自动控制系统的稳定性和稳态误差分析报告
自动控制原理稳态误差分析

烟台南山学院课程实验报告课程名称自动控制原理班级电气工程1204实验日期2014.12.14姓名张莹学号201202014015实验成绩实验名称实验二稳态误差分析实验目的及要求目的:1. 学习Matlab仿真软件的使用。
2. 用Matlab对于0型、Ⅰ型、Ⅱ型单位负反馈系统,求出当给定信号分别为单位脉冲、单位阶跃和单位斜坡时系统响应及稳态误差。
要求:1.编写实验程序。
2.用Matlab仿真实验结果。
3.写出实验报告实验环境Matlab仿真软件实验内容1、单位脉冲响应及稳态误差程序代码及仿真结果如下:>> t=0:0.1:15;[num1,den1]=cloop([1],[1 1]); [num2,den2]=cloop([1],[1 1 0]); [num3,den3]=cloop([4 1],[1 1 0 0]); y1=impulse(num1,den1,t);y2=impulse(num2,den2,t);y3=impulse(num3,den3,t);>> subplot(311);plot(t,y1);>> subplot(312);plot(t,y2);>> subplot(313);plot(t,y3);>> er1=0-y1(length(t));>> er2=0-y2(length(t));>> er3=0-y3(length(t));05101500.51051015-0.50.51051015-10122、单位阶跃响应及稳态误差程序代码及仿真结果如下:>> t=0:0.1:20;[num1,den1]=cloop([1],[1 1]);[num2,den2]=cloop([1],[1 1 0]);[num3,den3]=cloop([4 1],[1 1 0 0]);y1=impulse(num1,den1,t);y2=impulse(num2,den2,t);y3=impulse(num3,den3,t);subplot(311);plot(t,y1);subplot(312);plot(t,y2);subplot(313);plot(t,y3);er1=1-y1(length(t));er2=1-y2(length(t));er3=1-y3(length(t));0246810121416182000.5102468101214161820-0.50.5102468101214161820-10123、单位斜坡响应及稳态误差程序代码及仿真结果如下:>> t=0:0.1:20;>> t1=0:0.1:100;>> [num1,den1]=cloop([1],[1 1]);[num2,den2]=cloop([1],[1 1 0]);[num3,den3]=cloop([4 1],[1 1 0 0]);>> y1=step(num1,[den1 0],t1);y2=step(num2,[den2 0],t);y3=step(num3,[den3 0],t);>> subplot(311);plot(t1,y1,t1,t1);subplot(312);plot(t,y2,t,t);subplot(313);plot(t,y3,t,t);>> er1=t1(length(t1))-y1(length(t1));er2=t(length(t))-y2(length(t));er3=t(length(t))-y3(length(t));0102030405060708090100501000246810121416182010200246810121416182001020总结一般,能正常工作的自动控制系统应该是稳定的并具有较好的平稳性,同时,还应根据实际工程的需要,使系统的响应速度和稳态控制精度满足一定的要求。
自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
基于MATLAB的控制系统稳定性分析报告

四川师范大学本科毕业设计基于MATLAB的控制系统稳定性分析学生姓名宋宇院系名称工学院专业名称电气工程及其自动化班级 2010 级 1 班学号**********指导教师杨楠完成时间2014年 5月 12日基于MATLAB的控制系统稳定性分析电气工程及其自动化本科生宋宇指导老师杨楠摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。
一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。
如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。
因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。
为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。
关键词:系统稳定性 MATLAB MATLAB稳定性分析ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability.Keywords: system stability MATLAB MATLAB stability analysis目录摘要 (I)ABSTRACT .......................................................... I I 目录1.绪论 (1)1.1自动控制理论发展概述 (1)1.1.1经典控制理论的发展及其基本内容 (1)1.1.2现代控制理论的发展及其基本内容 (1)1.1.3智能控制理论的发展及其主要内容 (2)1.2本文的章节安排 (2)2控制系统的理论基础 (3)2.1控制系统的基本形式 (3)2.1.1闭环控制系统 (3)2.1.2开环控制系统 (4)2.1.3小结 (4)2.2控制系统的分类 (4)2.3控制系统的稳定性 (5)3 MATLAB基础介绍 (6)3.1MALTAB概述 (6)3.2MATLAB的特点 (6)4稳定性分析的方法介绍 (7)4.1时域分析法 (7)4.1.1时域分析法的概念 (7)4.1.2控制系统的性能指标 (7)4.1.3典型的输入信号 (7)4.1.4系统时域分析函数-Step函数 (8)4.1.5控制系统的时域分析-impulse函数 (10)5根轨迹分析法 (12)5.1根轨迹分析法的概念 (12)5.1.1一般控制系统 (12)5.2绘制控制系统的根轨迹图的一般规则 (12)5.3pzmap函数 (13)5.4rlocus函数 (14)6频域法分析 (16)6.2奈氏图(Nyquist) (16)6.3波德图(Bode) (18)7总结 (22)参考文献 (23)致谢 (24)基于MATLAB的控制系统稳定性分析1.绪论这章讲述了自动控制理论与控制技术概述,主要介绍了几种自动控制理论的发展概况以及基本的内容。
《自动控制原理》稳定性和稳态误差

7-5 离散系统的稳定性和稳定误差 回顾:线性连续系统 稳定性和稳态误差问题:线性离散系统 稳定性和稳态误差 ?分析:sT e z =,首先研究s 平面与z 平面的关系。
一.s 域到z 域的映射s 域到z 域的关系: sT e z = S → Zs 域中的任意点可表示为ωσj s +=,映射到z 域则为 T j T T j e e e z ωσωσ==+)(ωσj s += ━━━━━━━━→ T e z σ=,T z ω=∠ (7—84)问题:s 平面上的点、线、面 如何映射到 z 平面?(1) s 平面上虚轴的映射虚轴:0=σ,ω=∞-→0→∞分析:0=σ时,1==T e z σ,ω=∞-→0→∞时,T z ω=∠==∞-→0→∞ 以原点为圆心的单位圆,经沿着单位圆转过无穷多圈分析:T 采样周期,单位[sec], 采样频率,单位[1/sec] f s =1/T采样角频率 s ω,单位[rad/sec] , T s /2πω=ω=2/s ω-→0→2/s ω时,T z ω=∠=π-→0→π 正好逆时针转一圈ω=2/s ω→s ω→2/3s ω时,T z ω=∠=π→π2→π3 又逆时针转一圈由图可见:可以把s平面划分为无穷多条平行于实轴的周期带,其中从-ωs/2到ωs/2的周期带称为主要带,其余的周期带叫做次要带。
(2) 等σ线映射s 平面上的等σ垂线,映射到z 平面上是以Te z σ=为半径的圆 s 平面上的虚轴映射为z 平面上的单位圆左半s 平面上的等σ线映射为z 平面上的同心圆,在单位圆内 右半s平面上的等σ线映射为z 平面上的同心圆,在单位圆外(3) 等ω线映射在特定采样周期T 情况下,由式(7-84)可知,s 平面的等ω水平线,映射到z 平面上的轨迹,是一簇从原点出发的映射,其相角T z ω=∠从正实轴计量,如图7-36所示。
由图可见,s 平面上2/s ωω=水平线,在z 平面上正好为负实轴。
自动控制原理课件:线性系统的稳定性和稳态特性分析

上述系统在干扰作用消失后,能够恢复到 原始的平衡状态,或者说系统的零输入响应具 有收敛性质,则系统为稳定的。
由此可得到线性系统稳定的充分必要条件: 系统特征方程的所有根(系统的所有闭环极点),均位于复数s平面的左半部.
系统给定误差传递函数为
Er (s) R(s)
1 1 G(s)
1
1 K (0.5s 1)
s(s 1)(3s 1)
Er
(s)
s(s
s(s 1)(3s 1) 1)(3s 1) K (0.5s
1)
R(s)
esr
lim
s0
sEr
(s)
lim s
s0
s(s 1)(3s 1)
1
s(s 1)(3s 1) K(0.5s 1) s
3.3 劳斯稳定判据 线性系统稳定与否,取决于特征根的实部是否均为负值(复数s平面
的左半部).但是求解高阶系统的特征方程是相当困难的.而劳斯判据,
避免解特征方程,只需对特征方程的系数进行代数运算,就可以判断系统
的稳定性,因此这种数据又称为代数稳定判据.
1.劳斯判据 将系统的特征方程写成如下标准形式
下面要讨论系统跟踪输入信号的精确度或抑制干扰信号的能 力.
这里讨论的稳态误差仅限于由系统结构、参数及输入信号的不 同而导致的稳态误差,不包含由于具体元件的灵敏性、温湿度影响所 带来的误差问题。
控制系统的输入包含给定输入和扰动量, 对应的控制系统的稳态误差也分为两类:
给定稳态误差
扰动稳态误差
Er (s) R(s) B(s) R(s) Er (s)Gc (s)Go (s)H(s)
自动控制原理实验报告

自动控制原理实验报告 Final revision on November 26, 2020实验报告课程名称: 自动控制原理 实验项目: 典型环节的时域相应 实验地点: 自动控制实验室实验日期: 2017 年 3 月 22 日 指导教师: 乔学工实验一 典型环节的时域特性一、实验目的1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。
对比差异,分析原因。
3.了解参数变化对典型环节动态特性的影响。
二、实验设备PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。
三、实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。
1.比例环节 (P) (1)方框图 (2)传递函数:K S Ui S Uo =)()((3)阶跃响应:)0()(≥=t K t U O 其中 01/R R K =(4)模拟电路图:(5)理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。
② 取R0 = 200K ;R1 = 200K 。
2.积分环节 (I) (1)方框图(2)传递函数:TSSUiSUo1)()(=(3)阶跃响应:)0(1)(≥=ttTtUo其中CRT=(4)模拟电路图(5) 理想与实际阶跃响应曲线对照:①取R0 = 200K;C = 1uF。
②取R0 = 200K;C = 2uF。
3.比例积分环节 (PI)(1)方框图:(2)传递函数:(3)阶跃响应:(4)模拟电路图:(5)理想与实际阶跃响应曲线对照:①取 R0 = R1 = 200K;C = 1uF。
理想阶跃响应曲线实测阶跃响应曲线无穷②取 R0=R1=200K ;C=2uF 。
理想阶跃响应曲线 实测阶跃响应曲线4.惯性环节 (T) (1) 方框图 (2) 传递函数:1)()(+=TS KS Ui S Uo 。
自动控制原理3-2稳定性和误差

3. 加速度输入作用下的稳态误差
11
1
e s sl s 0 is m 1 G (s )H (s )s 3 lis 2 m G (s )H (s )
s 0
令K a ls 0 is2 m G (s)H (s) ls 0 ism N K 2静态加速度误差系数 1
ess Ka
0 型系统:
Ka = 0 ess = ∞
i
k
线性系统稳定的充要条件是:闭环系统特征方程的
所有根都具有负实部,或者说,闭环传递函数的极点均
位于s左半平面(不包括虚轴)。
根据稳定的充要条件决定系统的稳定性,必须知道
系统特征根的全部符号。如果能解出全部根,则立即可
判断系统的稳定性。然而对于高阶系统,求根的工作量
很大,常常希望使用一种直接判断根是否全在s左半平面
2 s13 + 4 s12 s1 1 =
0
s13 2
1
s12 4
1
s11 0.5
s10 1
劳斯表中第一列元素不全为正,且第一列元素符号
改变了一次,故系统在s1 右半平面有一个根。因此,系 统在垂直线 s = 1的右边有一个根。
16
3.6 稳态误差的定义及一般计算公式
3.6.1 误差的基本概念
的代替方法,下面就介绍劳斯代数稳定判据。
5
3.5.2 线性系统的代数稳定判据
首先给出系统稳定的必要条件:设线性系统的闭
环特征方程为
n
D ( s ) a 0 s n a 1 s n 1 a 2 s n 2 a n 1 s a n a 0( s s i ) 0 i 1
式中,a0 >0 , si(i =1,2 , , n)是系统的n个闭环极
第3章 系统分析稳定性与稳态误差

2
3.1.1 S平面到Z平面之间映射关系
s平面与z平面映射关系: z esT s j z e( j )T eT e jT eT / T
R | z | eT
z T
1. s平面虚轴映射为z平面单位圆,左半平面映射在z平面单位圆内
系统稳定必要条件 (z) a0 zn a1zn1 an1z an 0 或者
判断系统稳定性步骤: 1. 判断必要条件是否成立,若不成立则系统不稳定 2. 若必要条件成立,构造朱利表
17
二阶系统稳定性条件
(z) z2 a1z a2 0
必要条件: (1) 0 (1) 0
在z平面
z e e e sT
T cos jT sin z esT e e Tn cos jTn sin
n
n
R eTn cos ,z Tn sin
等自然频率轨迹
图3-10 等 自然频率轨 迹映射
11
12
图形对横轴是对称的:
z平面
j
2 3
5
n ,
cos( ) n
| z | eT enT cos z T
8
9
10
6. 等自然频率轨迹的映射
ωn =常数
在s平面 s j ne j n cos jn sin cot1( /)
lim(1
z 1
z 1 ) 1
1 D(z)G(z)
R(z)
es*s 与输入信号R(z)及系统 D(z)G(z) 结构特性均有关
29
1.输入信号为单位阶跃函数 r(t) 1(t)
R(z) 1/(1 z1)
自动控制系统稳态误差分析

N (s )
(s)
R(s )
1 H ( s)
R1 ( s )
C0
-
E1 ( s ) H (s ) E (s ) G1 ( s )
+
G2 (s)
C (s )
我们将用偏差 E (s ) 代替误差进行研究。除非特别说明,以后所说 的误差就是指偏差;稳态误差就是指稳态偏差。
5
3.6 稳态误差分析
稳态误差的计算
11
3.6 稳态误差分析
开环系统的型
系统的无差度阶数(开环传递函数的型) 通常称开环传递函数中积分的个数为系统的无差度阶数,并将系 统按无差度阶数进行分类。 当 0 ,无积分环节,称为0型系统 当 1 ,有一个积分环节,称为Ⅰ型系统 当 2 ,有二个积分环节,称为Ⅱ型系统 ……………… 当 2 时,使系统稳定是相当困难的。因此除航天控制系统外, Ⅲ型及Ⅲ型以上的系统几乎不用。
例1 系统结构图如图所示,当输入信 号为单位斜坡函数时,求系统在输入 信号作用下的稳态误差;调整K值能 使稳态误差小于0.1吗?
R(s)
-
K (0.5s 1) C (s ) s( s 1)(2s 1)
由劳斯判据知稳定的条件为: 0 K 6 E ( s) 1 s( s 1)( 2s 1) E ( s) R( s) 1 G1 ( s)G2 ( s) H ( s) s( s 1)( 2s 1) K (0.5s 1) 1 s( s 1)( 2s 1) 1 R( s) 2 E ( s) 2 s( s 1)( 2s 1) K (0.5s 1) s s s( s 1)( 2s 1) 1 1 ess lim sE ( s) lim s 2 s 0 s 0 s ( s 1)( 2 s 1) K (0.5s 1) s K
自动控制原理实验报告--控制系统的稳定性和稳态误差

本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。
二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。
即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。
当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。
conv( )函数的调用是允许多级嵌套的。
例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。
2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。
判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。
对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。
MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。
自动控制原理实验报告

⾃动控制原理实验报告实验评价:指导教师(签名)年⽉⽇实验名称:线性定常系统的稳态误差⼀、实验⽬的和要求:(⼀)通过本实验,理解系统的跟踪误差与其结构、参数与输⼊信号的形式、幅值⼤⼩之间的关系;(⼆)研究系统的开环增益K 对稳态误差的影响。
⼆、实验内容:(⼀)观测0型⼆阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;(⼆)观测I 型⼆阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;(三)观测II 型⼆阶系统的单位斜坡响应和单位抛物波响应,并实测它们的稳态误差。
三、实验原理控制系统的⽅框图如图4-1所⽰。
其中G(S)为系统前向通道的传递函数,H(S)为其反馈通道的传递函数。
图4-1 控制系统的⽅框图由图4-1求得)()()(11)(S R S H S G S E +=(1)由上式可知,系统的误差E(S)不仅与其结构和参数有关,⽽且也与输⼊信号R(S)的形式和⼤⼩有关。
如果系统稳定,且误差的终值存在,则可⽤下列的终值定理求取系统的稳态误差:)(lim 0S SE e s ss →=(2)本实验就是研究系统的稳态误差与上述因素间的关系。
下⾯叙述0型、I 型、II 型系统对三种不同输⼊信号所产⽣的稳态误差ss e 。
1.0型⼆阶系统设0型⼆阶系统的⽅框图如图4-2所⽰。
根据式(2),可以计算出该系统对阶跃和斜坡输⼊时的稳态误差:图4-2 0型⼆阶系统的⽅框图1)单位阶跃输⼊(sS R 1)(=)3112)1.01)(2.01()1.01)(2.01(lim 0=?+++++?=→S S S S S S e S ss2)单位斜坡输⼊(21)(s S R =) ∞=?+++++?=→2012)1.01)(2.01()1.01)(2.01(lim SS S S S S e S ss 上述结果表明0型系统只能跟踪阶跃输⼊,但有稳态误差存在,其计算公式为:Pss K R e +=10其中)()(lim 0S S H S G K p →?,R 0为阶跃信号的幅值。
控制实验报告二典型系统动态性能和稳定性分析

实验报告2报告名称:典型系统动态性能和稳定性分析一、实验目的1、学习和掌握动态性能指标的测试方法。
2、研究典型系统参数对系统动态性能和稳定性的影响。
二、实验内容1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
三、实验过程及分析1、典型二阶系统结构图以及电路连接图如下所示:对电路连接图分析可以得到相关参数的表达式:;;;根据所连接的电路图的元件参数可以得到其闭环传递函数为;其中;因此,调整R的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。
x当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。
当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。
对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。
同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。
当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。
2、典型三阶系统结构图以及电路连接图如下所示:根据所连接的电路图可以知道其开环传递函数为:的单位为kΩ。
系统特征方程为,根据其中,Rx劳斯判据可以知道:系统稳定的条件为0<K<12,系统临界稳定的条件为K=12,可以调节K,从而调节系统的性能。
具体实系统不稳定的条件为K>12,调节Rx验图像如下:四、软件仿真1、典型2阶系统取,程序为:G=tf(50,[1,50*sqrt(2),50]);step(G)调节时间为5s左右。
取,程序为:G=tf(50,[1,10*sqrt(2),50]);step(G)调节时间为0.6s左右。
取,程序为:G=tf(50,[1,2*sqrt(2),50]);step(G)可以看出系统有明显的超调,超调量达到了50%以上,响应速度十分快。
自动控制原理稳态误差

自动控制原理稳态误差
在自动控制原理中,稳态误差是指系统在达到稳态时,输出值与期望值之间的差异。
稳态误差的大小和系统的控制算法有关,常用的控制算法包括比例控制、积分控制和微分控制。
比例控制是最简单的控制算法,通过调整比例增益来控制系统的输出。
然而,比例控制往往会产生稳态误差。
当比例增益增大时,稳态误差会减小,但系统的稳定性可能会受到影响。
当比例增益调整得过大时,系统可能会变得不稳定。
为了降低稳态误差,可以采用积分控制。
积分控制通过对误差进行积分来调整系统的输出。
积分控制可以消除稳态误差,但会引入超调现象,导致系统的动态响应变差。
为了解决超调问题,可以采用微分控制。
微分控制通过对误差进行微分来调整系统的输出。
微分控制可以提高系统的响应速度,但可能导致系统的稳态误差增加。
为了综合利用比例控制、积分控制和微分控制的优势,可以采用PID控制。
PID控制是一种常用的自动控制算法,通过对误差进行比例、积分和微分操作来调整系统的输出。
PID控制可
以同时减小稳态误差和超调现象,提高系统的稳定性和响应速度。
综上所述,稳态误差是自动控制系统中常见的问题,可以通过调整控制算法的参数来减小稳态误差。
但需要根据具体的系统要求和性能指标来选择合适的控制算法和参数。
自动控制系统实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握自动控制系统的基本分析方法;3. 熟悉自动控制系统的实验操作步骤;4. 分析实验数据,提高对自动控制系统的理解和应用能力。
二、实验原理自动控制系统是一种根据给定输入信号,通过反馈和调节作用,使系统输出信号能够自动跟踪输入信号的系统。
自动控制系统主要由被控对象、控制器和反馈环节组成。
三、实验设备1. 自动控制系统实验箱;2. 数据采集卡;3. 计算机;4. 电源;5. 实验接线板。
四、实验内容1. 自动控制系统组成原理实验;2. 自动控制系统基本分析方法实验;3. 自动控制系统实验操作步骤实验。
五、实验步骤1. 自动控制系统组成原理实验(1)观察实验箱内各模块的连接情况,了解被控对象、控制器和反馈环节的连接方式;(2)按照实验指导书的要求,将实验箱内的模块正确连接;(3)启动实验箱,观察系统运行情况,分析系统组成原理。
2. 自动控制系统基本分析方法实验(1)根据实验指导书的要求,设置实验参数;(2)启动实验箱,进行实验操作;(3)采集实验数据,记录实验结果;(4)分析实验数据,掌握自动控制系统基本分析方法。
3. 自动控制系统实验操作步骤实验(1)按照实验指导书的要求,设置实验参数;(2)启动实验箱,进行实验操作;(3)观察系统运行情况,分析实验操作步骤;(4)记录实验数据,分析实验结果。
六、实验结果与分析1. 自动控制系统组成原理实验实验结果表明,自动控制系统由被控对象、控制器和反馈环节组成,通过反馈和调节作用实现系统输出信号的自动跟踪。
2. 自动控制系统基本分析方法实验实验结果表明,通过实验数据可以分析自动控制系统的稳定性、速度响应、稳态误差等性能指标,从而掌握自动控制系统基本分析方法。
3. 自动控制系统实验操作步骤实验实验结果表明,按照实验指导书的要求进行实验操作,可以顺利完成实验任务,达到实验目的。
七、实验结论1. 通过本次实验,掌握了自动控制系统的基本概念和组成;2. 掌握了自动控制系统基本分析方法;3. 熟悉了自动控制系统的实验操作步骤;4. 提高了分析实验数据、解决实际问题的能力。
自动控制实践实验报告

一、实验目的1. 理解自动控制系统的基本概念和原理;2. 掌握自动控制系统的基本分析方法;3. 培养动手操作能力和实验技能;4. 提高对自动控制系统的设计、调试和优化能力。
二、实验原理自动控制系统是一种利用反馈控制原理,使被控对象的输出量能够跟踪给定输入量的系统。
本实验主要研究线性定常系统的稳定性、动态性能和稳态性能。
三、实验设备1. 自动控制实验台;2. 实验仪器:信号发生器、示波器、信号调理器、数据采集卡等;3. 实验软件:MATLAB/Simulink。
四、实验内容1. 系统搭建与调试(1)搭建实验台,连接实验仪器;(2)设置信号发生器,产生不同频率、幅值的信号;(3)调整信号调理器,对信号进行放大、滤波等处理;(4)将处理后的信号输入实验台,观察系统的响应。
2. 稳定性分析(1)根据实验数据,绘制系统的伯德图;(2)根据伯德图,判断系统的稳定性;(3)通过改变系统参数,观察对系统稳定性的影响。
3. 动态性能分析(1)根据实验数据,绘制系统的阶跃响应曲线;(2)根据阶跃响应曲线,分析系统的上升时间、超调量、调节时间等动态性能指标;(3)通过改变系统参数,观察对系统动态性能的影响。
4. 稳态性能分析(1)根据实验数据,绘制系统的稳态误差曲线;(2)根据稳态误差曲线,分析系统的稳态性能;(3)通过改变系统参数,观察对系统稳态性能的影响。
五、实验结果与分析1. 系统搭建与调试通过搭建实验台,连接实验仪器,观察系统的响应,验证了实验系统的可行性。
2. 稳定性分析根据伯德图,判断系统在原参数下的稳定性。
通过改变系统参数,观察对系统稳定性的影响,得出以下结论:(1)系统在原参数下稳定;(2)减小系统参数,系统稳定性提高;(3)增大系统参数,系统稳定性降低。
3. 动态性能分析根据阶跃响应曲线,分析系统的动态性能指标:(1)上升时间:系统在给定输入信号作用下,输出量达到稳态值的80%所需时间;(2)超调量:系统在达到稳态值时,输出量相对于稳态值的最大偏差;(3)调节时间:系统在给定输入信号作用下,输出量达到稳态值的95%所需时间。
自动控制原理实验报告

自动控制原理实验报告摘要:本实验通过对自动控制原理的研究与实践,旨在深入了解自动控制系统的基本原理,以及相关的实验应用。
通过实验的设计与实施,我们在实践中学习了控制系统的结构、传递函数、稳定性、稳态误差等内容,并通过使用PID控制器对物理实验系统进行控制,从而对自动控制系统有了更加深入的理解。
引言:自动控制原理是现代工程控制领域的基础理论之一,在工业、交通、通信等领域都有广泛的应用。
自动控制原理实验是培养学生工程实践能力和动手能力的重要实践环节。
本实验通过对自动控制原理相关实验的设计与实践,让我们深入了解了自动控制系统的基本原理,并通过实际操作对理论知识进行了实际应用。
实验目的:1. 了解自动控制系统的基本结构和原理;2. 学习如何建立传递函数,并分析系统的稳定性;3. 熟悉PID控制器的参数调节方法;4. 掌握如何利用PID控制器对物理实验系统进行控制。
实验原理与方法:1. 实验装置搭建:我们搭建了一个简单的电路系统,包括输入信号源、控制器、执行器和输出传感器。
通过控制器对执行器的控制,实现对输出信号的调节。
2. 传递函数建立:使用系统辨识方法,通过对输入和输出信号的采集,建立系统的传递函数。
经过数据处理和分析,得到系统的传递函数表达式。
3. 稳定性分析:对系统的传递函数进行稳定性分析,包括零极点分析和Nyquist稳定性判据。
根据分析结果,判断系统的稳定性。
4. PID参数调节:根据传递函数和系统要求,使用PID控制器对系统进行调节。
根据实际情况进行参数调节,使得系统的响应达到要求。
实验结果与讨论:我们通过以上方法,成功地建立了控制系统的传递函数,并进行了稳定性分析。
通过对PID控制器参数的调节,使系统的稳态误差达到了要求。
通过实验,我们深刻理解了自动控制系统的基本原理,并学会了如何应用具体方法进行实际操作。
实验结论:通过自动控制原理的实验研究,我们对控制系统的基本原理有了更加深入的了解。
实践中,我们通过搭建实验装置、建立传递函数、进行稳定性分析和PID参数调节等实验操作,使得理论知识得到了更加全面的应用和巩固。
线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析一、实验目的1、研究高阶系统的稳定性,验证稳定判据的正确性;2、了解系统增益变化对系统稳定性的影响;3、观察系统结构和稳态误差之间的关系。
二、实验任务1、稳定性分析欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
(1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。
在MATLAB 命令窗口写入程序代码如下:z=-2.5p=[0,-0.5,-0.7,-3]k=0.2Go=zpk(z,p,k)Gc=feedback(Go,1)Gctf=tf(Gc)dc=Gctf.dendens=poly2str(dc{1},'s')运行结果如下:dens=s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5dens 是系统的特征多项式,接着输入如下MATLAB 程序代码:den=[1,4.2,3.95,1.25,0.5]p=roots(den)运行结果如下:p =-3.0058-1.0000-0.0971 + 0.3961i-0.0971 - 0.3961ip为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。
下面绘制系统的零极点图,MATLAB程序代码如下:z=-2.5p=[0,-0.5,-0.7,-3]k=0.2Go=zpk(z,p,k)Gc=feedback(Go,1)Gctf=tf(Gc)[z,p,k]=zpkdata(Gctf,'v')pzmap(Gctf)grid运行结果如下:z =-2.5000p =-3.0058-1.0000-0.0971 + 0.3961i-0.0971 - 0.3961ik =0.2000输出零极点分布图如图3-1所示。
自动控制实训报告两千字

一、实训目的本次自动控制实训旨在使学生了解自动控制的基本原理和方法,掌握常用控制系统的组成、工作原理和性能特点,培养动手能力、分析问题和解决问题的能力,为后续课程学习和实际应用打下基础。
二、实训内容1. 自动控制基本原理(1)自动控制系统的组成:传感器、控制器、执行器和被控对象。
(2)控制系统的分类:按输入信号分类:开环控制系统和闭环控制系统;按调节对象分类:线性控制系统和非线性控制系统。
2. 常用控制系统的组成与工作原理(1)比例控制:通过改变输入信号的比例来控制输出信号。
(2)比例-积分-微分(PID)控制:结合比例、积分和微分控制,提高控制精度和稳定性。
(3)模糊控制:利用模糊逻辑进行控制,具有较强的鲁棒性和适应性。
(4)神经网络控制:利用神经网络强大的非线性映射能力进行控制。
3. 控制系统性能分析(1)稳定性分析:通过根轨迹、频率响应等方法分析系统的稳定性。
(2)稳态误差分析:通过稳态误差公式计算系统在稳态时的误差。
(3)动态性能分析:通过过渡过程、上升时间、超调量等指标评价系统的动态性能。
三、实训过程1. 实验准备(1)熟悉实验设备、仪器和工具的使用方法。
(2)了解实验原理、步骤和注意事项。
2. 实验步骤(1)搭建实验电路,包括传感器、控制器、执行器和被控对象。
(2)根据实验要求,选择合适的控制算法。
(3)进行系统参数整定,使系统达到预期性能。
(4)观察系统动态响应,记录相关数据。
(5)分析实验结果,验证系统性能。
3. 实验结果与分析(1)实验一:比例控制搭建比例控制系统,观察系统动态响应,记录相关数据。
通过比较理论计算值和实验测量值,验证比例控制系统的性能。
(2)实验二:PID控制搭建PID控制系统,整定系统参数,使系统达到预期性能。
观察系统动态响应,记录相关数据,分析系统稳态误差和动态性能。
(3)实验三:模糊控制搭建模糊控制系统,根据实验要求设计模糊控制器。
整定系统参数,使系统达到预期性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 自动控制系统的稳定性和稳态误差分析
一、实验目的
1、研究高阶系统的稳定性,验证稳定判据的正确性;
2、了解系统增益变化对系统稳定性的影响;
3、观察系统结构和稳态误差之间的关系。
二、实验任务
1、稳定性分析
欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
(1)已知单位负反馈控制系统的开环传递函数为
0.2( 2.5)
()(0.5)(0.7)(3)
s G s s s s s +=
+++,用MATLAB 编写程序来判断闭环系统的稳定
性,并绘制闭环系统的零极点图。
在MATLAB 命令窗口写入程序代码如下: z=-2.5
p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下:
Transfer function:
0.2 s + 0.5
---------------------------------------
s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5
s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5是系统的特征多项式,接着输入如下MATLAB程序代码:
den=[1,4.2,3.95,1.25,0.5]
p=roots(den)
运行结果如下:
p =
-3.0058
-1.0000
-0.0971 + 0.3961i
-0.0971 - 0.3961i
p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。
下面绘制系统的零极点图,MATLAB程序代码如下:
z=-2.5
p=[0,-0.5,-0.7,-3]
k=0.2
Go=zpk(z,p,k)
Gc=feedback(Go,1)
Gctf=tf(Gc)
[z,p,k]=zpkdata(Gctf,'v')
pzmap(Gctf)
grid
运行结果如下:
z =
-2.5000
p =
-3.0058
-1.0000
-0.0971 + 0.3961i
-0.0971 - 0.3961i
k =
0.2000
输出零极点分布图如图3-1所示。
图3-1 零极点分布图
(2)已知单位负反馈控制系统的开环传递函数为
( 2.5)
()(0.5)(0.7)(3)
k s G s s s s s +=
+++,当取k =1,10,100用MATLAB 编写程序
来判断闭环系统的稳定性。
只要将(1)代码中的k 值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k 变化对系统稳定性的影响。
K=1时
K=10时
K=100时
2、稳态误差分析
(1)已知如图3-2所示的控制系统。
其中2
5
()(10)
s G s s s +=
+,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。
图3-2 系统结构图
从Simulink 图形库浏览器中拖曳Sum (求和模块)、Pole-Zero (零极点)
模块、Scope(示波器)模块到仿真操作画面,连接成仿真框图如图3-3所示。
图中,Pole-Zero(零极点)模块建立()
G s,信号源选择Step(阶跃信号)、Ramp(斜坡信号)和基本模块构成的加速度信号。
为更好观察波形,将仿真器参数中的仿真时间和示波器的显示时间范围设置为300。
图3-3 系统稳态误差分析仿真框图
信号源选定Step(阶跃信号),连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-4所示。
图3-4 单位阶跃输入时的系统误差
信号源选定Ramp(斜坡信号),连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-5所示。
图3-5 斜坡输入时的系统误差
信号源选定加速度信号,连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-6所示。
图3-6 加速度输入时的系统误差
从图3-4、3-5、3-6可以看出不同输入作用下的系统的稳态误差,系统是II 型系统,因此在阶跃输入和斜坡输入下,系统稳态误差为零,在加速度信号输入下,存在稳态误差。
(2)若将系统变为I 型系统,5
()(10)
G s s s =
+,在阶跃输入、斜坡输入和
加速度信号输入作用下,通过仿真来分析系统的稳态误差。
三、实验要求
(1)讨论下列问题:
a)讨论系统增益k变化对系统稳定性的影响;
增益K可以在临界K的附近改变系统的稳定性
b)讨论系统型数以及系统输入对系统稳态误差的影响。
增大系统开环增益K,可以减少0型系统在阶跃输入时的位置误
差,可以减少i系统在斜坡输入时的速度误差,可以减少ii型系
统在加速度输入时的加速度误差。
.. . .. . .. (5)实验体会。
通过实验,了解了高阶系统稳定性的判断,进一步验证了系统稳定性的正确性;了解了系统增益对系统稳定性的影响。
. 专业学习资料.。