控制系统的稳态误差分析

合集下载

自动控制原理--控制系统的稳态误差

自动控制原理--控制系统的稳态误差
不能采用拉氏变换终值定理的缘故。因此,利用式(356)来计算稳态误差是普遍成立的,而利用拉氏变换终 值定理的式(3-60)求稳态误差时,应注意使用条件。
二、给定作用下的稳态误差
设系统开环传递函数为:
其中K为开环增益,v为系统中含有的积分环节数 对应于v=0,1,2的系统分别称为0型,Ⅰ型和Ⅱ型系统。
稳态误差的定义
• 误差定义为输入量与反馈量的差值
• 稳态误差为误差的稳态值 • 如果需要可以将误差转换成输出量的量纲
• 稳态误差不仅与其传递函数有关,而且与输入 信号的形式和大小有关。其终值为:
稳态误差计算
误差的定义:
E(s) R(s) B(s)
lim ess ()
( L1[ E ( s )])
(1)系统是稳定的; (2)所求信号的终值要存在。
例27 已知系统如图3-36所示。当输入信号 rt ,1干t扰信 号 n时t,求1t系 统的总的稳态误差。
Ns
Rs
Es
K1
K2 s
Y s
Bs
图3-36 例3-15系统结构图
解:⑴对于本例,只要参数 K1, K均2大于零,则系统一定是稳 定的。
⑵在r t 信1t号 作用下(此时令 n)t 0
s0
s0
1 s K1K2
K2 s K1K2
1 s
1 K1
由以上的分析和例题看出,稳态误差不仅与系统本身
的结构和参数有关,而且与外作用有关。利用拉氏变换
的终值定理求得的稳态误差值或者是零,或者是常数,
或者是无穷大,反映不出它随时间的变化过程。另外,
对于有些输入信号,例如正弦函数,是不能应用终值定
最后由终值定理求得稳态误差 ess
ess

稳态误差的总结分析和例解

稳态误差的总结分析和例解

稳态误差的总结分析和例解控制系统稳态误差是系统控制准确度的一种度量,通常称为稳态性能。

只有当系统稳定时,研究稳态误差才有意义,对不能稳定的系统,根本不存在研究稳态误差的可能性。

一、 误差与稳态误差1、输入端的定义:对图一,比较输出得到:E(s)=R(s)-H(s)*Y(s)称E(s)为误差信号,简称误差图一2、输出端的定义:将图一转换为图二,便可定义输出端的稳态误差,并且与输入端的稳态误差有如下关系:E ’(s)=E(s)/H(s)输入端定义法可测量实现,输出端定义法常无法测量,因此只有数学意义,以后在不做特别说明时,系统误差总是指输入端定义误差。

图二再有误差的时域表达式:也有:e(t)= [E(S)]= [Φe (s)*R(S)]其中Φe (s)是误差传递函数,定义为:Φe (s)==根据拉氏变换终值定理,由上式求出稳态误差:(T j s+1)e ss (∞)= =二、 系统类型一般的,定义一个分子为m 阶次,分母为n 阶次的开环传递函数为:[]1()()()()ts ss e t L E s e t e t -==+G(S)H(S)=K为开环增益,ν表示系统类型数,ν=0,表示0型系统;ν=1表示Ⅰ型系统;当ν大于等于2时,除了符合系统外,想使得系统稳定相当困难。

四、阶跃输入下的ess(∞)与静态位置误差系数Kpr(t)=R*1(t),则有:ess (∞)=νν用Kp表示静态位置误差系数:ess(∞)==其中: Kp=且有一般式子:Kp=ν∞ν五、斜坡输入下的ess(∞)与静态速度误差系数Kvr(t)=Rt,则有:ess (∞)=ν用Kv表示静态速度误差系数:ess(∞)==其中: Kv=六、加速度输入下的ess(∞)与静态加速度误差系数Kar(t)=Rt2/2,则有: ess (∞)=ν、用Kv表示静态速度误差系数: ess(∞)==其中: Kv=且有: Ka=、七、扰动状况下的稳态误差系统的模型如图三所示对扰动状况下的稳态误差仍然有输入端与输出端的两种定义:图三1、输入端定义法:扰动状况下的系统的稳态误差传递函数:由拉氏变换终值定理,求得扰动状况下的稳态误差为:2、输出端定义法:212()'()0()()1()()()G s E s Y s N s G s G s H s =-=-+记Φe (s) =为误差传递函数,其中G(s)为:G(s)=G 1(s)*G 2(s)*H(s)八、减小或者消除稳态误差的措施: (1)保证系统中各个环节(或元件),特别是反馈回路中元件的参数具有一定的精度和恒定性;(2)对输入信号而言,增大开环放大系数(开环增益),以提高系统对给定输入的跟踪能力;(3)对干扰信号而言,增大输入和干扰作用点之间环节的放大系数(扰动点之前的前向通道增益),有利于减小稳态误差;(4)增加系统前向通道中积分环节数目,使系统型号提高,可以消除不同输入信号时的稳态误差。

控制工程基础 第6章 控制系统的误差分析和计算

控制工程基础 第6章 控制系统的误差分析和计算

C0 (s)
N (s)
R(s) B(s)
(s)
-
G1 ( s )
+ G2 (s)
H (s)
e(s) -
C(s)
(b)
误差
C0(s) (s) N(s)
R(s)
1 H(s)
R1(s) C0(s)
E1(s(s))H(s)
E(s)
G1(s)
G2(s) C(s)
(c)
e(s) -+ (s)
H (s)
E(s)
因为偏差 (s) R(s) B(s) H (s)C0 (s) H (s)C(s) H (s)e(s)
这里 R(s) H (s)C0 (s) 是基于控制系统在理想工作情况下
(s) 0 得到的。
即当控制系统的偏差信号 (s) 0 时,该控制系统无调节控制
作用,此时的实际输出信号C(s)就是希望输出信号 C0 (s) 。
G(s)H(s)
i1 nv
sv (Tis 1)
i1
(4)稳态误差系数和稳态误差的总结 (系统在控制信号作用下)
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的
稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,
稳态误差为无穷大;在对角线以下部分,稳态误差为零。由此表可
以得如下结论:
何改变系统结构?
(s)
- G1 K1
解:(1)给定作用下的误差传递函数为
RE (s)
(s)
R(s)
1
1
K1
K2 s
s s K1K2
当给定输入为单位阶跃输入时,稳态误差为
N (s)
+
G2
K2 s

控制系统的稳态误差分析

控制系统的稳态误差分析

ess
s 右半
s(s +1)(2s +1) 1 1 = lims ess = lim sE (s) = s→ s(s +1)(2s +1) + K(0.5s +1) s2 0 s →0 k
计算结果表明, 计算结果表明,稳态误差 的大小, 的大小,与系统的开环增 有关。 益K有关。系统的开环增 益越大,稳态误差越小。 益越大,稳态误差越小。 由此看出, 由此看出,稳态精度与稳 定性对K的要求是矛盾的。 定性对K的要求是矛盾的。
t→ ∞
t→ ∞
2、有差系统:通常把阶跃输入信号作用下存在误差 有差系统:
的系统称为有差系统。 的系统称为有差系统。
3、无差系统:通常把阶跃输入信号作用下不存在误 无差系统:
差的系统称为无差系统。 差的系统称为无差系统。
注意:这里所讲的误差指 注意: 系统原理上的误差。 系统原理上的误差。
二、稳态误差的计算
第五节 控制系统的稳态误差分析
一、基本概念 1.偏差、 1.偏差、误差和稳态误差 偏差 的定义: 偏差 (t) 的定义:
R(s)
ε(t) = r(t) −b(t)
E(s) = R(s) − B(s)
的定义: 误差 e(t) 的定义:
(3(3-44a)
ε

E(s)
G(s)
C(s)
B(s)
H(s)
图3-24 系统结构图
R(s)

K(0.5s +1 ) s(s +1 s +1 )(2 )
C(s)
1 R(s) = 2 s
s ( s + 1)(2 s + 1) 1 E (s) = s ( s + 1)(2 s + 1) + K (0.5 s + 1) s 2

自动控制系统的稳定性和稳态误差分析

自动控制系统的稳定性和稳态误差分析

自动控制系统的稳定性和稳态误差分析本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March实验三 自动控制系统的稳定性和稳态误差分析一、实验目的1、研究高阶系统的稳定性,验证稳定判据的正确性;2、了解系统增益变化对系统稳定性的影响;3、观察系统结构和稳态误差之间的关系。

二、实验任务1、稳定性分析欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。

(1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。

在MATLAB 命令窗口写入程序代码如下: z= p=[0,,,-3] k=Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: s +--------------------------------------- s^4 + s^3 + s^2 + s +s^4 + s^3 + s^2 + s + 是系统的特征多项式,接着输入如下MATLAB程序代码:den=[1,,,,]p=roots(den)运行结果如下:p =+-p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。

下面绘制系统的零极点图,MATLAB程序代码如下:z=p=[0,,,-3]k=Go=zpk(z,p,k)Gc=feedback(Go,1)Gctf=tf(Gc)[z,p,k]=zpkdata(Gctf,'v')pzmap(Gctf)grid运行结果如下:z =p =+-k =输出零极点分布图如图3-1所示。

《自动控制原理》第六章:控制系统误差分析

《自动控制原理》第六章:控制系统误差分析
X i (s)
e(t)=μ(p)xi(t) εxo(t) x (t) - y(t) (t) =
i
X oi (s)
E (s )
(s)
Y (s)
N (s )
拉氏变换: E(s)=μ(s)Xi(s) -Xo(s)
G1 ( s )

G2 (s)
X o (s)
H (s )
ε(s) =Xi(s) - Y(s)
K1

K 2 xo (t ) s
解:(1)由于系统是一阶系统,故只要参数K1K2大于零,则 系统就稳定。
1 1 ]0 (2)输入引起的误差: ess1 lim[s K2 s 0 1 K1 S s
(3)干扰引起的误差:
ess 2 lim sE 2 ( s ) lim[ s
以单位反馈为例,输入引起的误差分析:
X i (s)
E (s )
G (s )
X o (s)
X o ( s) G ( s) 1 E (s) (s) [ X i ( s )] G ( s) 1 G (s) G (s) ess lim sE ( s )
s 0
1 lim[ s X i ( s )] s 0 1 G (s)
ess 1 1 Kv

1 K
( 0) ( 1)
( 2) 0 0型系统误差无穷大;1型有限2型及以上 系统,Kv为无穷,而稳态误差为零。
加速度输入下稳态精度

定义: 静态加速度误差
2 K ( r s 1) ( k s 2 2 k k s 1) r 1
令系统中xi(t)=0 。
X i (s)
(s)
Y (s)

控制工程基础—第7章控制系统的误差分析与计算

控制工程基础—第7章控制系统的误差分析与计算
稳态误差 :
ss 0
(3)Ⅱ型系统(N=2)
静态位置误差系数为Kp=∞,稳态误差ss=0。 图7-4 所示为单位反馈控制系统的单位阶跃响应 曲线,其中图7-4a为0型系统;图7-4b为Ⅰ型或 高于Ⅰ型系统。
图7-4 单位阶跃响应曲线
2. 静态速度误差系数Kv 系统对斜坡输入X(s)= R/s2的稳态误差称为速度误 差,即
图7-6 单位加速度输入的响应曲线
表7-1 单位反馈系统稳态误差 ss 输入信号 系统 类型 阶跃 x(t)=R
R 1 K
斜坡 x(t)=Rt
R K
加速度
R 2 x( t ) t 2
0型 I型 Ⅱ型

R K
0 0
0
三、其它输入信号时的误差
如果系统承受除三种典型信号之外的某一信号x(t) 输入,此信号x(t)在t=0点附近可以展开成泰勒级 数为 :
1 R R ss lim s . 3 2 s0 1 G( s ) s lim s G ( s )
s0
( 7-20 )
静态加速度误差系数Ka定义为:
K a lim s G( s )
2 s 0
( 7-21 ) ( 7-22 )
所以
R ss Ka
(1) 0 型系统(N=0)
稳态误差 对式(7-5)进行拉氏反变换,可求得系统的误差 (t) 。对于稳定的系统,在瞬态过程结束后,瞬 态分量基本消失,而(t)的稳态分量就是系统的 稳态误差。应用拉氏变换的终值定理,很容易求 出稳态误差:
E ( s) ss lim ( t ) lim s ( s ) lim s t s0 s0 H ( s)
K v lim sG ( s )

3.5 控制系统的稳态误差分析与计算终

3.5  控制系统的稳态误差分析与计算终

2.系统的类型
K 1s 1 2 s 1 Gk s Gs H s v s T1s 1T2 s 1
K为开环增益 τ1、τ2……和T1、T2……为时间常数
n m
1、系统对单位阶跃输入的稳态偏差 K 1s 11 2 s 1 s lim G G sE H s n m s s lim X s k v s ss i s 0 s s0 T1 s G 1 T s 1 1 s2 H s
s s Gk s
K 1s 1 对0型系统 K a lim s 0 s 0 T1s 1 1s 1 2 K 对I型系统 K a lim s 0 s 0 sT1s 1 1s 1 2 K
2
稳态加速度偏差系数 令:K
a
ss s 0 s 0 i s 0 k
2
K 1s 1 对0型系统 K v lim s 0 ss s 0 T1s 1 K 1s 1 1 对I型系统 K v lim s K ss s 0 sT1s 1 K K 1s 1 对II型系统 K v lim s 0 ss 2 s 0 s T1s 1
lim s Gs H s lim s Gk s
2 2 s 0 s 0
ss
ss
1 ss K
对II型系统 K a lim s s 0
s T1s 1
2
K
1t
t
1 ss Kv
Kv 0
K p lim Gk s K v lim sGk s K a lim s 2Gk s s 0 s 0 s 0
2 i
s H s s 1 Gs H s 1 G s T s 1T s1

稳态误差总结分析与例解

稳态误差总结分析与例解

稳态误差的总结分析和例解控制系统稳态误差是系统控制准确度的一种度量,通常称为稳态性能。

只有当系统稳定时,研究稳态误差才有意义,对不能稳定的系统,根本不存在研究稳态误差的可能性。

一、 误差与稳态误差1、输入端的定义:对图一,比较输出得到:E(s)=R(s)-H(s)*Y(s)称E(s)为误差信号,简称误差图一2、输出端的定义:将图一转换为图二,便可定义输出端的稳态误差,并且与输入端的稳态误差有如下关系:E ’(s)=E(s)/H(s)输入端定义法可测量实现,输出端定义法常无法测量,因此只有数学意义,以后在不做特别说明时,系统误差总是指输入端定义误差。

图二再有误差的时域表达式:也有:e(t)=L −1[E(S)]=L −1[Φe (s)*R(S)]其中Φe (s)是误差传递函数,定义为:Φe (s)=E sR (S )=11+G s ∗H s根据拉氏变换终值定理,由上式求出稳态误差:(T j s+1)e ss (∞)=lim s →0s ∗E (s )=lim s →0s∗R (S )1+G s ∗H s二、 系统类型一般的,定义一个分子为m 阶次,分母为n 阶次的开环传递函数为:[]1()()()()ts ss e t L E s e t e t -==+G(S)H(S)=K (Tis +1)m i =1s ^v (Tjs +1)n −vj =1K 为开环增益,ν表示系统类型数,ν=0,表示0型系统;ν=1表示Ⅰ型系统;当ν大于等于2时,除了符合系统外,想使得系统稳定相当困难。

四、阶跃输入下的e ss (∞)与静态位置误差系数Kpr(t)=R*1(t),则有:e ss (∞)= R1+K ,ν=00 ,ν≥1用Kp 表示静态位置误差系数:e ss (∞)=R 1+lim s →0G s ∗H s =R1+Kp其中: Kp=lim s →0G s ∗H s且有一般式子:Kp=K ,ν=0∞ ,ν>=1五、斜坡输入下的e ss (∞)与静态速度误差系数Kvr(t)=Rt,则有:e ss (∞)= ∞ ,ν=0RK ,v =10,v ≥2用Kv 表示静态速度误差系数:e ss (∞)=R lim s →0G s ∗H s =RKv其中:Kv=lim s →0s ∗G s ∗H s六、加速度输入下的e ss (∞)与静态加速度误差系数Kar(t)=Rt 2/2,则有:e ss (∞)= ∞ ,ν=0、1R/K,v =20 ,v ≥3用Kv 表示静态速度误差系数:e ss (∞)=R lim s →0G s ∗H s =RKa其中:Kv=lim s →0s ^2∗G s ∗H s且有:Ka= 0, v =0、1K , v =2∞, v ≥3七、扰动状况下的稳态误差系统的模型如图三所示对扰动状况下的稳态误差仍然有输入端与输出端的两种定义:图三1、输入端定义法:扰动状况下的系统的稳态误差传递函数:由拉氏变换终值定理,求得扰动状况下的稳态误差为:2、输出端定义法:212()'()0()()1()()()G s E s Y s N s G s G s H s =-=-+记Φe (s) =−G 2 s1+G s 为误差传递函数,其中G(s)为:G(s)=G 1(s)*G 2(s)*H(s)八、减小或者消除稳态误差的措施: (1)保证系统中各个环节(或元件),特别是反馈回路中元件的参数具有一定的精度和恒定性;(2)对输入信号而言,增大开环放大系数(开环增益),以提高系统对给定输入的跟踪能力;(3)对干扰信号而言,增大输入和干扰作用点之间环节的放大系数(扰动点之前的前向通道增益),有利于减小稳态误差;(4)增加系统前向通道中积分环节数目,使系统型号提高,可以消除不同输入信号时的稳态误差。

控制系统的稳态误差

控制系统的稳态误差

二、稳态误差分析与静态误差系数
(1)阶跃输入作用下的稳态误差及静态位置
误差系数
定义:静态位置误差系数:
位置误差
无差系统:稳态误差为零的系统。 有差系统:稳态误差非零有限值的系统。 静差:将系统在阶跃输入作用下的稳态误差 称为静差。 Q:要使系统在单位阶跃信号作用下,稳态误 差为0,则要求误差度v=?
在系统的稳态性能分析中常以偏差代替误
差进行研究,稳态误差就是指稳态偏差。
2. 误差的数学模型
根据稳态误差的定义,利用拉普拉斯变换终 值定理:
可见,稳态误差取决于开环传递函数和输入 信号。
3. 开环系统的类型
以开环系统中积分环节个数v分类
其中:
控制系统稳态误差:
控制系统的稳态误差主要由三方面确定: a.输入信号的类型; b.系统的开环增益K; c.积分环节的个数ν ,也称为误差度。
(2)斜坡输入作用下的稳态误差及静态速度 误差系数
速度误差
定义:静态速度误差系数:
(3)抛物线输入作用下的稳态误差及静态加 速度误差系数
加速度误差
定义:静态加速ห้องสมุดไป่ตู้误差系数:


(a)对于有稳态误差的情况,开环增益K越 大,稳态误差就越小但受实际设备的限 制; (b)系统的类型(即误差度)越高,能够跟踪 信号的阶次就越高; (c)但误差度过高也可能导致系统不稳定; 系统的稳定性与系统的稳态性能要兼顾 考虑。
第四章 控制系统的时域分析
第7小节 控制系统的稳态误差(1)
一、稳态误差的基本概念
稳态性能考虑的是系统输出响应在调整时 间之后的品质,通常用稳态误差来描述。稳 态误差的大小反映系统对于给定信号的跟踪 精度,是系统控制精度的一种度量。

自动控制原理:3-3 控制系统的稳态误差

自动控制原理:3-3  控制系统的稳态误差

ans=
2.0000
-2.0000
-0.0000+1.0000i
-0.0000-1.0000i -0.5000+0.8660i -0.5000-0.8660i
由于有1个正实部根的特征根, 所以,系统不稳定。
《自动控制原理》国家精品课程 浙江工业大学自动化研究所 14
3.4.2 MATLAB求控制系统的单位阶跃响应
有差系统 无差系统
准确跟踪 系统
§3-3 控制系统的稳态误差
2.单位斜坡输入 xr (t) t
Xr
(s)
1 s2
e lim s0
sE
(s)
lim
s0
s 1
Xr (s)
WK s
lim
s0
1
s WK
s
1 s2
1
lim
s0
sWK
s
若令
Kv
lim
s0
sWK
s
则 e 1
Kv
速度 误差系数
0型系统 Ⅰ型系统 Ⅱ型以上系统
当输入r(t) 为单位加速度信号时,为使系统的 静态误差为零,试确定前馈环节的参数a 和b 。
lim
s0
sN1X r s
sN K
稳态误差取决于Kk与N,而N越高稳态精度(准 确性)越高,稳定性越差。
二、典型输入情况下系统的给定稳态误差及误差系数
1.单位阶跃输入
xr
t
1 0
t0 t0
1 X r (s) s
§3-3 控制系统的稳态误差
e
lim
s0
sE
(s)
lim
s0
s 1
Xr (s)
WK s

实验七 控制系统的稳态误差分析

实验七 控制系统的稳态误差分析

实验七 控制系统的稳态误差分析一、 实验目的1、 研究系统在单位阶跃输入下的稳态误差变化。

2、 掌握系统型次及开环增益对稳态误差的影响。

3、 在Multisim 仿真平台上建立二阶电路,通过示波器观测控制系统稳态误差变化情况。

二、实验原理及内容构成下述环节的模拟线路,分析该实验系统的型次和不同增益时对稳态误差的影响。

图1 稳态误差分析电路图该电路图中选取信号为直流电压源,电阻和电容选用现实原件,运放和电位器选用虚拟原件。

系统的开环传递函数为:)103.0)(102.0(600)()(7++=s s R s H s G其中:R 7为电位器从系统的开环传递函数知,本系统属于0型系统,并且开环增益7600R K =,则系统的稳态误差K Ro e ss +=1。

三、实验步骤1、将开关J2断开,电位器R 7调到100K Ω进行实验,观察示波器中响应曲线稳态误差的情况(见图2)。

2、将开关J2闭合,调节电位器的数值(利用A 键),观测稳态误差的大小变化以及收敛的速度。

(1)当电位器R 7为200K Ω时,输出波形见图3(2)当电位器R 7为100K Ω时,输出波形见图4(3)当电位器R 7为50K Ω时,输出波形见图5图2 J2断开时的稳态误差分析曲线图3 R7=200KΩ时误差分析曲线图4 R7=100KΩ时误差分析曲线实验八 一阶系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。

2、掌握系统及元件频率特性的测量方法,根据所测得的频率特性做出波特图。

二、实验内容构成下述环节的模拟线路,使用仿真软件中的波特图一加深对惯性环节的频率特性的理解,通过测量值的变化规律得到系统的幅频特性和相频特性。

1、 测量原理若输入信号11()sin m u t U t ω=,则在稳态时,其输出信号为22()sin()m u t U t ωϕ=+,改变输入信号的角频率值ω,便可以测得两组随ω变化的值----12m mu u 和ϕ,进而可以通过测量值的变化规律得到系统的幅频特性和相频特性。

控制系统的稳态误差分析

控制系统的稳态误差分析

第六节 控制系统的稳态误差分析
例 位置随动系统的稳态误差分析。
解: (1) 典型随动系统 开环传递函数为 K G(s)= s(T s+1) m
θ (s) r
c K θ (s) s(Tms+1)
1 当输入信号 θr(s)= s
Kp=∞
essr=0 1 essr= K
1 当输入信号 θr(s)=s2
K =K υ
1 a t2 设静态加速度误差系数 设 r(t)= 2 0 Ka=lim s2G(s)H(s) a0 s→0 R(s)= s3 a 0 =lim sK-2 s→0 υ s3 essr=lim s· s→0 1+G(s)H(s) 可得: a0 a0 = lim s2G(s)H(s)= K υ≤1 Ka=0 essr=∞ a s→0 a0 m Ka=K essr= K KΠ(τ is+1) υ=2 G(s)H(s)= υ i=υ n1 s Π(Tjs+1) υ≥ 3 Ka=∞ essr=0 j=1
2 R(s)= s2 0.5 D(s)= s
2 2 2 essr= K = K = 20 =0.1 υ essd= lim s -G2(s)H(s)D(s) s→0 1+G1(s)G2(s)H(s)
第六节 控制系统的稳态误差分析
三、改善系统稳态精度的方法
增加积分环节可提高系统精度等级, 增加放大系数可减小有限误差。采用补偿 的方法,则可在保证系统稳定的前提下减 小稳态误差。
第三章 时域分析法
第六节 控制系统的稳态误差分析
一、给定信号作用下的稳态误差 二、扰动信号作用下的稳态误差
三、改善系统稳态精度的方法
第六节 控制系统的稳态误差分析

第6章_控制系统的误差分析和计算_6.3干扰引起的稳态误差

第6章_控制系统的误差分析和计算_6.3干扰引起的稳态误差

N (s ) R (s ) E (s )
-
G1 = K1
+
G2 =
K2 s
C (s )
(2)扰动作用下的误差传递函数为 K2 − E(s) − K2 s ΦNE (s) = = = N(s) 1+ K K2 s + K1K2 1 s 当扰动输入为单位阶跃输入时,稳态误差为
essn
1 − K2 1 1 = lim s ⋅ Φ NE ⋅ = lim s ⋅ ⋅ =− s →0 s s →0 s + K1 K 2 s K1
N (s )
X i (s )
ε (s )
B (s )
-
G1 ( s )
+
H (s )
G2 (s)
X o (s )
(2)稳态误差的计算 )
①给定作用下的偏差传递函数
N (s )
X i
X i (s )
-
G1 ( s )
+
H (s )
G2 (s)
X o (s )
ε (s )
ess = essr + essn 1 =− K1
(3)输入作用与扰动作用共同作用下的稳态误差为
N (s ) R (s ) E (s )
-
G1 =
K1 s
+
G2 =
K2 s
C (s )
(4)如果要求稳态误差为零,可以在G1中串联积分环节,令 K1 G1 = s 1 s2 1 essr = lim s ⋅ Φ RE ⋅ = lim s ⋅ 2 ⋅ =0 则有 s →0 s s →0 s + K1 K 2 s
④对于稳定的系统,采用拉氏变换的终值定理计算稳态偏差

控制系统的稳定性分析实验报告

控制系统的稳定性分析实验报告

控制系统的稳定性分析实验报告一、实验目的1.了解控制系统的稳定性分析方法。

2.通过实验,掌握系统稳态误差、系统阻尼比、系统根轨迹等稳态分析方法。

3.掌握控制系统的稳定性分析实验步骤。

二、实验原理1.系统稳态误差分析系统稳态误差是指系统在达到稳态时,输出与输入之间的偏差。

对于稳态误差的分析,可以采用开环传递函数和闭环传递函数进行分析。

开环传递函数:G(s)闭环传递函数:G(s)/(1+G(s)H(s))其中,H(s)为系统的反馈环节,G(s)为系统的前向传递函数。

稳态误差可以分为静态误差和动态误差。

静态误差是指系统在达到稳态时,输出与输入之间的偏差;动态误差是指系统在达到稳态时,输出与输入之间的波动。

2.系统阻尼比分析系统阻尼比是指系统在达到稳态时,振荡的阻尼程度。

阻尼比越大,系统越稳定;阻尼比越小,系统越不稳定。

系统阻尼比的计算公式为:ζ=1/(2ξ)其中,ξ为系统的阻尼比,ζ为系统的阻尼比。

3.系统根轨迹分析系统根轨迹是指系统的极点随着控制参数变化而在复平面上的轨迹。

根轨迹分析可以用来判断系统的稳定性和性能。

系统的根轨迹可以通过以下步骤进行绘制:(1)确定系统的传递函数G(s)(2)将G(s)写成标准形式(3)计算系统的极点和零点(4)绘制系统的根轨迹三、实验步骤1.系统稳态误差分析实验(1)将系统的开环传递函数和闭环传递函数写出。

(2)通过实验,测量系统的静态误差和动态误差。

(3)根据静态误差和动态误差的测量结果,计算系统的稳态误差。

2.系统阻尼比分析实验(1)通过实验,测量系统的振荡频率和衰减周期。

(2)根据振荡频率和衰减周期的测量结果,计算系统的阻尼比。

3.系统根轨迹分析实验(1)将系统的传递函数写成标准形式。

(2)计算系统的极点和零点。

(3)绘制系统的根轨迹,并根据根轨迹的形状,判断系统的稳定性和性能。

四、实验结果分析通过实验,我们可以得到系统的稳态误差、阻尼比和根轨迹等数据。

根据这些数据,我们可以分析系统的稳定性和性能,并对系统进行优化。

控制系统稳态误差

控制系统稳态误差

控制系统稳态误差控制系统是现代工业中的重要组成部分,其主要目的是使被控对象按照预定要求进行运动或保持特定状态。

然而,实际控制过程中常常会存在稳态误差的问题。

稳态误差是指系统在稳定运行后无法达到预期输出的差异量。

稳态误差的存在会影响系统的性能和准确性,因此需要采取相应措施进行控制和修正。

一、稳态误差的定义和分类稳态误差可以通过系统输出与输入之间的差异进行量化和描述。

一般来说,系统的稳态误差可以分为以下几类:1. 零稳态误差:当输入信号为一阶单位阶跃函数时,系统输出在稳定后能够达到一个常数值,此时的误差被称为零稳态误差。

2. 常数稳态误差:当输入信号为常数信号时,系统的输出也会趋向于一个常数值。

此时的差异量即为常数稳态误差。

3. 平方和稳态误差:当输入信号为二阶单位阶跃函数时,系统输出的平方和稳态误差是指系统输出平方作为误差的衡量指标。

二、稳态误差的产生原因稳态误差的产生主要源于控制系统中的各种不完善因素,包括但不限于:1. 模型误差:系统的模型与实际物理模型存在差异,在控制过程中产生误差。

2. 传感器误差:由于传感器自身的精度限制或者环境因素,传感器所测量的信号存在一定的误差。

3. 操作限制:控制系统中的操作限制,例如执行器的响应速度、运动范围等,会对系统的性能产生影响。

4. 外部扰动:外部干扰、环境变化等因素会对控制系统的输出产生干扰,导致误差的产生。

三、降低稳态误差的方法针对不同类型的稳态误差,可以采用不同的方法进行修正和控制。

1. Proportional-Integral-Derivative(PID)控制器PID控制器是目前应用广泛的一种控制方法,通过调节比例、积分、微分三个参数,可以实现对系统的稳态误差进行校正。

2. 前馈控制前馈控制是在实际控制过程中,将预测的扰动信号提前引入到系统中,通过预先补偿的方式减小稳态误差。

3. 系统参数调整调整系统参数也是降低稳态误差的一种常用方法。

通过修改控制器参数、传感器灵敏度等,使系统的输出更加接近预期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Kv
(3-50)
为系统的静态速度误差系数。
零型系统: K v 0
Ⅰ型系统: K v K
ss
ss
1 K
Ⅱ型系统: K v
ss 0
3、等加速度信号输入
r (t) 1 t 2 2
R (s)
1 s3
R(s) E ( s ) G ( s )
(3-45b)
系统的稳态误差为:
ess
lime(t) t
同理系统的稳态偏差为:
ss
lim(t) t
(3-46a) (3-46b)
2、有差系统: 通常把阶跃输入信号作用下存在误差
的系统称为有差系统。
3、无差系统: 通常把阶跃输入信号作用下不存在误
差的系统称为无差系统。
注意:这里所讲的误差指 系统原理上的误差。
2 s3 3 s2 (1 0 .5 K )s K 0
图3-26 例12的结构图
由稳定判据:(1)各项系数大于0,则 K 0
(2)列劳斯表 s3 2 1+ 0.5k
s2 3
k 稳定条件为
s1 3-0.5k
s0
3 k
0K6
第二步:求 E ( s )
E(s)er(s)R(s)
1
1 G
(s)
R(s)
二、稳态误差的计算
系统的稳态误差的计算为:
esslti m e(t)lsi m 0sE 1(s)
同理系统的稳态偏差的计算为:
sslti m (t)lsi m 0sE (s)
(3-47a) (3-47b)
s 式(3-47)应用的条件是:E(s), E在1(右s)半 平面及虚轴(除原
点)解析,即没有极点。
C (s)
K 为系统的开环增益或开环传递系数或开环放大系数;
i , T i 为系统内部环节的时间常数; 积分环节的个数。根据 的数值,可以对系统进行分类:
0 称为零型系统; 1 称为一型系统;
L 2 称为二型系统;
12
13 14
1、单位阶跃信号输入
r(t) 1(t) R ( s ) 1 s
R(s)
K (0.5s 1) C (s) s(s 1)(2s 1)
G(s) K(0.5s1) s(s1)(2s1)
R(s)
1 s2
E (s)s(s 1 )s (( 2 s s 1 1 ))(2 sK (1 0 ).5 s 1 )s 1 2
e 第三步:利用终值定理求稳态误差 ss
s 当 0K,6闭环特征方程(即 的E分( s母) )中,没有 右半平面的
根,所以满足终值定理应用条件,稳态误差为:
ess lsi m0 sE(s)lsi m 0ss(s1)s((2ss 1 1 ))(2 sK (1 0).5s1)s12
1 k
计算结果表明,稳态误差 的大小,与系统的开环增 益K有关。系统的开环增 益越大,稳态误差越小。 由此看出,稳态精度与稳 定性对K的要求是矛盾的。
ess
limsE(s) s0
lsi m 0ssK s1K21 ssK K12K21 s
1 K1
三、典型输入信号下稳态偏差的计算
开环传递函数的一般形式为: R(s)
m
K (1 i s)
G(s)H (s)
i 1 n
s (1 Ti s)
i 1
E (s) G (s)
B (s)
H (s)
(3-48)
第五节 控制系统的稳态误差分析
一、基本概念
1.偏差、误差和稳态误差 R(s) E ( s ) G ( s )
C(s)
偏差 ( t 的) 定义:
B (s)
(t)r(t)b(t)
H (s)
E(s)R(s)B(s) (3-44a)
图3-24 系统结构图
误差 e ( t的) 定义:
e(t)cd(t)c(t) E1(s)Cd(s)C(s) (3-44b)
Ⅰ型和Ⅱ型系统: K p ss 0
2、单位斜坡信号输入
r(t) t
R(s)
1 s2
R(s)
ss
limsE(s) s0
lim sR(s) s0 1G(s)H(s)
E (s)
B (s)
G (s)
H (s)
C (s)
lim 1 1
s0 sG(s)H(s)
令 K vlsi m 0sG (s)H (s)lsi m 0sK 1
例13 已知系统结构如图3-27所示,当参考输入为r(t) 1(t)
e 干扰为 n(t) 1(t) 时,试求系统总的稳态误差 s s
解:第一步:判别稳定性。
由于是一阶系统,所以只
要参数 K 1 , K 2
R
大于零,系统就稳定。
K1
N
K2 C
s
第二步:求 E ( s )
图3-27 例13的结构图
R(s) E ( s ) G ( s )
B (s)
H (s)
C (s) R(s) 1 R ' ( s ) E 1 ( s ) G(s)H(s) C (s)
H (s)
图3-24 系统结构图
图3-25 等效单位反馈控制系统结构图
E1(s)R'(s)C(s)
R(s) H (s)
C(s)
1 R(s)C(s)H(s)
H(s)
1 R(s)B(s)
H(s)
1 E (s) H (s)
图3-24 中系统的误差传递函数为: R(s) E ( s ) G ( s )
C(s)
e(s)
1
1H(s)G(s)
B (s)
H (s)
则:
E(s)
1
R(s)
1H(s)G(s)
图3-24 系统结构图
(3-45a)
E1(s)H(s)(1H 1(s)G (s))R(s)
R(s) E ( s ) G ( s )
B (s)
C (s)
H (s)
ss
limsE(s) s0
lim sR(s) s0 1G(s)H(s)
1 1 K
p
(3-49)
令Kplsi m 0G (s)H(s)lsi m 0sK 为系统的静态位置误差系数
零型系统: Kp lsi m0 sK0 K
ss
1 1 K
例12 已知系统结构如图3-26所示,当参考输入为r (t ) t
时,试求出系统在输入信号作用下的稳态误差。
解:第一步:判别稳定性。 系统的闭环特征方程:
R(s)

K (0.5s 1) C (s)
s(s 1)(2s 1)
D ( s ) s ( s 1 ) ( 2 s 1 ) K ( 0 .5 s 1 ) 0
E (s )e r(s )R (s )e n (s )N (s )
er
(s)
s
s K1K2
en(s)
s
K2 K1K2
R(s) 1 s
N (s) 1 s
E(s) s 1 K2 1
sK1K2s sK1K2s
E(s) s 1 K2 1 sK1K2s sK1K2s
e 第三步:利用终值定理求稳态误差 s s
相关文档
最新文档