2019届中考数学总复习第七章统计与概率7.2概率试卷部分PPT课件

合集下载

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。

《中考数学专题讲座》课件

《中考数学专题讲座》课件

PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。

中考数学复习讲义课件 专题4 统计与概率

中考数学复习讲义课件 专题4 统计与概率

男 3,男 2 女,男 2
男 3 男 1,男 3 男 2,男 3
女3,女
由表可知,共有 12 种等可能的结果,其中恰好是一男一女的结果有 6 种,
∴抽取的两位学生恰好是一男一女的概率为162=12.
5.(2021·宁夏)2021 年,“碳中和、碳达峰”成为高频热词.为了解学生对“碳 中和、碳达峰”知识的知晓情况,某校团委随机对该校九年级部分学生进行了 问卷调查,调查结果共分成四个类别:A 表示“从未听说过”,B 表示“不太 了解”,C 表示“比较了解”,D 表示“非常了解”.根据调查统计结果,绘 制成如下两种不完整的统计图.请结合统计图,回答下列问题.
4.(2021·张家界)为了积极响应中共中央文明办关于“文明用餐”的倡议, 某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分 学生,对他们家庭用餐使用公筷情况进行统计,统计分类为以下四种:A(完 全使用)、B(多数时间使用)、C(偶尔使用)、D(完全不使用),将数据进行整 理后,绘制了两幅不完整的统计图.
(2)请将频数分布直方图补充完整; 解:补全频数分布直方图如图所示.
(3)抽取的 200 名学生中竞赛成绩的中位数落在的组别是 C 组;
(4)若该校共有 1000 名学生,请估计本次党史知识竞赛成绩为“优秀”的学 生人数.
解:1000×(0.25+0.3)=1000×0.55=550(人). 答:本次党史知识竞赛成绩为“优秀”的学生约有 550 人.
[分析] (1)由频率之和等于 1 可得 b 的值,再由第一组频数及频率求出被调 查的总人数,根据频数=频率×总人数求解可得 a 的值; (2)根据以上所求数据即可将统计图补充完整; (3)利用样本估计总体的知识求解即可求得答案; (4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选 两人正好都是甲班学生的情况,再利用概率公式即可求得答案.

九年级数学总复习17 统计与概率

九年级数学总复习17 统计与概率

5、频数颁布 一般地,如果一组数据共有n个,而其中某一类数据出现 了m个,而m叫这类数据在该组数据中出现的频数。
m 为该类数据在该组数据中的出现频率 n
请说一说画频数分布直方图的步骤
6 、下面的数据是我班上次数学考试随机抽取的20名学 生的成绩,请你根据以下的数据列出统计表,并绘出统 计图 135,112,107,135,147,131,82,83,97,146 123、127、145、135、109、117、123、88、135, 135
1 x1 a x2 a ... xn a n x x ' a x'
3. 下表是我们 班学生的年龄结构情况,请说 出它们的众数和中位数.
年龄 14岁 15岁 16岁 17岁
人数
14人
28人
7人
1人
请说一说你是怎样找出众数和中位数的. 众数是出现次数最多的数.
B级
A级
C级
四、反映数据集中趋势的量 1、哪些量反映数据的集中趋势? 平均数、众数、中位数 2、你还记得如何求平均数吗? 1 1 .x x1 x2 ... xn n
1 2 .加权平均数:x f1 x1 f 2 x2 ... f n xn n 3 .当数据集中在某一个数附近时
例12、在一次促销活动中,某商场为了吸引顾客,设 立的一个可以自由转动的转盘,并规定:顾客每购买 100元的商品,就能获得一次转动转盘的机会,如果 转盘停止后,指针正好对准红色、黄色、绿色区域, 那么顾客就可以分别获得50元、30元、20元的购物券, 凭,购物券要以继续在商场进行购物。如果顾客不愿 意转转盘,那么可以直接获得购物券10元。 (1)求每转动一次转盘 绿 绿 所获购物券金额的平均数; 黄 绿 (2)如果你在该商场消费 125元,你会选择转转盘还 绿 是直接获得购物券?说明理由。 红 解(1) 黄

重庆市2019届中考数学一轮复习《7.2概率》讲解含答案

重庆市2019届中考数学一轮复习《7.2概率》讲解含答案

第二节概率课标呈现_指引方向1.能通过列表、画树状图等方法列m简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.2.知道通过大量地重复试验,可以用频率来估计概率.考点梳理夯实基础1.事件的分类(1)在自然和现实社会中,有些事件我们事先能够肯定它一定会发生的事件称为必然事件.(2)有些事件事先能肯定它一定不会发生的事件称为不可能事件.(3) 必然事件和不可能事件统称为不确定事件.(4)在一定条件下,有可能发生,也有可能不发生的事件,称为随机事件.2.概率(1)定义:表示一个事件发生的可能性大小的数,叫做该事件的概率.P(必然事件)= 1;P(不可能事件)=0;0 <P(随机事件)<1.(2)计算公式:P(事件的概率)= mn(m表示所关注的事件的结果数.n表示所有可能的结果数).(3)两步试验事件的概率计算方法主要有两种:一是列表法,二是画树状图.(4)用频率估计概率:在大量重复试验中,如果事件A发生的频率!会稳定在某个常数p附近,那么这个常数p就叫做事件A发生的概率,即P(A)=p.考点精析专项突破考点一事件的分类【例l】(2019攀枝花)下列说法中正确的是(D)A.“打开电视,正在播放《新闻联播》”是必然事件B.“20x<(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,一定有5次正面向上D.367人中,必有两人的生日在同一天解题点拨:解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法,必然事件指在一定条件下一定发生的事件:不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.考点二概率【例2】(2019泸州)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取1只球,则取出黑球的概率是 ( C )A. 12B.14C.13D14解题点拨:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目:②全部情况的总数.二者的比值就是其发生的概率的大小.【例3】(2019重庆4卷)从数一2,12-,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n.若k= mn,,则正比例函数y=kx的图象经过第一、第三象限的概率是1 6解题点拨:利用树状图或列表,可得五有12个值,其中正数七的值有2个,所以概率为16.【例4】(2019潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了4、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩(n)分评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是4等级的概率.解题点拨:(1)由C等级频数为15,占60%,即可求得m的值:(2)首先求得日等级的频数,继而求得B等级所在扇形的圆心角的大小:(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是4等级的情况,再利用概率公式求解即可求得答案.解:(1) C等级频数为15,占60%,可求出m的值.m =15÷60%= 25:(2) B等级频数为:25-2-15-6=2,B等级所在扇形的圆心角的大小为:225×360 =28.8= 28`28;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∴共有12种等可能的结果,其中至少有一家是A等级的有10种情况,其中至少有一家是A等级的概率为:105. 126=考点三用频率估计概率【例5】(2019泰州)事件4发生的概率为嘉,大量重复做这种试验,事件4平均每100次发生的次数是5.解题点拨:用频率估计概率的思想进行计算可.【例6】有形状、大小和质地都相同的四张卡片,正面分别写有A,B,C,D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用面树状图或列表的方法表示抽取两张卡片可能m现的所有情况(结果用A,B,C,D表示).(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜;若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由:若不公平,则这个规则对谁有利?为什么?A16=±4 B. 22-=4 C.33332x x x-= D. 532b b b÷=解题点拨:计算出每种情况的概率即可.解:(1)所有情况有12种:(A,B)、(A,C)、(A,D)、(B,A)、(B,C)、(B,D)、(C,A)、(C,B)、(C,D)、(D,A)、(D,B)、(D,C).(2)游戏不公平.这个规则对小强有利.理由如下:P(小明获胜)=21 126=,P(小强获胜)= 105 126=P(小明获胜)<P(小强获胜),∴这个规则对小强有利.1.(2019湖北)下列说法中正确的是 (B)A.“任意面m一个等边三角形,它是轴对称图形”是随机事件B.“任意面m一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为62.(2019重庆B卷)点P的坐标是(a,b),从-2,-1,0,l,2这五个数中任取一个数作为。

人教版本初中九年级数学下册--中考复习(概率与统计)PPT课件精选全文

人教版本初中九年级数学下册--中考复习(概率与统计)PPT课件精选全文

12.数据的分布情况(绘制频数分布表
和频数分布直方图)
1.计算极差:这组数据的最小数是:141cm,最大的数是:172cm,它们的差(极差)
是:172-141=31(cm) ;
2.确定分点:半开半闭区间法;
3.定组距,分组:根据极差分成七组(经验法则:100个数据以内分5-12组);
4.用唱票的方法绘制频数分布表;
命中环数
5
甲命中环的次数 1
乙命中环的次数 1
6 7 8 9 10 42111
24210
平均数 众数 方差
7
6 2.2
7 7 1.2
三、概率 (一).随机事件发生的概率
(二).概率的相关概念
1.概率 事件发生的可能性,也称为事件发生的 概率.概率也叫几率或然率. 2.频数,频率 在考察中,每个对象出现的次数 称为频数,而每个对象出现的次数与总次数的比值 称为频率.当试验次数很大时,一个事件发生的频 率稳定在相应的概率附近.因此,我们可以通过多 次试验,用一个事件发生的频率来估计这一事件发 生的概率. 3.利用树状图或表格可以清晰地表示出某个事 件发生的所有可能出现的结果;从而较方便地求出 某些事件发生的概率.用树状图和列表的方法求概 率时应注意各种结果出现的可能性务必相同.
解:
x 甲=71(76 90 84 86 81 87 86) 84.29 xs甲乙==71(82 84 85 89 80 94 76) 84.29
1 ( 822 842 892 802 942 76 2 ) 7 84.292 4.15
7 s 乙=
1 ( 822 842 85 2 892 802 942 76 2 ) 7 84.292 5.40
14 人.如果只用这40名学生这一天

(苏科版)中考数学一轮复习课件:7.2数据的集中程度与

(苏科版)中考数学一轮复习课件:7.2数据的集中程度与
(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击 “水平”.
活动3: 由图表信息求数据代表,估计总体情况 某市青少年健康研究中心随机抽取了该市1000名小学生和若 干名中学生,对他们的视力状况进行调查,并把调查结果绘制 成如下统计图。(近视程度分为轻度、中度、高度三种)
(1)求这1000名小学生中患近视的百分比; (2)求本次抽查的中学生人数; (3)若该市有中学生8万人,小学生10万人,请分别估计该 市的中学生与小学生中患“中度近视”的人数。
D.标准差
变式:某校欲招聘一名数学教师,学校对甲、乙、丙三位候 选人进行了三项能力测试,三候选人的各项测试成绩如下表 所示(满分均为100分)
测试项目
教学能力 科研能力 组织能力
测试成绩(分)
甲乙

85 73
73
70 71
65
64 72
84
学校将根据最后评定结果择优录用。 (1)如果根据三项测试的平均成绩之高低来决定,谁将被 录用?说明理由; (2)如果教学、科研和组织三项能力测试得分按5:3:2 的比例确定总成绩,谁将被录用?说明理由。
平均数 众数
方差
甲7
1.2

(2)如果你是教练,你会选择哪位运动员云参加比赛? 请说明理由。
四、当堂练习
1.已知数据:2,-1,3,5,6,5,这组数据的众数和极差分
别是( )
A.5和7
B.6和7
C.5和3 D.6和3
2.某饮料店为了了解本店一种罐装饮料上半年的销售情况,随
机抽查了8天该种饮料的日销售量,得结果如下(单位:听):
据的平均数)称为这组数的
;而出现次数最多的那个数据称为
一组数据的中位数和平均数是唯一的,而

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)知识点总结1. 事件:①确定事件:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件。

②随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

2. 事件的可能性(概率)大小:事件的可能性大小用概率来表示。

表示为()事件P 。

必然事件的概率为1;不可能事件的概率为0;随机事件的概率为10<<P 。

3. 概率的定义与计算公式:①概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为()A P =p②概率公式:随机事件A 的概率()所有可能出现的结果数随机事件出现的次数=A P 。

4. 几何概率:在几何中概率的求解皆用部分面积比总面积,或部分长度比总长度,或部分角度比整个大角角度。

专项练习题1.(2022•巴中)下列说法正确的是( )A .4是无理数B .明天巴中城区下雨是必然事件C .正五边形的每个内角是108°D .相似三角形的面积比等于相似比【分析】根据二次根式的化简可得=2,随机事件,正五边形每个内角是108°,相似三角形的性质,逐一判断即可解得.【解答】解:A.∵=2,∴是有理数,故A不符合题意;B.明天巴中城区下雨是随机事件,故B不符合题意;C.正五边形的每个内角是108°,故C符合题意;D.相似三角形的面积比等于相似比的平方,故D不符合题意;故选:C.2.(2022•宁夏)下列事件为确定事件的有()(1)打开电视正在播动画片(2)长、宽为m,n的矩形面积是m n(3)掷一枚质地均匀的硬币,正面朝上(4)π是无理数A.1个B.2个C.3个D.4个【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:(1)打开电视正在播动画片,是随机事件,不合题意;(2)长、宽为m,n的矩形面积是mn,是确定事件,符合题意;(3)掷一枚质地均匀的硬币,正面朝上,是随机事件,不合题意;(4)π是无理数,是确定事件,符合题意;故选:B.3.(2022•辽宁)下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球【分析】根据随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、射击运动员射击一次,命中靶心,是随机事件,故A不符合题意;B、掷一次骰子,向上一面的点数是6,是随机事件,故B不符合题意;C、任意买一张电影票,座位号是2的倍数,是随机事件,故C不符合题意;D、从一个只装有红球的盒子里摸出一个球是红球,是必然事件,故D符合题意;故选:D.4.(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.5.(2022•武汉)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【分析】根据随机事件,必然事件,不可能事件的定义,即可判断.【解答】解:彩民李大叔购买1张彩票,中奖.这个事件是随机事件,故选:D.6.(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同【分析】根据概率公式求出小星抽到各个数字的概率,然后进行比较,即可得出答案.【解答】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是,∴小星抽到每个数的可能性相同;故选:D.7.(2022•襄阳)下列说法正确的是()A.自然现象中,“太阳东方升起”是必然事件B.成语“水中捞月”所描述的事件,是随机事件C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D .若抽奖活动的中奖概率为501,则抽奖50次必中奖1次 【分析】根据概率的意义,概率公式,随机事件,必然事件,不可能事件的特点,即可解答.【解答】解:A 、自然现象中,“太阳东方升起”是必然事件,故A 符合题意; B 、成语“水中捞月”所描述的事件,是不可能事件,故B 不符合题意;C 、襄阳明天降雨的概率为0.6”,表示襄阳明天降雨的可能性是60%,故C 不符合题意;D 、若抽奖活动的中奖概率为,则抽奖50次不一定中奖1次,故D 不符合题意;故选:A .8.(2022•长沙)下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次【分析】根据概率的意义,全面调查与抽样调查,条形统计图,随机事件,逐一判断即可解答.【解答】解:A 、调查某班45名学生的身高情况宜采用全面调查,故A 符合题意; B 、“太阳东升西落”是必然事件,故B 不符合题意;C 、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故C 不符合题意;D 、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数可能是13次,故D 不符合题意;故选:A .9.(2022•东营)如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A .32B .21C .31D .61 【分析】根据轴对称图形的概念、概率公式计算即可.【解答】解:如图,当涂黑1或2或3或4区域时,所有黑色方块构成的图形是轴对称图形,则P (是轴对称图形)==,故选:A .10.(2022•丹东)四张不透明的卡片,正面标有数字分别是﹣2,3,﹣10,6,除正面数字不同外,其余都相同,将它们背面朝上洗匀后放在桌面上,从中随机抽取一张卡片,则这张卡片正面的数字是﹣10的概率是( )A .41B .21C .43D .1【分析】用﹣10的个数除以总数即可求得概率.【解答】解:由题意可知,共有4张标有数字﹣2,3,﹣10,6的卡片,摸到每一张的可能性是均等的,其中为﹣10的有1种,所以随机抽取一张,这张卡片正面的数字是﹣10的概率是,故选:A .11.(2022•益阳)在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A ,B ,C ,D ,E ,F ,考生从中随机抽取一道试题,则某个考生抽到试题A 的概率为( )A .32B .41C .61D .241 【分析】根据抽到试题A 的概率=试题A 出现的结果数÷所有可能出现的结果数即可得出答案.【解答】解:总共有24道题,试题A 共有4道,P (抽到试题A )==,故选:C . 12.(2022•兰州)无色酚酞溶液是一种常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( )A .51B .52C .53D .54 【分析】总共5种溶液,其中碱性溶液有2种,再根据概率公式求解即可.【解答】解:∵总共5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色的概率是,故选:B .13.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )A .红球B .黄球C .白球D .蓝球【分析】根据概率的求法,因为红球的个数最多,所以摸到红球的概率最大.【解答】解:在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,因为红球的个数最多,所以摸到红球的概率最大,摸到红球的概率是:, 故选:A .14.(2022•百色)篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是( )A .1B .21C .41D .61 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:抛硬币有两种结果:正面向上、反面向上,则正面向上的概率为.故选:B .15.(2022•呼和浩特)不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a b +B .a bC .b a a +D .ba 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是.故选:A . 16.(2022•齐齐哈尔)在单词statistics (统计学)中任意选择一个字母,字母为“s ”的概率是( )A .101B .51C .103D .52 【分析】根据题意,可以写出任意选择一个字母的所有可能性和选择的字母是s 的可能性,从而可以求出相应的概率.【解答】解:在单词statistics (统计学)中任意选择一个字母一共有10种可能性,其中字母为“s ”的可能性有3种,∴任意选择一个字母,字母为“s ”的概率是, 故选:C .17.(2022•镇江)从2021、2022、2023、2024、2025这五个数中任意抽取3个数.抽到中位数是2022的3个数的概率等于 .【分析】列举得出共有10种等可能情况,其中中位数是2022有3种情况,再由概率公式求解即可.【解答】解:从2021、2022、2023、2024、2025这五个数中任意抽取3个数为:2021、2022、2023,2021、2022、2024,2021、2022、2025,2021、2023、2024,2021、2023、2025,2021、2024、2025,2022、2023、2024,2022、2023、2025,2022、2024、2025,2023、2024、2025,共有10种等可能情况,其中中位数是2022有3种情况,∴抽到中位数是2022的3个数的概率为,故答案为:.18.(2022•阜新)如图,是由12个全等的等边三角形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .41B .43C .32D .21 【分析】先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,再根据几何概率的求法即可得出答案.【解答】解:先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,则这个点取在阴影部分的概率是=.故选:D .19.(2022•徐州)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .41B .31C .21D .33 【分析】如图,将整个图形分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,设每个小三角形的面积为a ,则阴影的面积为6a ,正六边形的面积为18a ,∴将一枚飞镖任意投掷到镖盘上,飞镖落在阴影区域的概率为=,故选:B .20.(2022•朝阳)如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .83B .21C .85D .1【分析】根据阴影部分的面积所占比例得出概率即可.【解答】解:由图知,阴影部分的面积占图案面积的,即这个点取在阴影部分的概率是,故选:A .21.(2022•通辽)如图,正方形ABCD 及其内切圆O ,随机地往正方形内投一粒米,落在阴影部分的概率是( )A .4πB .1﹣4πC .8πD .1﹣8π 【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.22.(2022•黔东南州)如图,已知正六边形ABCDEF内接于半径为r的⊙O,随机地往⊙O 内投一粒米,落在正六边形内的概率为()A.π233B.π23C.π43D.以上答案都不对【分析】求出正六边形的面积占圆面积的几分之几即可.【解答】解:圆的面积为πr2,正六边形ABCDEF的面积为r×r×6=r2,所以正六边形的面积占圆面积的=,故选:A.23.(2022•苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .12πB .24πC .6010πD .605π 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为5×6=30,其中阴影部分面积为=, ∴飞镖落在阴影部分的概率是=,故选:A . 24.(2022•成都)如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .【分析】作OD ⊥CD ,OB ⊥AB ,设⊙O 的半径为r ,根据⊙O 是小正方形的外接圆,是大正方形的内切圆,可得OB =OC =r ,△AOB 、△COD 是等腰直角三角形,即可得AE =2r ,CF =r ,从而求出答案.【解答】解:作OD ⊥CD ,OB ⊥AB ,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.。

2019年中考数学总复习单元测试试题7 统计与概率(含答案)

2019年中考数学总复习单元测试试题7 统计与概率(含答案)

统计与概率 单元测试题一、单项选择题(共10小题,每小题5分,满分50分)1.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( ) A.B.C.D.2.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:关于这组文化程度的人数数据,以下说法正确的是 ( ) A.众数是20 B.中位数是17 C.平均数是12 D.方差是263.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是( )A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差4.如图,将一块菱形ABCD 硬纸片固定后进行投针训练.已知纸片上AE ⊥BC 于点E,CF ⊥AD 于点F,sin D=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是( ) A. B. C. D.5.某学校小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A.袋中装有大小和质地都相同的3个红球和2个黄球,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过96.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球7.一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是( )A.3.8B.4C.3.6或3.8D.4.2或48.下列说法正确的是( )A.“打开电视机,正在播放《达州》新闻”是必然事件B.天气预报“明天降水概率50%”是指明天有一半的时间会下雨C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是=0.3,=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为79.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析该表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数≥150为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是( )A.①②B.②③C.①③D.①②③10.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表:对他们的训练成绩作如下分析,其中说法正确的是( ) A.他们训练成绩的平均数相同 B.他们训练成绩的中位数不同 C.他们训练成绩的众数不同D.他们训练成绩的方差不同二、填空题(共4小题,每小题5分,满分20分)11.下表记录了某种幼树在一定条件下移植成活情况:由此估计这种幼树在此条件下移植成活的概率约是 .(精确到0.1)12.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80 000名九年级学生中“综合素质”评价结果为“A”的学生约为 人.13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 .据此判断该游戏 .(填“公平”或“不公平”)14.下表为甲、乙两人比赛投篮球的记录,以命中率(投进球数与投球次数的比值)来比较投球成绩的好坏,得知他们的成绩一样好,下面有四个关于a,b的关系式:①a-b=5;②a+b=18;③a∶b=2∶1;④a∶18=2∶3.其中正确的是.(把所有正确结论的序号都选上)三、(题共2小题,每小题16分,满分32分)15.某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:(2)补全频数分布直方图:(3)根据频数分布表或频数分布直方图,分析数据的分布情况.16.一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、-2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.四、(本大题共2小题,每小题16分,满分32分)17.某校举行“汉字听写”比赛,每位学生听写汉字39个.比赛结束后随机抽查部分学生听写结果,图1,图2是根据抽查结果绘制的统计图的一部分.组听写正确的人根据以上信息解决下列问题:(1)本次共随机抽查了多少名学生?求出m,n的值并补全图2的条形统计图;(2)求出图1中∠α的度数;(3)该校共有3 000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.18. “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如下:请结合图表完成下列各题:(1)①求表中a的值;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组6名同学中,有4名男同学,现将这6名同学平均分成两组进行对抗赛,且4名男同学每组分两人,求其中小华和小强两名男同学能分在同一组的概率.五、(本题满分16分)19.在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,如图是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.答案ACBBD CDCDD11 0.912 16 00013 不公平14 ②③④15(1)补充频数分布表如下:(2)补全频数分布直方图,如图:(3)本题答案不唯一,如:分布在17≤x<22之间的温度数据最多. 16(1)画树状图如下:点A的坐标有(1,-2),(1,3),(-2,1),(-2,3),(3,1),(3,-2).(2)点A落在第四象限的概率为.17(1)15÷15%=100(名);m=30%×100=30;n=20%×100=20.补图:(2)∠α=×360°=90°.(3)3000×=1500(名).18(1)①a=50-5-10-15-6=14.②图略.(2)不低于80的人数为14+6=20(人)故本次测试的优秀率为×100%=40%.(3)用字母A表示小华,字母B表示小强,另外两名男生用字母C、D表示,4名男同学中的两人分在第一小组(或第二小组)的情况如下:共有6种等可能的结果,其中使得小华与小强分在同一组的情况有两种:(A、B),(C、D),所以小华与小强分在同一组的概率为.19(1)由题意可知该班的总人数=15÷30%=50.(2)足球项目所占的人数=50×18%=9,所以其他项目所占人数=50-15-9-16=10,补全条形统计图如图所示.(4)画树状图如图,所以P(恰好选出一男一女)=.。

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。

福建专用2019年中考数学复习第七章统计与概率7.2概率试卷部分课件2

福建专用2019年中考数学复习第七章统计与概率7.2概率试卷部分课件2

6.(2015南平,5,4分)在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒 中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球 的频率稳定于0.4,由此可估计盒中红球的个数为 ( )
A.4 B.6
C.8 D.12
答案 C 设盒中红球有x个,由题意可得 x =0.4,解得x=8.故选C.
2.(2016龙岩,9,4分)在一个密闭不透明的袋子里有若干个白球,为估计白球个数,小何向其中投 入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中8 8次摸到黑球,则估计袋中大约有白球 ( ) A.18个 B.28个 C.36个 D.42个
答案 B 由题意可得,白球大约有8÷ 88 -8≈28个,故选B.
型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是 1 ,那么添加的球是
3
.
答案 红球(或红色的)
解析 再添加1个球,则箱子中共有6个球.因为从中随机抽取1个球,三种颜色的球被抽到的概
率都是 1 ,所以每种颜色的球都有2个,故添加的球是红球(或红色的).
3
12.(2016三明,14,4分)在一个不透明的空袋子里放入仅颜色不同的2个红球和1个白球,从中随
中考数学 (福建专用)
第七章 统计与概率
7.2 概 率
五年中考
A组 201பைடு நூலகம்-2018年福建中考题组
1.(2018福建,6,4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.则下列事 件为随机事件的是 ( ) A.两枚骰子向上一面的点数之和大于1 B.两枚骰子向上一面的点数之和等于1 C.两枚骰子向上一面的点数之和大于12 D.两枚骰子向上一面的点数之和等于12 答案 D 投掷两枚质地均匀的骰子,向上一面的点数之和一定大于1,故选项A是必然事件,选 项B是不可能事件;一枚骰子向上一面的点数最大是6,因此点数之和最大为12,选项C为不可能 事件,故选D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
பைடு நூலகம்
A. 1
B. 1
C. 3
D. 7
2
5
10
10
答案 C ∵从装有5个红球、2个白球、3个黄球的袋中任意摸出1个球有10种等可能结果, 其中摸出的球是黄球的结果有3种,∴从袋中任意摸出1个球是黄球的概率为 3.故选C.
10
.
5
5.(2017湖州,7,4分)一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸
答案 A 选项A中指针落在阴影区域内的概率为 3 ,选项B中指针落在阴影区域内的概率为
4
2 ,选项C中指针落在阴影区域内的概率为 1 ,选项D中指针落在阴影区域内的概率为 5 ,因为
3
2
8
3 > 2 > 5 > 1 ,故选A.
4 38 2
.
11
11.(2014杭州,9,3分)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落 在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于 ( )
五年中考
A组 2014-2018年浙江中考题组
考点一 事件
(2016台州,5,4分)质地均匀的骰子六个面上分别刻有1到6个点,掷两次骰子,得到向上一面的两 个点数,则下列事件中,发生的可能性最大的是 ( ) A.点数都是偶数 B.点数的和是奇数 C.点数的和小于13 D.点数的和小于2 答案 C 由题意知掷两次骰子,“点数都是偶数”和“点数的和是奇数”都是随机事件, “点数的和小于13”是必然事件,“点数的和小于2”是不可能事件,故其发生的可能性最大 的是必然条件,选C.
手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是 ( )
A.0 答案
B. 1
C. 1
D.1
21
42
B 习惯用左手写字的同学被选中的概率是 2 = 1 .
24 21
.
4
4.(2017宁波,6,4分)一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其余
都相同.从袋中任意取出1个球,是黄球的概率为 ( )
63
故选B. 思路分析 根据题意得出所有等可能的结果,从中找到是3的倍数的结果数,利用概率公式计 算可得结果. 方法总结 此题考查了概率的求法.如果一个事件发生有n种可能结果,而且这些事件发生的 可能性相同,其中事件A包括m种结果,那么事件A发生的概率P(A)= m .
n
.
2
2.(2018温州,5,4分)一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2
A. 1
B. 1
C. 1
D. 1
6
4
3
2
答案 C 令|x-4|=2,得x-4=±2,则x=6或x=2,易知任意抛掷一次骰子,朝上的面的点数是2或6的
概率是 1 ,所以|x-4|的结果恰为2的概率是 1 .故选C.
3
3
.
9
9.(2016金华,7,3分)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会 调查”其中一项,那么两人同时选择“参加社会调查”的概率为 ( )
评析 运用公式P(A)= m 求简单事件发生的概率时,必须确定各种结果发生的可能性相同,关
n
键是求试验所有可能的结果总数n和事件A包含的结果总数m.
.
8
8.(2016湖州,7,3分)有一枚质地均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6.若任
意抛掷一次骰子,朝上的面的点数记为x,计算|x-4|,则其结果恰为2的概率是 ( )
.
1
考点二 概率
1.(2018杭州,7,3分)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个
面分别标有数字1~6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概
率等于 ( )
A. 1
B. 1
C. 1
D. 2
6
3
2
3
答案 B 根据题意,得到的两位数有31、32、33、34、35、36,共6种等可能的结果,其中得 到的两位数是3的倍数的有33、36这2种结果,所以得到的两位数是3的倍数的概率等于 2= 1 ,
出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是 ( )
A. 1
B. 1
C. 3
D. 9
16
2
8
16
答案 D 根据题意,可画树状图如下:
∴摸两次球出现的可能共有16种,其中两次都是红球的可能共有9种,∴P(两次都摸到红球)=
9 .故选D.
16
.
6
6.(2017金华,8,4分)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下
12 6
.
7
7.(2016绍兴,5,4分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上
一面的数字是偶数的概率为 ( )
A. 1
B. 1
C. 1
D. 2
6
3
2
3
答案 C 数字1、2、3、4、5、6中偶数有3个,∴投掷一次,朝上一面的数字是偶数的概率为
3 =1 .
62
A. 3
B. 3
C. 5
D.13
16
8
8
16
答案 C 共有16种等可能情况,这两个数的和是2的倍数或是3的倍数的有:1+1=2,1+2=3,1+3
A. 1
B. 1
C. 1
D. 3
4
3
2
4
答案 A 记“打扫社区卫生”和“参加社会调查”分别为A和B,列表如下:
小华
A
B
小明
A
(A,A)
(A,B)
B
(B,A)
(B,B)
由上表知共有4种情况,同时选择B的只有一种,所以P(同时选择B)= 1 .故选A.
4
.
10
10.(2015金华,7,3分)如图的四个转盘中,C,D转盘被分成8等份,若让转盘自由转动一次,停止后, 指针落在阴影区域内的概率最大的转盘是 ( )
甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是 ( )
A. 1
B. 1
C. 1
D. 1
2
3
4
6
答案 D 可能出现的前两名的所有情况为:甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,
丁甲,丁乙,丁丙,共12种,其中甲、乙获得前两名的情况为:甲乙,乙甲,共2种,所以所求概率P=
2 =1.
个白球.从袋中任意摸出一个球,是白球的概率为 ( )
A. 1
B. 1
C. 3
D. 1
2
3
10
5
答案 D ∵袋子中共有10个只有颜色不同的球,其中白球有2个,∴摸出一个球是白球的概率
是 2 =1 ,故选D.
10 5
思路分析 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况的数目.
.
3
3.(2018衢州,6,3分)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右
相关文档
最新文档