第十五章欧拉图与哈密顿图

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由定理立刻可知,图中的三 个无向图中,只有()中无奇度顶点, 因而()是欧拉图,而()、()都 有奇度顶点,因而它们都不是欧拉图。
定理 : 无向图是半欧拉图当且仅 当是连通的,且中恰有两个奇度顶点。
证: 必要性 设是条边的阶无向图, 因为为半欧拉图,因而中存在欧拉通路
(但不存在欧拉回路),设 Г… 为中一条欧拉通路, ≠ .
二、判别定理
定理 无向图是欧拉图当且仅当是连 通图,且中没有奇度顶点。
证: 若是平凡图,结论显然成立, 下面设为非平凡图,设是条边的阶 无向图。并设的顶点集{,…}. 必要性: 因为为欧拉图,所以中存
在欧拉回路,设为中任意一条欧拉回路,
∈,都在上,因而连通 所以为连通图。又 ∈,在上每 出现一次获得度,若出现次就获得 度,即(),所以中无奇度顶点。
由定理立即可知,图中() 是半欧拉图,但()不是半欧拉图。
定理 有向图是欧拉图当且仅当 是强连通的且每个顶点的入度都等于出度。 本定理的证明类似于定理 .
定理 有向图是半欧拉图当且仅 当是单向连通的,且中恰有两个奇度 顶点,其中一个的入度比出度大,另一 个的出度比入度大,而其余顶点的入度 都等于出度。
,,…,由归纳假设可知,', ',…'都是欧拉图,因而都存在欧拉 回路‘,,….最后将还原(即将
删除的边重新加上),并从上的某顶点
开始行遍,每遇到 ,就行遍’ 中的 欧拉回路’ ,,…,最后回到,得 回路
… … … … … … …,
此回路经过中每条边一次且仅一次并行 遍中所有顶点,因而它是中的欧拉回 路 ,故为欧拉图。
可以证明,当算法停止时所得简单回路 …()为中一条欧拉回路。
例 图()是给定的欧拉图。某人用算法 求中的欧拉回路时, 走了简单回路 之 后(观看他的错误走法),无法行遍了,试 分析在哪步他犯了错误?

解: 此人行遍时犯了能不走桥就不 走桥的错误,因而他没行遍出欧拉回路。 当他走到时,{}为 图()所示。此时为该图中的桥, 而均不是桥,他不应该走,而应 该走或,他没有走,所以犯了错误。 注意,此人在行遍中,在遇到过桥, 处遇到过桥,但当时除桥外他无别的 边可走,所以当时均走了桥,这是不会犯 错误的。
本定理的证明可用归纳法。
例 设是非平凡的且非环的欧拉图, 证明:
λ()≥. ()对于中任意两个不同顶点, 都存在简单回路含和.
证 ()由定理可知, ∈(), 存在圈,在中,因而()(),故 不是桥。由的任意性λ()≥,即是 边连通图。
() ∈(),≠,由的连通 性可知,之间必存在路径Г,设 ' (Г),则在 '中与还必连通,否则, 与必处于 '的不同的连通分支中,这说明 在Г上存在中的桥,这与()矛盾。于
欧拉图与哈密顿图
欧拉图
一.欧拉通路、欧拉回路、欧拉图、半 欧拉图的定义
定义 通过图(无向图或有向图)中所 有边一次且仅一次行遍图中所有顶点 的通路称为欧拉通路,通过图中所有 边一次并且仅一次行遍所有顶点的回 路称为欧拉回路。具有欧拉回路的图 称为欧拉图,具有欧拉通路而无 欧拉回路的图称为半欧拉图。

由定理立即可知,图()图 为欧拉图,本图既可以看成圈, ,,之并(为 清晰起见,将个圈画在()中),也 可看成圈与圈 之并(两个圈画在()中)。将() 分解成若干个边不重的圈的并不是() 图特有的性质,任何欧拉图都有这个性 质。
定理 是非平凡的欧拉图当且仅 当是连通的且为若干个边不重的圈的并。
从定义不难看出,欧拉通路是图中经 过所有边的简单的生成通路(经过所有顶 点的通路称为生成通路),类似地,欧拉 回路是经过所有边的简单的生成回路。
在这里做个规定,即平凡图是欧拉图。

在图所示各图中,为 ()中的欧拉回路,所以()图为欧拉 图。为()中的一条欧拉通路, 但图中不存在欧拉回路,所以()为半欧 拉图。()中既没有欧拉回路,也没有欧 拉通路,所以()不是欧拉图,也不是半 欧拉图。为()图中的欧拉回路, 所以()图为欧拉图。(),()图中 都既没有欧拉回路,也没有欧拉通路
.逐步插入回路法
设为阶无向欧拉图,(){,…}, 求中欧拉回路的逐步插入回路法的算法如下:
←,*,,, .
.在中任取一条与关联的边 ('),将及’加入到中得到.
.若 '*,转,否则←' , 转.
.若()(),结束,否则,令 (),在中任取一条与 中某顶点关联的边,先将改 写成起点(终点)为的简单回路,再 置*, ←,转.
∈(),若不在Г的端点出现,显然 ()为偶数,若在端点出现过,则()为 奇数,因为Г只有两个端点且不同,因而 中只有两个奇数顶点。另外,的连通 性是显然的。
充分性: 设的两个奇度顶点分别 为 和,对加新边(),
得' ∪(),则'是连通且无奇度 顶点 的图,由定理可知,‘为欧拉 图,因而存在欧拉回路',而' () 为中一条欧拉通路,所以为半欧拉图。
现在再考虑例中图中图 (),用逐步插入回路法可以走出多 条欧拉回路。现在走出一条来:
开始时,置*,,,
,经过步得 ,
是长度为的简单回路,见演示中红边பைடு நூலகம்所示。
在中有条边与上的顶点相关联, 比如取与,先将改写成以为起点 (终点)的简单回路:
', 然后置*,,再经过步得
充分性: 由于为非平凡的连通图可 知,中边数≥.对作归纳法。
()时,由的连通性及无奇度顶 点可知,只能是一个环,因而为欧拉图。
()设≤(≥)时结论成立,要证明 时,结论也成立。由的连通性及
无奇度顶点可知,δ()≥.类似于例 ,用扩大路径法可以证明中存在 长度大于或等于的圈,设为中一个 圈,删除上的全部边,得的生成子 图’ ,设’有个连通分支’’,…, ‘,每个连通分支至多有条边,且无 奇度顶点,并且设‘与的公共顶点为
是在'中存在到的路径Г,显然Г 与Г边不重,这说明处于Г∪Г 形成的简单回路上。
三、求欧拉图中欧拉回路的算法
设为欧拉图,一般来说中存 在若干条欧拉回路,下面介绍两种求 欧拉回路的算法。
.算法,能不走桥就不走桥:
()任取∈(),令. ()设…已经行遍, 按下面方法来从(){,…}中选 取:
否则不应该为{,…}中的 桥。
相关文档
最新文档