述出来。

这个过程的关键是逻辑思维能力,能够将分散的观察结果整合起来,找到其中的共同点和规律性的变化。

通过总结规律,我们可以更清晰地认识到问题的本质,从而更有把握地解决问题。

4. 实际应用找规律题并不仅仅停留在理论层面,通过实际应用可以更好地检验我们找到的规律是否正确。

可以尝试用已经找到的规律来解决一些新的问题,观察规律是否具有普适性。

在实际应用中,我们可能还会发现一些之前忽视的规律或者问题,从而不断完善和深化我们的观察和理解。

个人观点和理解我个人认为,找规律题是一个非常有趣的数学问题,通过找规律题,我可以不断拓展自己的思维,锻炼自己的观察和总结能力。

在解决找规律题的过程中,我深刻地体会到逻辑思维和抽象思维的重要性,也更清晰地认识到数学中的奥妙之处。

总结回顾通过以上的探讨,我深入地认识到了七年级上册数学找规律题的解题技巧。

首先要理解题目,并在此基础上分析规律,逐步总结规律。

通过实际应用来检验规律的正确性,并不断完善我们的观察和理解。

在这个过程中,我也更深刻地认识到数学中的规律之美,以及数学所蕴含的丰富内涵。

通过对七年级上册数学找规律题的深入探讨,我相信我可以更好地应对日后的数学学习和解题挑战。

初中数学规律题解题技巧大全

初中数学规律题解题技巧大全

初中数学规律题解题技巧大全1.分类法:将问题中的要素进行分类,找出其中的共同点或规律。

例如,将一组数字按奇偶分类,可以发现奇数和偶数交替出现的规律。

2.逆向思维法:从目标结果出发,逆向思考问题,找出达到目标的步骤和规律。

例如,如果要求从5到1倒数,可以逆向思考,先从1开始计数,每次加1,直到53.引入临时变量法:在一些题目中,我们可以引入一个临时变量来辅助观察规律。

例如,当求一组数之间的差值时,引入一个临时变量来表示差值,观察其规律。

4.数列法:有些规律题可以通过找出数列的通项公式来解决。

根据已知条件列出数列前几项,观察数列之间是否有其中一种规律,并尝试找出通项公式。

5.图形法:有些规律题中会涉及到图形,可以通过画图观察图形之间的变化来找出规律。

例如,观察数字五角星的顶点数和边数之间的关系,可以发现边数是顶点数的两倍减一6.再加一法:一些规律题中涉及到数的增加或减少,可以通过对已知条件进行逐个增加或减少1来观察规律。

例如,观察一些数的平方数之间的差值,可以逐个加17.同构法:在一些规律题中,可以通过观察数字或图形的对称性来找出规律。

例如,观察数字0-9的对称性,可以发现数字6和9是相互对称的。

8.反证法:在一些情况下,我们可以采用反证法来解决规律题。

即假设问题的逆否命题成立,然后推导出矛盾的结论,从而得出原命题的正确性。

9.推广法:通过观察已知条件的相似性或不变性,将其推广到更一般的情况下。

例如,当求一个数字的平方时,可以观察平方的规律,并将其推广到其他数字。

10.数学工具法:在解决规律题时,可以运用数学工具来辅助观察和推理。

例如,使用图形计算器绘制图形,使用计算器进行计算等。

以上是一些常用的解题技巧,通过灵活运用这些技巧,可以帮助我们更好地解决初中数学规律题。

在解题过程中,还要注重观察细节、积累经验,并进行逻辑思维和推理能力的训练,提高解题的准确性和效率。

初中数学找规律的方法与技巧

初中数学找规律的方法与技巧

初中数学找规律的方法与技巧1. 哎呀呀,初中数学找规律呀,那首先咱得瞪大眼睛仔细瞧!比如说数列 1,3,5,7,9,这不就是相邻两个数相差 2 嘛,那下一个数不就很容易猜出来是11 啦!这就像走在路上找脚印,顺着就能发现下一步往哪儿走。

2. 嘿,你还可以用画图的办法来帮忙找规律呢!像图形的排列规律,你就画出来看看嘛。

比如三角形、正方形、三角形、正方形这样的排列,一画就明白接下来该是三角形啦!就好像给图案排队,一下子就清楚顺序啦。

3. 还有哇,把数字拆开来分析也超有用的呢!像 123,234,345,你看每个数的个位、十位、百位是怎么变化的,不就能找到规律啦!这多像拆礼物一样,一层一层解开就发现里面的奥秘啦。

4. 哇塞,你可别小瞧了计算哦!通过计算前后数的差值或者比值也能找到规律呢。

比如 2,4,8,16,算一下比值都是 2 呀,那下一个肯定是 32 啦!这不就跟升级打怪一样,知道了打法就不难啦。

5. 咱还可以从特殊到一般来找规律呢!先找几个特殊的例子看看,然后总结出一般的规律。

就好像从几个小朋友身上发现他们共同的爱好,那这就是大家普遍的特点啦。

6. 哈哈,别忘了观察数字的奇偶性呀!奇数偶数的分布有时候也藏着规律呢。

像 1,4,9,16,奇数位置和偶数位置就有不同的规律呢!这就像区分男生女生,特点一下子就出来了嘛。

7. 找规律的时候要大胆假设呀!觉得是什么规律就试试看嘛。

如果不对再换个想法,就像试衣服一样,这件不合适就换另一件呗。

8. 记住,细心和耐心是关键哟!千万别着急,慢慢找肯定能发现规律。

就跟找宝藏一样,得慢慢挖才能找到呀!我觉得呀,初中数学找规律并不难,只要掌握了这些方法与技巧,再加上自己的细心观察和思考,就能轻松搞定啦!。

初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律的一些窍门

初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律的一些窍门

初一数学找规律方法初一数学找规律方法,初一数学找规律的一些窍门导读:就爱阅读网友为大家分享的“初一数学找规律方法,初一数学找规律的一些窍门”资料,内容精辟独到,非常感谢网友的分享,希望这篇资料对您有所帮助。

初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。

初一数学找规律方法一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2(n-2)=2n-1,总增幅为:[3+(2n-1)](n-1)÷2=(n+1)(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,.试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,.序列号: 1,2,3, 4, 5,.容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26,同时减去2后得到新数列:0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例: 4,16,36,64,?,144,196, ?(第一百个数)同除以4后可得新数列:1、4、9、16,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,2,5,10,17,26,0,6,16,30,48(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、 3-1=81 5-3=82 7-5=83 用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196, (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3-1=81 5-3=82 7-5=83用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,1 4583)18894)(N+2)-N=4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切.正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△现;延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.以上关于“[读书技巧]初一数学找规律方法,初一数学找规律的一些窍门”的信息由网友上传分享,希望对您有所帮助,感谢您对就爱阅读网的支持!。

初中数学几何找规律

初中数学几何找规律

7 .如图,以边长为1的正方形ABCD 的边AB 为对角线作第二个正方形 AEBO 1S 2016=个等腰直角三角形 C如 6B A n 于占J八、、 DcM 的坐标为E的 B n 的坐标是x 轴的正半轴上得到点A A A D D 记作S 3cB60° C 2的长是形所构成的图形的面积为以RR 为对角线作菱形于点(3,0)A io 这十个点 l 于 按此规律继续作下去,在按此作法继续下D 2中任意三点为顶点,共能组成 个正方形的面积S n Ai Af> B C 2DA>s 菱形 A B C D ,再以 AC 2为对角线作菱形 ARC2D s 菱形 B C 2DA>,再M 作x 轴的垂线四边形 A n_i A n B n B n_l 面积记为Sn=2•如图,在四个正方形拼接成的图形中,以 A 2( 1 , 1 ), A 3(-1 , 1 ) 的面积记作 S ,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B A 1 , A 2过点N 作直线I 的垂线交x 轴于点M13.如图,△ ABC 是边长为1的等边三角 作x 轴的垂线交A 、A ?、A 3 0^1 D 1 为对角线作小正方形,这 n 个小正方形的周长之和为多少?B 1 9.在菱形ABCD 中,边长为10,/ A=60°.顺次连结菱形 几何找规律 (2 4D< 0V*N,过点N 作直线l 的垂线交x 轴于点M ;过点BA 3 x 果厶ABC 、A EFG 、△ A 'B 'C '分别为第1个、第2个、第3个三角形14.如图,已知直线l : y=.,^x ,过点M( 2, 0)2 5 题)再以BE 为对角线作第三个正方形 EFBO 2,如此作下去 A*— 1,- 1), A s (2,- 1)…则点 10.已知菱形 ABCD 的边长为2, / ABG = 60°,以BD 为对角线作菱形1•如图,正方形 ABCD 的边长为5,把它的对角线 AC 分成n 段,以每一小段 y K八B 2 6.如图,已知等腰Rt △ ABC 的直角边长为1,以Rt △ ABC 的斜边AC 为直角边 3.如图,△ ABC 的周长为64, E 、F 、G 分别为 AB 、AC 、BC 的中点,A B '、C '分别为 EF 、EG 、GF 的中点,△ A ' B' C '的周长为 ____________ 根据以上规律,写出线段OM 2014的长度为画第二个等腰 Rt △ ACD 再以Rt △ ACD 的斜边AD 为直角边,画第三个等腰 Rt △ADE ……依此类推直到第五个等腰 Rt △ AFQ 则由这五个等腰直角三角 按照上述方法继续作三角形,那么第n 个三角形的周长是 EF // AC ,得到四边形EDAF ,它的 E 1F 1〃 EF ,得到四边形 E 1D 1FF 1: 次连结四边形 A 2B 2C 2C 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….则 12.如图,边长为1的菱形ABCD 中,/ DAB=60 .连结对角线 AC,以AC形 ACEF 使/ FAC=60 .连结AE,再以AE 为边作第三个菱形 AEGH 使此规律所作的第 n 个菱形的边长是,…,A,则点A 的坐标为 ________________ .11•如图,菱形 AB 1C 1D 1的边长为1,/ B 1 RGDA 3s 菱形 ARGD百第三个菱形 AB 3C 3D 3,使/ B 3 = 依此类推,这样作的 得到线段OM 1 ;又将线段OM 1绕原点O 逆时针方向旋转45,再将其延长OM 4、OM 5I n 分别交于点 四边形A2013B2013C 2013D2013的周长是四边形ARGD 的周长是 则所作的第 n ABCD 各边中点,可得 四边形ABCD ;顺次连结四边形 ABCD 各边中点,可得四边形 A 2B 2C2D ;顺 OAB 变换成△ OA 1B 1,第二次 将厶OA 1B 1变换成△OA 2B 2,第三次将厶 OA 2B 2变成△ OA 3B 3.已知:A (1, 2), A 1(2, 2), A 2(4, 2), A 3(8, 2), B (2, 0), Bg 0), B^, 0), B"6, 0).按 此规律将厶OAB进行n 次变换,得到三角形△ OA n B n ,推测 A n 的坐标是 l 2,|3I n 分别交于点Bl , B 2 , B 3 (1,0),直线I 2 Ax 轴于点(2,0),直线I取 BC 边中点E ,作ED //S 1;取BE 中点E 1,作E 1D 1记作 S 2.照此规15.如图,已知直线I : y=—3 x ,过点A (0, 1 )作y 轴的垂线交直线I3B,过点B 作直线I 的垂线交y 轴于点A;过点A 作y 轴的垂线交直线作直线I 的垂线交y 轴于点 A;…;按此作法继续下 直线 I 1 , I 2 , I 38.如图,在平面直角坐标系xOy 中,已知点M 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学规律题解题基本方法------图形找规律
1.探索常见图形的规律,用火柴棒按下图的方式搭三角形
⑴填写下表:
⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子
⑴一张桌子可坐6人,2张桌子可坐 人。

⑵按照上图方式继续排列桌子,完成下表:
3.如果按图3的方式将桌子拼在一起
⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?
⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。

4.如图,把一个面积为1的正方形分等分成两个面积为2
1
的矩形,接着把面积为2
1的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为8
1的矩形,如此进行下去,试利用图形提示的规律计算:
=+++++++256
11281641321161814121
5.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。

个数 1 2 3 4 5 6 7…
n
32
1
2
1 41 81
161
1
1
2
6.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。

……
7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。

……
8.观察与分析下面各列数的排列规律,然后填空。

①5,9,13,17, , 。

②4,5,7,11,19, , 。

③10,20,21,42,43, , ,174,175。

④4,9,19,34,54, , ,144。

⑤45,1,43,3,41,5, , ,37,9。

⑥6,1,8,3,10,5,12,7, , 。

⑦0,1,1,2,3,5, , 。

⑧180,155,131,108, , 。

⑨5,15,45,135,
, 。

⑩60,63,68,75, , 。

9.(2010年山东省青岛市)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要
19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.
【关键词】规律
第三个
第一个
第二个
4
2
==s n
8
3
==s n
12
4
==s n
16
5
==s n

第13题图
1条 2条 3条
10、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 根.
11. 如图用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
(1)第4个图案中有白色地面砖__________块; (2)第n 个图案中有白色地面砖__________块.
12.现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。

13:(05山东泉州)下图是某同学在沙滩上用石于摆成的小房子.
观察图形的变化规律,写出第n 个小房子用了 块石子.
14、探索题: 如下图在一些大小相等的正方形内分别排列着一些等圆.
˙˙˙
(1) (2) (3) ① 请观察上图并填写下表 图形编号 (1 (2 (3) (4) (5) (6) 圆的个数
② 你能试着表示出第n 个正方形中圆的个数吗?用你发现的规律计算出第2008个图形中有多少个圆.
(3)
(2)
(1)
15.如图,都是由若干盆花组成的形如三角形的图案,则组成第n 个图案所需花盆的总数是___________________.
* * * * * * * * * *
* * * * * * * * *
16.观察正方形图案,每条边上有)2( n n 个圆点,每个图案中圆点总数式S ,按此推断S 与n 的关系式为
17.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,通过观察可以发现:
(1)第4个图形中火柴棒的根数是 ;(2)第n 个图形中火柴棒的根数是 ; 4. ① ② ③
●●● ●●●●● ●●●●●●●
● ● ● ● ● ●
● ● ●
上面是用棋子摆成的“T ”字,按这样的规律摆下去,摆成第10个“T ”字需要多少个棋子?第n 个呢?
n 的式子表示).
18.按如下规律摆放三角形:
则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________. 19.观察如下图的点阵图和相应的等式,探究其中的规律: (1)在④和⑤后面的横线上分别写出相应的等式;
n=1n=2
n=3
n=4
n=2,S=4
n=3,s=8
n=4,s=12
…… ……
①1=12; ②1+3=22; ③1+3+5=32;
④ ;
⑤ ;
(2)通过猜想写出与第n 个点阵相对应的等式______________.
20.(2009武汉)14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.
21.(2009年益阳市)图8是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.
-
22.(2009年铁岭市)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
23、先观察图形,阅读相关文字后,再回答问题。

两条直线相交,最多有1个交点; 三条直线相交,最多有3个交点; 四条直线相交,最多有6个交点;
…… ……
问题:10条直线相交,最多有几个交点?n 条直线最多有几个交点
24、用同样规格的黑、白两色的正方形方块铺成如图3.1.1图,
用n 的代数式表示出第n 幅图中黑色正方形块数 白色正方形块数
25.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )
第1个图形
第2个图形
第3个图形
第4个图形

(1)
(2)
(3)
……
n =3
n =2
n =1
图3.1.1
A .22n +
B .44n +
C .44n -
D .4n
26.(2009武汉)14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.
27、(2009年益阳市)图8是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成. -
28.(2009年铁岭市)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
29.(2009年广西梧州)图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = ★ . (用n 的代数式表示s )
30.(2009白银市)29.本试卷第19题为:若20072008a =
,2008
2009
b =,试不用..将分数化小数的方法比较a 、b 的大小.
2.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n
31.(2009武汉)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.
……
第1个
第2个
第3个
第1个图形
第2个图形
第3个图形
第4个图形

……
第1个
第2个
第3个
图8
(1)
(2)
(3)
……
32.(2009重庆綦江)观察下列等式: 22 1.4135-=⨯; 222.5237-=⨯; 223.6339-=⨯ 224.74311-=⨯;
………… 则第n (n 是正整数)个等式为________. 33.(2009年牡丹江市)有一列数12
34
25
1017
--
,,,,
…,那么第7个数是 . 34.(2009年广西梧州)下图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )
……
n =1 n =2
n =3
第1个图形
第2个图形
第3个图形
第4个图形
…。

相关文档
最新文档