第六章 控制系统的误差分析和计算.ppt

合集下载

控制工程基础6章

控制工程基础6章
H(S) +
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T

控制系统的误差分析和计算

控制系统的误差分析和计算

第六章 控制系统的误差分析和计算
- Y (s)
×
ε ( s)
G (s ) H (s )
Xo ( s)
ε ( s) = X i ( s) − Y ( s) = X i ( s) − H ( s) X 0 ( s)
根据拉氏变换的终值定理 终值定理, 根据拉氏变换的终值定理,得到稳态偏差εss为
ε ss = lim ε (t ) = lim sε ( s)
中国石油大学机电工程学院
10
控制工程基础
第六章 控制系统的误差分析和计算
说明: 说明:
误差是从系统输出端 误差 输出端来定义的,是输出期望值与实际输 输出端 出值之差。误差在性能指标提法中经常使用,实际系统中 因为输入信号和输出信号往往量纲不同,一般只具有数学 上的意义。 偏差是从系统输入端 偏差 输入端来定义的,是系统输入信号与主反 输入端 馈信号之差。偏差在实际系统中是能测量的,具有一定的 物理意义。 对于单位反馈系统而言,误差与偏差是一致的。对于非 单位反馈系统,两者是不同的。 必须是稳定系统计算稳态误差(偏差)才有意义。
xo (t ) x i (t )
ess
瞬态响应
China university of petroleum
稳态响应
t
4
中国石油大学机电工程学院
控制工程基础
第六章 控制系统的误差分析和计算
是控制系统期望的输出值, 是其实际的输出值, 设xor(t)是控制系统期望的输出值, xo(t)是其实际的输出值, 是控制系统期望的输出值 是其实际的输出值 则误差函数e(t)定义为 则误差函数 定义为
China university of petroleum
控制工程基础

第六章 控制系统误差分析与计算

第六章  控制系统误差分析与计算

23
6.3 综合分析
静态误差
提高系统的准确度,增加系统的抗干扰能力,必须增 大干扰作用点之前的回路的放大倍数K1,以及增加这 一段回路中积分环节的数目。 增加干扰作用点之后到输出量之间的放大系数K2,或 增加积分环节的数目,对减少干扰引起的误差是没有 好处的。
24
6.4
动态误差
系统的动态误差
6.1
2.系统偏差
误差的概念
系统误差e(t)与偏差ε(t)
系统偏差ε (t). E(s)是输入信号与反馈信号的差。 若输入信号xi(t)作为期望值,反馈信号b(t)作为实际 值。 则偏差: ε (t)= xi(t)- b(t) L变换: E(s)= Xi(s)- B(s) = Xi(s)-H(s) • Xo(s) ---(2)
系统误差:
E1(s) = Xor(s)- Xo(s) =Xi(s)/H(s)- Xo(s) =〔1/ H(s) - Gxi(s)〕•Xi(s)+(-GN(s))•N(s) = Φ xi(s) •Xi(s)+Φ N(s) •N(s)
可见,系统的误差不仅与系统的结构和参数有关,而且 8 与系统的输入和干扰的特性有关。
前面讲的是静态误差,是一个静态值。即当 t→∞时系统误差的极限值。 E(S)逆变换,是一个时间的函数。
时间在t→∞是一个有限的变化过程。 实际控制系统的稳态误差往往表现为时间的函数,----即动态误差。
25
6.4
例:如图系统:
动态误差
动态误差实例
其误差传递函数为:
Φxi(s)= E(s)/ Xi(s)=1/[1+G(s)H(s)]
13
6.3
静态误差
与输入有关的静态偏差

第六章 控制系统的误差分析和计算

第六章 控制系统的误差分析和计算

+
E ( s)
10 s
X o ( s)
e ( s ) =
1 1 s = = 1 + G ( s ) 1 + 10 s + 10 s s ess = lim si iXi (s) s →0 s + 10 1 Xi ( s) = s s 1 ess = lim si i =0 s →0 s + 10 s
K a = lim s 2 iG ( s )
s →0
对0型系统 型系统
K a = lim s 2 i
s →0
K 0 (Ta s + 1)(Tb s + 1) (Tm s + 1) =0 (T1s + 1)(T2 s + 1) (Tn s + 1)
对Ⅰ型系统
K a = lim s 2 i
s →0
K1 (Ta s + 1)(Tb s + 1) (Tm s + 1) s (T1s + 1)(T2 s + 1) (Tn s + 1)
=0
自动控制原理
对Ⅱ型系统
K2 (Ta s +1)(Tb s +1)(Tms +1) Ka = lim s i 2 = K2 s→0 s (T1s +1)(T2s +1)(Tn s +1)
2
所以, 就是Ⅱ 所以,静态加速度误差系数 Ka 就是Ⅱ型系统的开环放大倍 对于Ⅲ型或高于Ⅲ型的系统, 数 K 2 。对于Ⅲ型或高于Ⅲ型的系统, K a 才为 ∞ 。 在单位加速度输入下 型系统, 对0型系统, ess = ∞ 型系统 型系统, 对Ⅰ型系统,
这就是求去单位反馈系统稳态误差的方法

控制工程基础 第6章 控制系统的误差分析和计算

控制工程基础 第6章 控制系统的误差分析和计算

C0 (s)
N (s)
R(s) B(s)
(s)
-
G1 ( s )
+ G2 (s)
H (s)
e(s) -
C(s)
(b)
误差
C0(s) (s) N(s)
R(s)
1 H(s)
R1(s) C0(s)
E1(s(s))H(s)
E(s)
G1(s)
G2(s) C(s)
(c)
e(s) -+ (s)
H (s)
E(s)
因为偏差 (s) R(s) B(s) H (s)C0 (s) H (s)C(s) H (s)e(s)
这里 R(s) H (s)C0 (s) 是基于控制系统在理想工作情况下
(s) 0 得到的。
即当控制系统的偏差信号 (s) 0 时,该控制系统无调节控制
作用,此时的实际输出信号C(s)就是希望输出信号 C0 (s) 。
G(s)H(s)
i1 nv
sv (Tis 1)
i1
(4)稳态误差系数和稳态误差的总结 (系统在控制信号作用下)
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的
稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,
稳态误差为无穷大;在对角线以下部分,稳态误差为零。由此表可
以得如下结论:
何改变系统结构?
(s)
- G1 K1
解:(1)给定作用下的误差传递函数为
RE (s)
(s)
R(s)
1
1
K1
K2 s
s s K1K2
当给定输入为单位阶跃输入时,稳态误差为
N (s)
+
G2
K2 s

第6章_控制系统的误差分析和计算_6.2输入引起的稳态误差

第6章_控制系统的误差分析和计算_6.2输入引起的稳态误差
根据拉普拉斯变换的终值定理,计算稳态误差: 根据拉普拉斯变换的终值定理,计算稳态误差:
ε ( s)
Φε (s) ⋅ X i ( s) ess = lim e(t ) = lim s ⋅ E ( s ) = lim s ⋅ t →∞ s →0 s →0 H (s) 1 1 = lim s ⋅ ⋅ ⋅ X i (s) s →0 H (s) 1 + G (s) H (s)
单位阶跃输入
X i (s) =
1 s
定义: 定义: 稳态位置
s →0
误差系数 1 1 1 1 ess = lim s = = s → 0 1 + G ( s ) H ( s ) s 1 + lim G ( s ) H ( s ) 1 + K p
单位斜坡输入
e ss = lim s
s →0
X i (s) =
1 , 试求当输入信号为 Ts
1 解 : Φ ε (s) = 1+G (S) =
当 r(t) = 1 t 2时 R(s) = S13 2 (1) E(s) = Φ ε (s)R(s) =
t 2 -T
1 2 S (S+1/T)
=
T S2
-
T2 S
+
T2 S+1/T
e(t) = T e + T(t - T) t → ∞时 ess = ∞ (2) 由终值定理 ess = lim sE(s) = lim s(s+11/T) = ∞
(2)稳态误差系数的概念 )
对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。

控制工程基础 (第15讲) 第六章 干扰引起的误差及动态误差系数 PPT课件

控制工程基础 (第15讲) 第六章 干扰引起的误差及动态误差系数 PPT课件

xi(1)
(t)

dxi (t) dt

a1

2a2t
x (2) i
(t
)

d
2 xi (t) dt 2

2a2
x (3) i
(t
)

d 3 xi (t) dt 3

0
e(t) 0.1(a1 2a2t) 0.18 • 2a2 0.1a1 0.36a2 0.2a2t
ess

lim e(t)
从结构上看,利用双通道原理:
(1)一条由干扰信号经 Gn (s) 、G1(s) 到达第二个相加点。
(2)一条由干扰信号直接到达相加点。
满足(6-19)条件后,两路信号在此点相加,大小相等, 方向相反,实现了全补偿。
由于G1(s)分母的s阶次一般比分子的s阶次高,故式(6-19) 的
条件在工程实践中只能近似地得到满足。
X o (s) G2 (s)
G(s)H (s) G1(s)G2 (s)H (s)
H (s)
ss1

lim
s0
sg1(s)

lim
s0
sg 1
1 G1(s)G2 (s)H
(s) gX i
(s)
控制工程基础
5
(2)由干扰信号 n(t) 产生的偏差,此时令 xi (t) 0
N(s)


2s)(s2
s 10) (s (s2 s 10)2
s
2
)(2s

1)
|s
0

10 100

0.1
控制工程基础
19
(2) e

控制工程实验-第6章

控制工程实验-第6章
定义静态位置误差系数为
Kpls i0m G (s)G (0)
用静态位置误差系数表示的单位阶跃输入
下的稳态误差为
1
ess 1 K p
K, 0型系统 Kpls i0m G (s)G (0) , I型或 I型 高系 于
ess11Kp
11K, 0,
0型系统 I型或高 I型于 系统
• 如果单位反馈控制系统前向通道中没有包 含积分环节,那么它对阶跃输入的响应中 包含稳态误差。
及稳态误差的方法。
6.2.1 误差传递函数与稳态误差
对于下图所示的单位反馈控制系统,
输入引起的系统误差传递函数为
e(s)X E i((ss))1G 1(s)1G c(s)

E(s) 1 1G(s)
Xi(s)
如果系统稳定,根据终值定理,可计
算稳态误差
1 e ss e( ) ls i0s m (E s) ls i0s m 1 G (s)X i(s)
本节的要点:
掌握有干扰时的稳态误差计算方法。
s1G 2 G (2 s()G s)1 H ssH sN s
根据终值定理,干扰引起的稳态偏差为
则干扰引起ss的lt稳 i 态m 误(t)差为ls i0s m (s)
ess
ss
H 0
干扰引起的稳态误差也可以这样来求:
由于干扰产生的输出全是系统误差,因此, 干扰引起的稳态误差等于干扰产生的稳态 输出乘以(-1)。
静态速度误差系数
系统对单位斜坡(速度)输入的稳态误差是
essls i0m s1G 1(s)s12s1 G (s)
定义静态速度误差系数为
Kv
limsG(s) s0
用静态速度误差系数表示的单位速度输入下

机械工程控制基础控制系统的误差分析和计算

机械工程控制基础控制系统的误差分析和计算

12
对单位阶跃输入,稳态误差为
ess
lim
s0
s 1
G
1
s
H (s)
1 s
1
G
1
0 H (0)
静态位置误差系数的定义:
Kp
lim G
s0
s
H (s)
G
0 H (0)

ess
1 1 Kp
13
对0型系统
Gs
K 1s 1 2s 1 T1s 1 T2s 1
Kp
lim
s0
K0 t1s 1t2s 1L T1s 1T2s 1L
Gs
K 1s 1 2s 1 T1s 1 T2s 1
Kv
lim
s0
s
K 1s 1 2s 1 T1s 1 T2s 1
0
16
对I型系统
Gs
K 1s 1 2s 1 s T1s 1 T2s 1
Kv
lim
s0
s
K 1s 1 2s 1 s T1s 1 T2s 1
K1
对II型系统
Gs
K 1s 1 2s 1 s2 T1s 1 T2s 1
ε(s) =Xi(s) - Y(s) Y(s)=H(s)Xo(s)
(s) 1
H (s)
p202
Xi (s)
X oi (s)
(s)
(s)
G1 ( s )
N(s)
+ G2 (s)
Y (s)
H (s)
E(s)
1 H (s)
Xi (s)
X o (s)
ε(s) =Xi(s) - H(s)Xo(s)
1 (s)
t
s0
2. 利用终值定理计算系统的稳态误差:

自动控制系统1_第6章 控制系统的误差分析与计算

自动控制系统1_第6章 控制系统的误差分析与计算

6.1.1 误差定义
6.1.1 误差定义 1.从输入端定义 2.从输出端定义 3.两种定义之间的联系 由于输入r(t)是期望输出cr(t)的函数,而 主反馈b(t)又与实际输出c(t)有关,所以两种定义e(t)与er(t)有一定 的联系。
6.1.1 误差定义
系统误差的定义为:被控量期望值(理论理想值)与实际值(实际测量值)之差。
6.1.1 误差定义
图6-1 控制系统的典型结构
1.从输入端定义
1.从输入端定义 将给定输入信号作为期望值,反馈信号作为实际值,可以得到从输入端
相应的传递函数为
2.从输出端定义
2.从输出端定义 从输出端定义,控制系统的误差er(t)为被控制量的期望值 cr(t)与实际值c(t)之差,如图6 1所示,即
(3)静态加速度(s误)=差的系稳数态K误a:差系也统称对为加加速速度度输误入差信系号数r(t)=1/2t2、R
表6-1 系统型别、静态误差系数及稳态误差与输入信号之间关系
首先,判别系统的稳定性。由图6 3可写出系统的开环传递函数
(3)静态加速度(s误)=差的系稳数态K误a:差系也统称对为加加速速度度输误入差信系号数r(t)=1/2t2、R
图6-3 位置随动系统
(3)静态加速度(s误)=差的系稳数态K误a:差系也统称对为加加速速度度输误入差信系号数r(t)=1/2t2、R
图6-4 化为单位反馈的位置随动系统
由系统闭环特征方程式4s 2+4s+10=0可知系统是稳定的. 然后求系统的稳态误差。由于开环传递函数中含有一个积分环节,即N=1属Ⅰ型 系统,且开环放大系数为K=2 5,所以,根据表6 1
相应的传递函数
3.两种定义之间的联系
两种定义之间的联系 由于输入r(t)是期望输出cr(t)的函数,而主反馈b(t)又 与实际输出c(t)有关,所以两种定义e(t)与er(t)有一定的联系。当实际输出值 c(t)等于期望输出值cr(t)时,由输入端定义误差信号e(t)等于零,有

第6章系统误差计算分析

第6章系统误差计算分析
Xi(s)
+ −
ε(s) G1(s)
+ +
N(s) G2(s)
Xo(s)
Y(s)
H(s)
干扰引起稳态偏差为
ss lim ( t ) lim s ( s )
t s0
( s)
G2 ( s ) H ( s ) N ( s) 1 G2 ( s )G1 ( s ) H ( s )
lim G0 ( s ) 1
s0
E ( s) 1 e ( s) R( s ) 1 G1 ( s ) H ( s )
1 K 1 v G0 ( s ) s 1 ess lim s e ( s ) R( s ) lim s R( s ) s0 s0 K 1 v G0 ( s ) s
X i ( s) E ( s) X 0 ( s) H ( s)
( s)


X i ( s) X o ( s) H ( s) H ( s) X i ( s) E ( s) X o ( s) H ( s)
1 E (s)= ( s) H ( s)
A 1 A s 1 G1 ( s ) H ( s ) 1 lim G1 ( s ) H ( s )
s0
静态位置误差系数 K p lim G1 ( s ) H ( s ) lim
s 0
s 0
K sv
A 1 K p
r (t ) A t
e ssv lim s e ( s ) R( s ) lim s
s0 s0
A 1 A s 2 1 G1 ( s ) H ( s ) lim s G1 ( s ) H ( s )

第6章_控制系统的误差分析和计算_6.3干扰引起的稳态误差

第6章_控制系统的误差分析和计算_6.3干扰引起的稳态误差

N (s ) R (s ) E (s )
-
G1 = K1
+
G2 =
K2 s
C (s )
(2)扰动作用下的误差传递函数为 K2 − E(s) − K2 s ΦNE (s) = = = N(s) 1+ K K2 s + K1K2 1 s 当扰动输入为单位阶跃输入时,稳态误差为
essn
1 − K2 1 1 = lim s ⋅ Φ NE ⋅ = lim s ⋅ ⋅ =− s →0 s s →0 s + K1 K 2 s K1
N (s )
X i (s )
ε (s )
B (s )
-
G1 ( s )
+
H (s )
G2 (s)
X o (s )
(2)稳态误差的计算 )
①给定作用下的偏差传递函数
N (s )
X i
X i (s )
-
G1 ( s )
+
H (s )
G2 (s)
X o (s )
ε (s )
ess = essr + essn 1 =− K1
(3)输入作用与扰动作用共同作用下的稳态误差为
N (s ) R (s ) E (s )
-
G1 =
K1 s
+
G2 =
K2 s
C (s )
(4)如果要求稳态误差为零,可以在G1中串联积分环节,令 K1 G1 = s 1 s2 1 essr = lim s ⋅ Φ RE ⋅ = lim s ⋅ 2 ⋅ =0 则有 s →0 s s →0 s + K1 K 2 s
④对于稳定的系统,采用拉氏变换的终值定理计算稳态偏差

第6章_控制系统的误差分析和计算_6.4减小系统误差的途径

第6章_控制系统的误差分析和计算_6.4减小系统误差的途径
Φ n ( s) = 0
G1 ( s )
即可以使得干扰信号N(s)所产生的输出信号C(s)=0,从而 N(s) C(s)=0 消除了干扰信号N(s)对输出信号C(s)的影响。 该系统由两个通道组成,属于复合控制系统。实际上,该 系统就是利用双通道原理,实现了对干扰信号N(s)的补偿作用。 一个通道是干扰信号N(s)直接到达相加点,另一个通道是干扰信 号N(s)经过Gc(s)G1(s)后到达同一个相加点。如果满足上述选择 Gc(s)G1(s)=-1,则从两个通道过来的干扰信号在此相加点处, 大小相等,方向相反,从而实现了干扰信号的全补偿。
《控制工程基础》 控制工程基础》
第6章 控制系统的误差分析和计算 6.4 减小系统误差的途径
为了减小系统误差,可以考虑以下途径: (1)反馈通道的精度对于减小系统误差至关 重要。反馈通道元部件的精度要高,避免在反馈通 道引入干扰。 (2)在系统稳定的前提下: 对于输入引起的误差,增大系统开环放大倍数 或提高系统型次,可以使之减小。 对于干扰引起的误差,在前向通道干扰点前加 积分器或增大放大倍数,可以使之减小。 (3)既要求稳态误差小,又要求良好的动态 性能,只靠加大开环放大倍数或串入积分环节不能 同时满足要求时,可以采用复合控制(顺馈)方法 对误差进行补偿。补偿的方式可分为按干扰补偿和 按输入补偿。
6.4.2 按输入补偿(顺馈补偿闭环控制) 按输入补偿(顺馈补偿闭环控制)
顺馈补偿闭环控制系统的典型结构如图所示,其中R(s) 是输入信号,C(s)是输出信号,E(s)是偏差,Gc(s)是顺馈补偿 通道传递函数。该系统由两个通道组成,属于复合控制系统。 一个通道是由G1(s)G2(s)组成的主控制通道,为闭环控制。另 一个通道是由Gc(s)G2(s)组成的顺馈补偿控制通道,为开环控 制。系统的输出不仅与系统的误差有关,而且还与补偿信号有 关。补偿信号所产生的作用,可以用来补偿原来的误差信号。

第6章_控制系统的误差分析和计算_6.4减小系统误差的途径

第6章_控制系统的误差分析和计算_6.4减小系统误差的途径
增加顺馈补偿通道的目的是用来改善系统的偏差信号此时系统的偏差传递函数为如果选择则有即可得到系统的偏差信号es0从而使得csrs此时系统的输出信号就可以完全复现输出信号使得系统既没有动态误差也没有稳态误差
《控制工程基础》 控制工程基础》
第6章 控制系统的误差分析和计算 6.4 减小系统误差的途径
为了减小系统误差,可以考虑以下途径: (1)反馈通道的精度对于减小系统误差至关 重要。反馈通道元部件的精度要高,避免在反馈通 道引入干扰。 (2)在系统稳定的前提下: 对于输入引起的误差,增大系统开环放大倍数 或提高系统型次,可以使之减小。 对于干扰引起的误差,在前向通道干扰点前加 积分器或增大放大倍数,可以使之减小。 (3)既要求稳态误差小,又要求良好的动态 性能,只靠加大开环放大倍数或串入积分环节不能 同时满足要求时,可以采用复合控制(顺馈)方法 对误差进行补偿。补偿的方式可分为按干扰补偿和 按输入补偿。
Φ n ( s) = 0
G1 ( s )
即可以使得干扰信号N(s)所产生的输出信号C(s)=0,从而 N(s) C(s)=0 消除了干扰信号N(s)对输出信号C(s)的影响。 该系统由两个通道组成,属于复合控制系统。实际上,该 系统就是利用双通道原理,实现了对干扰信号N(s)的补偿作用。 一个通道是干扰信号N(s)直接到达相加点,另一个通道是干扰信 号N(s)经过Gc(s)G1(s)后到达同一个相加点。如果满足上述选择 Gc(s)G1(s)=-1,则从两个通道过来的干扰信号在此相加点处, 大小相等,方向相反,从而实现了干扰信号的全补偿。
Φ e ( s) =
如果选择 Gc ( s ) = 则有
E ( s ) 1 − Gc ( s )G2 ( s ) = R( s) 1 + G1 ( s)G2 ( s)

自控原理-第6章 控制系统的误差分析与计算

自控原理-第6章 控制系统的误差分析与计算
esslt i e m (t)ls i0sm E (s)
偏差 ( t ) :系统的输入 x i ( t ) 和主反馈信号 y ( t ) 之差。即
( t ) x i( t ) y ( t ) ( s ) X i( s ) Y ( s )
稳态偏差 s s :当t→∞时的系统偏差。即

6.1 稳态误差的基本概念
自控控制理论
本课程与误差有关的概念都是建立在反馈控制系统基础 之上的。 稳态的定义:时间趋于无穷大(足够长)时的固定响应称 为控制系统的稳定状态,简称稳态。 稳态误差:当系统在特定类型输入信号作用下,达到稳态 时系统精度的度量。
说明:误差产生的原因是多样的,课程中只研究由于系统 结构、参量、以及输入信号的形式不同所引起的误差。

i1 n
0
(Tis1)
i1

I型系统的稳态误差
V=1
m
K ( is 1)
G(s)H (s)
i 1 nv
sv (Tis 1)
i 1
自控控制理论
Kplsi m 0G (s)H(s)
1
essp
1 Kp
0
K vlsi m 0sG (s)H (s)K

自控控制理论
例 : 设 单 位 反 馈 系 统 的 开 环 传 递 函 数 为 G (s)1,试 求 当 输 入 Ts
信 号 为 r(t)1t2时 ,控 制 系 统 的 稳 态 误 差 值 。 2
解:
e(s)
1 1G ( S )

S S 1/T

r(t)

稳态加速度 误差系数

自控控制理论
6.2.4 不同类型反馈控制系统的稳态误差系数

控制工程基础清华大学版-.ppt

控制工程基础清华大学版-.ppt

1954年,我国科学家钱学 森在美国运用控制论思想和 方法,用英文出版《工程控 制论》,首先把控制论推广 到工程技术领域。
“工程控制论是关于工程技术领域各个系统自动控制和 自动调节的理论。维纳博士40年代提示了控制论的基本思 想后,不少工程师和数学博士曾努力寻找通往这座理论顶 峰的道路,但均半途而废。工程师偏重于实践,解决具体 问题,不善于上升到理论高度;数学家则擅长于理论分析 ,却不善于从一般到个别去解决实际问题。钱学森则集中 两者优势于一身,高超地将两只轮子装到一辆战车上,碾 出了工程控制论研究的一条新途径。”
神州五号载人航天成功(中国,2019年)
2021/1/1
2勇021/1/1气号、机遇号火星探测器(美国,2019年)
“作为技术科学的控制论,对工程技
术、生物和生命现象的研究和经济科学,
以及对社会研究都有深刻的意义,比起相
对论和量子论对社会的作用有过之无不及
.我们可以毫不含糊地说从科学理论的角
度来看,二十世纪上半叶的三大伟绩是相
2021/1/1
2021/1/1
2021/1/1
2021/1/1
2021/1/1
2021/1/1
1.4 课程主要内容及学时安排
控制工程基础课程主要阐述的是有 关反馈自动控制技术的基础理论。
本课程是一门非常重要的技术基础 课,是机械学院平台课程。它是适应机电 一体化的技术需要,针对机械对象的控制 ,结合经典控制理论形成的一门课程。本 课程主要涉及经典控制理论的主要内容及 应用, 更加突出了机电控制的特点。
2021/1/1
公元前300年秦昭王时,由李冰父 子主持设计修筑的著名水利工程都江 堰,是一种液面控制,是“系统”观 念的杰出体现。

控制系统的误差分析和计算

控制系统的误差分析和计算

lim
s0
s1 1 G(s)
Xi (s)
这就是求取输入引起的单位反馈系统稳态误差的方法.需要注意 的是,终值定理只有对有终值的变量有意义.如果系统本身不稳定, 用终值定理求出的值是虚假的.故在求取系统稳态误差之前,通常 应首先判断系统的稳定性.
➢ 非单位反馈控制系统
输入引起的系统的偏差传递函数为:
(
s)
H
(
s)
1
G1
G2 s s G2 s
H
s
N
s
干扰引起的偏差为:
s
1
G2(s)H s G2 (s)G1sH
s
N
s
根据终值定理,干扰引起稳态偏差为:
ss
lim t
t
lim
s0
s s
则干扰引起稳态误差为:
ess
ss
H 0
例6-3 系统结构图如图6-8所示,当输入信号xi(t)=1(t),干扰N(t)=1(t)时,求系 统总的稳态误差ess.
输入信号和反馈信号比较后的信号ε(t)也能反映系统误差的大小,
称之为偏差.应该指出,系统的误差信号e(t)与偏差信号ε(t),在
一般情况下并不相同(见图6-1).
控制系统的方块图如图6-1所示.实线部分与实际系统有对应关系, 而虚线部分则是为了说明概念额外画出的.
控制系统的误差信号的象函数是 E(s) sXi s X o s
s0
1 s2
1 K

其中
K
lim sG(s)H (s) s0
,定义为系统静态
速度误差系数。 对于0型系统:
K
lim s s0
K (1s 1)( 2s 1) ( ms 1)

《自动控制基础》第6章 控制系统稳态误差和计算

《自动控制基础》第6章 控制系统稳态误差和计算

六、单位反馈系统的动态误差分析 单位反馈系统的误差传递函数:
E s 1 1 e (s) e 0 0s 0s 2 X i s 1 Gs 2!
误差象函数:
1 E s e 0X i s 0sX i s 0s 2 X i s 2!
单位反馈控制系 统的稳态误差
1 ess lim et lim sE s lim sX i s t s 0 s 0 1 G s
二、静态误差系数 单位反馈控制系统的开环传递函数记为:
K (b0 s m b1s m 1 bm 1s 1) G s m m 1 s a0 s a1s an 1s 1
(2)按输入进行补偿
用顺馈对输入信号引起的误差进行补偿
Gs E s Rs C s Rs Rs 1 Gr s 1 Gs 1 Gr s G s E s Rs 1 Gs
1 令E s 0 Gr s G s
不能跟踪单位斜坡信号 能跟踪单位斜坡信号,但 有一定的稳态位置误差 能准确跟踪单位斜坡信号
K (b0 s m b1s m 1 bm 1s 1) G s s a0 s m a1s m 1 an 1s 1 单位加速度信号输入下的稳态误差为:
第六章 控制系统稳态误差和计算
一、误差传递函数和稳态误差 1. 单位反馈控制系统的误差传递函数
Gs 1 E s X i s X o s X i s X i s X i s 1 Gs 1 Gs E s 1 —— 单位反馈控制系统的误差传递函数 X i s 1 Gs
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 输入引起的稳态误差
6.2.1 误差传递函数与稳态误差
➢单位反馈控制系统
输入引起的系统的误差传递函数为
E(s) 1 Xi(s) 1G(s)

E(s) 1 1G(s)
Xi(s)
X i sE(s)源自G(s)X o s
图6-2 单位反馈系统
根据终值定理 e ss lt ie m (t) ls i0s m (E s) ls i0s m 1 G 1 (s)X i(s)
这就是求取输入引起的单位反馈系统稳态误差的方法.需要注意的 是,终值定理只有对有终值的变量有意义.如果系统本身不稳定,用 终值定理求出的值是虚假的.故在求取系统稳态误差之前,通常应 首先判断系统的稳定性.
➢ 非单位反馈控制系统
输入引起的系统的偏差传递函数为:
sXi(s)Y(s)
1
1G(s)H(s)
控制系统的方块图如图6-1所示.实线部分与实际系统有对应关系, 而虚线部分则是为了说明概念额外画出的.
控制系统的误差信号的象函数是 E ( s )s X is X o s (6-1)

偏差信号的象函数是 (s)X is Y s
(6-2)
考虑Xi(s)与Y(s)近似相等,且Y(s)=H(s)Xo(s),得
一般情况下,H为常值,故这时:
e ss
ss
H
例6-1 某反馈控制系统如图6-4,当xi(t)=1(t)时,求稳态误差.
解:该系统为一阶惯性系统,系统稳定.误差传递函数为:
Es 1 1 s
Xi(s) 1G(s) 110 s10 s

X
i
(s)
1 s

e ss ls i0s m s s1X 0 i(s) ls i0s m s s11 s0 0
对于Ⅱ型或Ⅱ型 以上系统:
K sslK s1 i0m ssK K 1((T1 1ss 1 1))T ((22ss 1 1)) ((Tm nss 1 1))
6.2.2 静态误差系数
系统的类型 设其开环传递函数为:
当 2时,使系统稳定是相当困难的。因此除航天控制系统外,
Ⅲ型及Ⅲ型以上的系统几乎不用。
(1)静态位置误差系数Kp
当系统的输入为单位阶跃信号r(t)=1(t)时,
11 1
ssls i0sm 1G (s)H (s)s1G (0 )H (0 )
第六章 控制系统的误差分析和 计算
6.1 稳态误差的基本概念 6.2 输入引起的稳态误差 6.3 干扰引起的稳态误差 6.4 减少系统误差的途径 6.5 动态误差系数
6.1 稳态误差的基本概念
对一个控制系统的要求是稳定、准确、快速.误差问题即是控制 系统的准确度问题.过渡过程完成后的误差称为系统稳态误差,稳态 误差是系统在过渡过程完成后控制准确度的一种度量.
此外,控制系统中不可避免地存在摩擦、间隙、不灵敏区等非 线性因素,都会造成附加的稳态误差.这类由于非线性因素所引起 的系统稳态误差称为结构性稳态误差.
本章只讨论原理性稳态误差,不讨论结构性稳态误差.
误差定义为控制系统希望的输出量与实际的输出量之差,记做e(t), 误差信号的稳态分量被称为稳态误差,或称为静态误差,记作ess.输 入信号和反馈信号比较后的信号ε(t)也能反映系统误差的大小,称 之为偏差.应该指出,系统的误差信号e(t)与偏差信号ε(t),在一般情况 下并不相同(见图6-1).
对于Ⅰ型或高于Ⅰ型以上系统
K p ls i0s K m ((T 1 1 s s 1 1 ))T (2 (2 s s 1 1 )) ((T m ns s 1 1 ) )
ss 0
(2) 静态速度误差系数Kv
当系统的输入为单位斜坡信号时r(t)=t·1(t),即R(s) s12,则有
11
1
1
ss ls i0s m 1 G (s)H (s)s2ls i0s m ( G s)H (s)K
其中
K
limsG(s)H(s) s0
,定义为系统静态速度误差系数。
对于0型系统: K ls i0msK(T(1s1s11))(T(22ss11)) (T(nm ss1)1)0
对于Ⅰ型系统: KsslsK i10msKs ((T11ss11))(T(22ss11)) ((Tnmss11))K
sX X o IIssX Yo ssH 1 s
EsH1sXisXos

H 1 ssH 1 sXisXos
(6-3) (6-4)
比较(6-3)和(6-4)两式,求得误差信号与偏差信号之间的关系为
Es
s Hs
对于实际使用的控制系统来说,H(s)往往是一个常数,因此通常误差 信号与偏差信号之间存在简单的比例关系,求出稳态偏差就得到稳 态误差.对于单位反馈系统H(s)=1来说,偏差信号与误差信号相同, 可直接用偏差信号表示系统的误差信号.这样,为了求稳态误差,求 出稳态偏差即可.
其中,K p l s 0 iG ( m s )H s G ( 0 )H 0 ,定义为系统静态位置误差系数。
对于0型系统
K p ls i0K m (T (1 s 1 s 1 1 ))T (2 (2 ss 1 1 )) (T (n m ss 1 ) 1 )K
ss
1 1Kp
1 1K
Xi
(s)
X i s
(s)
Y (s)
G(s)
H (s)
X o s
图6-3 非单位反馈系统
根据终值定理 稳态 s sl t i偏 ( t m ) l s 0 ism 差 ( s ) l s 0 is 1 m G ( 1 s ) H ( s )X i( s )
稳态 e ss l误 s i0s m H 1 (s 差 )1 G (1 s)H (s)X i(s)
机电控制系统中元件的不完善,如静摩擦、间隙以及放大器的零点 漂移、元件老化或变质都会造成误差.本章侧重说明另一类误差, 即由于系统不能很好跟踪输入信号,或者由于扰动作用而引起的稳 态误差,即系统原理性误差.
对于一个实际的控制系统,由于系统的结构、输入作用的类型 (给定量或扰动量)、输入函数的形式(阶跃、斜坡或抛物线)不同, 控制系统的稳态输出不可能在任何情况下都与输入量一致或相当, 也不可能在任何形式的扰动作用下都能准确地恢复到原平衡位置. 这类由于系统结构、输入作用形式和类型所产生的稳态误差称为 原理性稳态误差.
相关文档
最新文档