第三章 第3节 三角函数的图象和性质
三角函数图像及性质的总结
第三节三角函数的图像与性质复习要求:1,理解正弦函数、余弦函数、正切函数的图像和性质2,理解周期函数、最小正周期的概念3,学会用五点法画图知识点:1.正弦函数、余弦函数、正切函数、余切函数的图像和性质3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
6.对称轴与对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
三角函数的图象与性质 (共44张PPT)
(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;
【金版教程】届高考数学总复习 第3章 第3讲 三角函数的图象与性质课件 理 新人教A版
求形如y=Asin(ωx+φ)(A>0,ω>0)的函数的单调区间,基
本思路是把ωx+φ看作一个整体,由-
π 2
+2kπ≤ωx+φ≤
π 2
+
2kπ(k∈Z)求得函数的增区间,由
π 2
+2kπ≤ωx+φ≤
3π 2
+2kπ(k
∈Z)求得函数的减区间.若在y=Asin(ωx+φ)中,ω<0,则应
先利用诱导公式将解析式转化,使x的系数变为正数,再进行
(1)y=cos(x+π3)(x∈[0,π])的值域________. (2)y=tan(4π-x)的单调递减区间__________.
1.f(x+T)=f(x) 最小 最小正周期
想一想:提示:f[(x+2)+2]=-f(x+2)=f(x),即f(x+4)
=f(x),所以f(x)是周期为4的函数.
____
________
________
____
y=tanx
无最值
____ ________ 无对称轴
____
判断以下命题的正误. ①y=sinx在第一象限是增函数.( ) ②y=cosx在[0,π]上是减函数.( ) ③y=tanx在定义域上为增函数.( ) ④y=|sinx|的周期为2π.( ) ⑤y=ksinx+1,x∈R则y的最大值为k+1.( )
Z)
π+2kπ(k∈Z)
奇
偶
奇
(kπ,0),k∈Z
(kπ+
π 2
,
0),k∈Z
(
kπ 2
,0),k∈Z
x=kπ+
π 2
,k∈Z
x=kπ,k∈Z
2π 2π π
判一判:①× ②√ ③× ④× ⑤×
第3章《三角函数、解三角形》(第3节)ppt 省级一等奖课件
第三章 三角函数、解三角形
5.(教材习题改编)y=2-3cosx+π4 的最大值为________.此时 x
=________.
解析 当 cosx+π4 =-1 时,函数 y=2-3cosx+π4 取得最大
值
5,此时
π x+ 4 =π+2kπ,从而
x=34π+2kπ,k∈Z.
2.最小正周期: 如果在周期函数f(x)的所有周期中存在一个 最小的正数 , 那么这个 最小正数 就叫做f(x)的最小正周期.
第三章 三角函数、解三角形
二、正弦函数、余弦函数、正切函数的图象和性质
函数
y=sin x
y=cos x
y=tan x
图象
第三章 三角函数、解三角形
定 义 域 值域
R [-1,1]
[规律方法] 1.三角函数的奇偶性的判断技巧 首先要对函数的解析式进行恒等变换,再根据定义、诱导公 式去判断所求三角函数的奇偶性;也可以根据图象做判断.
第三章 三角函数、解三角形
2.求三角函数周期的方法 (1)利用周期函数的定义; (2)利用公式:y=Asin(ωx+φ)和 y=Acos(ωx+φ)的最小正周期为
(kπ -π2 ,π2 +k π ) (k∈Z)上递增
减
第三章 三角函数、解三角形
x=
π 2
+2kπ
(k∈Z)
x= 2kπ
(k∈Z)
最 时,ymax=1;x=
时,ymax=1;x=
值
-π2 +2kπ (k∈Z)
π +2kπ (k∈Z) 时,ymin=-1
时,ymin=-1
奇偶性
奇函数
偶函数
奇函数
第三章 三角函数、解三角形
(2)下列函数中,周期为π ,且在[π4 ,π2 ]上为减函数的是(
三角函数的图象与性质
-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)
三角函数的图像和性质PPT课件
2021/6/7
1
一、三角函数图像的作法 二、三角函数图像的性质 三、f(x)= Asin(x+) 的性质
几何法 五点法 图像变换法
2021/6/7
2
一、三角函数图象的作法
1.几何法 y=sinx 作图步骤:
y
(1)等分单位圆作出特殊角的三角函数线;
(2)平移三角函数线; (3)用光滑的曲线连结各点.
得 到 y = s i n ( ω x + ) 在 某 周 期 内 的 简 图
步骤4
各点纵的坐纵标坐标变为伸原长来或的缩A倍短(横坐标不变);
得 到 y = A s i n ( ω x + ) 在 某 周 期 内 的 简 图
沿x轴
扩展
步骤5
得 到 y = A s i n ( ω x + ) 在 R 上 的 图 象
3
x
11
返回目录
二、三角函数图象的性质
函数 y sin x
ycosx
y tanx
图象
y 1
0
1
2 x
y
1
0
1
2
x
y
2
3 2
2
0
3 2
x
单调性
[2k, 32k](kz)
2
2
递减
[ 2 k, 2 2 k](k 递z)增
[2k, 2k](kz) 递增 [2 k,2 k](k z)
22
递减
纵向伸长3倍
y=3sinx
左移 π 3π
y=3横si向n(缩x+短31) y=3sin(2x+ 2π) 方法2: y=sinx 3
第三节 三角函数的图象与性质
题点(一) 求单调区间
[逐点例析]
[例 1] (1)函数 y=log12cos32π-2x的单调递增区间是 A.kπ-π4,kπ+π4 (k∈Z )
()
B.kπ-π4,kπ (k∈Z )
C.kπ-kπ+π4,kπ+34π (k∈Z )
D.kπ+π4,kπ+34π (k∈Z )
(2)函数 y=|tan x|的单调递增区间为________,单调递减区间为_______.
2.三角函数值域或最值的3种求法 形如y=asin x+k或y=acos x+k的三角函数,直接利用sin
直接法 x,cos x的值域求出 形如y=asin x+bcos x+k的三角函数,化为y=Asin(ωx+φ)+
化一法 k的形式,确定ωx+φ的范围,根据正弦函数单调性写出函数 的值域(最值) 形如y=asin2x+bsin x+k的三角函数,可先设sin x=t,化为 关于t的二次函数求值域(最值);形如y=asin xcos x+b(sin
[解析]
(1)y=log
1 2
cosπ3-2x=log
1 2
(-sin 2x),
由-sin 2x>0 得 sin 2x<0,即 2kπ-π<2x<2kπ,k∈Z ,
即 kπ-π2<x<kπ,k∈Z ,
设 t=-sin 2x,则 y=log 1 t 为减函数, 2
要求
y=log
1 2
cosπ3-2x的递增区间,
二、“基本技能”运用好 1.y=|tan x|·cos x0≤x<32π,x≠π2的图象是
答案:D
()
2.已知函数 f(x)=cosωx+π4 (ω>0)的最小正周期为 π,则 ω=________. 答案:2
第三章 第三节 正弦、余弦、正切函数的图像与性质
最 ymax=1(k∈Z); 2kπ 时, 值 x=ymin=-1(k∈Z)
x=2kπ 时 , ymax=1(k∈Z); π+2kπ 时, X= ymin=-1(k∈Z)
无最值
函数 奇偶 性
y=sinx
y=cosx
y=tanx 奇 对称中心 ( ,0), k∈Z
奇
偶
对称中心
对称中心 (kπ+ ,0) k∈Z
图 象
函 数 定 义 域
y=sinx
y=cosx
y=tanx
R
R
{x|x≠
+2kπ,k∈Z}
值 {y|-1 ≤ y ≤ 1} 域
{y|-1≤ y ≤ 1}
R
函 数
[-
y=sinx
+2kπ,
y=cosx [(2k-1)π,2kπ]
y=tanx
(- Kπ, Kπ) 上递增 k∈Z + +
上递增,∈Z; + 2kπ] 单 上递增,k∈Z; [2kπ,(2k+1)π] 调 [ +2kπ, +2kπ] 性 上递减,k∈Z 上递减,k∈Z
+2kπ≤ωx- φ ≤
3.对于y=Atan(ωx+φ)(A、ω、 φ为常数),其周期T=
单调区间利用ωx+ φ ∈(kπ- 的取值范围,即为其单调区间. ,kπ+
,
)(k∈Z),解出x
[特别警示] 求三角函数的单调区间时,一定要注意A和ω 的符号.
已知函数f(x)=log2[ (1)求函数的定义域;
在[0,2π]内,满足sinx=cosx的x为
再结合正弦、余弦函数的周期是2π,所以定义域为{x|
+2kπ<x<
+2kπ,k∈Z}.
1.形如y=Asin(ωx+φ)(A>0,ω>0)的函数的单调区间, 基本思路是把ωx+ φ 看作一个整体,由- +2kπ≤ωx
高考数学第3章三角函数、解三角形第3讲三角函数的图象与性质创高三全册数学
第四页,共七十六页。
2.正弦函数、余弦函数、正切函数的图象和性质
函数 y=sinx
y=cosx
y=tanx
图象
定义 域 值域
xx∈R,且 x≠
R
R
kπ+π2,k∈Z
01 _[-___1_,1__] 02 _[-___1_,1_]_ 03 _R_
12/12/2021
第五页,共七十六页。
续表
函数
y=sinx
y=cosx
y=tanx
最值
当 x=π2+2kπ
当 x=2kπ(k∈Z)时,ymax
x∈
(k∈Z)时,ymax=1;
=1;
-π2+kπ, π2+kπ
当 x=32π+2kπ (k∈Z)时,ymin=-1
当 x=π+2kπ (k∈Z)时,ymin=-1
,k∈Z,无最大值, 也无最小值
12/12/2021
第二十四页,共七十六页。
解析
2.已知π3为函数 f(x)=sin(2x+φ)0<φ<π2的零点,则函数 f(x)的单调递 增区间是( )
A.2kπ-152π,2kπ+1π2(k∈Z) B.2kπ+1π2,2kπ+71π2(k∈Z) C.kπ-51π2,kπ+1π2(k∈Z) D.kπ+1π2,kπ+71π2(k∈Z)
第二十页,共七十六页。
1.函数 y= tanx+ -cosx的定义域为{__x_2_k_π_+__π_≤__x_<__2_kπ_+__3_2π_,__k_∈__Z_.
解析
tanx≥0, 由
-cosx≥0,
得
tanx≥0,
cosx≤0.
所以 2kπ+π≤x<2kπ+32π,k∈
高二数学课件:第三章 第三节 三角函数的图象与性质
1 1 1 【解析】(1)由log2 sinx -1≥0,log2 sinx ≥1, sinx ≥2, 1 0<sinx≤ 2 得2kπ<x≤2kπ+ 6 或 5 2kπ+ 6 ≤x<2kπ+π,k∈Z. 5 答案:(2kπ,2kπ+ 6 ]∪[2kπ+ 6 ,2kπ+π)(k∈Z) 2 1 (2)由2kπ- 6 ≤x≤2kπ+ 3 (k∈Z),得- 2 ≤cosx≤1,所以函 1 数y=f(x)的定义域为[- 2 ,1]. 1 答案:[- 2 ,1]
函数的单调区间,这就要求同学们熟练掌握基本三角函数的单
调区间.
(2)图象法
函数的单调性表现在图象上是:从左到右,图象上升趋势的区
间为单调递增区间,图象下降趋势的区间为单调递减区间,如
果能画出三角函数的图象,那它的单调区间就直观明了了 .
【变式训练】求下列函数的单调递增区间: (1)y=cos(2x+ );(2)y=3sin( - x ).
2 2
( (
) )
③y=tanx在定义域上是增函数.
④y=sin|x|是偶函数.
(
(
)
)
⑤y=sin2x的周期为2π .
⑥y=cos2x的对称中心为(kπ +
,0),k∈Z. 2
(
(
)
)
(2)若直线y=a与函数y=sinx,x∈[-2π ,2π )的图象有4个交点, 则a的取值范围是_______.
6 3 2
【解析】(1)设u=2x+ ,则y=cosu
6
当2kπ-π≤u≤2kπ(k∈Z)时,y=cosu随u的增大而增大.
又∵u=2x+ 随x的增大而增大(x∈R),
第三章 第三节 三角函数的图象和性质1
π x+ . 4
答案: A
返回
4.(2012· 宁德质检)函数y=tan 为________.
解析:把函数y=tan
π -x的单调递减区间 3
π π -x变为y=-tan x- . 3 3
π π π 由kπ-2<x-3<kπ+2,k∈Z, π 5 得kπ-6<x<kπ+6π,k∈Z.
返回
函数
对称
y=sinx
(k,0),
y=cosx
π (kπ+2,0), k∈Z
y=tanx
kπ ( 2 ,0), k∈Z
对
称 性
中心 对称 轴l:
k∈Z
π x=kπ+2, k∈Z
x=kπ, k∈Z 2π π
无
周期性
2π
返回
返回
1.函数y=tan
π -x的定义域是 4
(
)
π A.x|x≠4,x∈R π B.x|x≠-4,x∈R π x|x≠kπ+ ,k∈Z,x∈R C. 4 3π x|x≠kπ+ ,k∈Z,x∈R D. 4
[巧练模拟]———————(课堂突破保分题,分分必保!)
π 3.(2012· 桂林模拟)若函数f(x)=(1+tan x)cos x,0≤x<2, 则f(x)的最大、最小值分别为 A. 2和1 C.2和 2 B.2和1 D.2和 3 ( )
返回
解析:f(x)=(1+tan x)cos x=cos x+sin x= 2sin π π π 3π ∵0≤x<2,∴4≤x+4< 4 . ∴1≤f(x)≤ 2.
返回
[精析考题] [例4] (2010· 湖北高考)函数f(x)= 3sin
三角函数的图像与性质课件PPT
正解:因为 x∈π6,π,所以借助函数 y=sin x 的图象可知, 此时 0≤sin x≤1.于是由 sin x=2m-1,得 0≤2m-1≤1,解得 m 的取值范围12≤m≤1.
纠错心得:三角函数的取值范围与定义域有关,因此,在求解 有关范围问题时,一定要先看清定义域,再由定义域推得三角函数 的取值范围,最后求出正确答案.
思路点拨:要使函数有意义,则 sin x>0 且 25-x2≥0,即 sin x>0 且-5<x<5,结合图象求出在区间(-5,5)上满足 sin x>0 的 x 的取值范围,即原函数的定义域.
解: 使函数有意义的条件是s2i5n-x>x2≥0,0, 记 sin x>0 的 x 取值为 集合 A,25-x2≥0 的 x 取值为集合 B,则 A=(2kπ,2kπ+π),k∈Z, B=[-5,5].用图象表示如下:
小结 为了突出函数的这个特性,我们把函数f(x)=sin x称为周 期函数,2kπ为这个函数的周期 (其中k∈Z且k≠0).
思考3 正弦函数y=sin x的周期是否唯一?正弦函数y=sin x 的周期有哪些? 答 正弦函数y=sin x的周期不止一个. ±2π,±4π,±6π,… 都 是 正 弦 函 数 的 周 期 , 事 实 上 , 任 何 一 个 常 数 2kπ(k∈Z 且 k≠0)都是它的周期.
探究点一 周期函数的定义
思考1 观察正弦函数图象知,正弦曲线每相隔2π个单位重复出现 其理论依据是什么? 答 诱导公式sin(x+2kπ)=sin x(k∈Z)当自变量x的值增加2π的整 数倍时,函数值重复出现.数学上,用周期性这个概念来定量地刻 画这种“周而复始”的变化规律.
思考2 设f(x)=sin x,则sin(x+2kπ)=sin x可以怎样表示?把函数 f(x)=sin x称为周期函数,那么,一般地,如何定义周期函数呢? 答 f(x+2kπ)=f(x)(k∈Z)这就是说:当自变量x的值增加到x+2kπ 时,函数值重复出现. 一般地,对于函数y=f(x),如果存在一个不为零的常数T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y= f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.
三角函数的图象和性质
在区间 [0,
2
]
上是单调函数,
必有
2
≤
,
即 0<≤2.
∴0<
4k+2 3
≤2(kZ).
解得 k=0 或 1.
∴=2
或
2 3
.
综上所述,
=
2
,
=2 或
2 3
.
6.如果函数 的值.
y=sin2x+acos2x
的图象关于直线
x=-
8
对称,
求a
解: y=sin2x+acos2x= a2+1 sin(2x+), 其中, tan=a.
3.周期性: ①y=sinx、y=cosx 的最小正周期都是
Asin(x+) 和 f(x)=Acos(x+)的最小正周期都是
2;
T=
2|②| .f(x)=
4.奇偶性与对称性: 正弦函数y=sinx(xR)是奇函数, 对称中心
是 (x(kR),是0)偶(k函Z数),,对对称称轴中是心直是线(kx=+k2,+02)((kkZZ)),;对余称弦轴函是数直y=线coxs=x k (kZ) (正(余)弦型函数的对称轴为过最高点或最低点且垂
性, 如果是周期函数, 求出它的一个周期.
解:
(1)由∴∵∴2kfsfs((iixnx+n))xx=的4--lcoc<定oogxss<21xx义(2s=>ik域n0,x2+为-s即ic5n4o{(xsx,x2|-k)s2≥ik4nlZ)(o≤x+g-21424<2,)x>=<0-2得k12:.+
5
4
三角函数的图象和性质
三角函数定义域、值域的求解策略 (1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图 象来求解. (2)求解三角函数的值域(最值),首先把三角函数化为 y=Asin(ωx+φ)+k 的形式,再求最值(值域),或 用换元法(令 t=sinx,或 t=sinx±cosx)化为关于 t 的二次函数求值域(最值). (3)换元法的应用:把 sinx 或 cosx 看作一个整体,转化为二次函数,求给定区间上的值域(最值)问题.此 时注意所换元的取值范围.
第3讲 三角函数的图象和性质
1.能画出 y=sinx,y=cosx,y=tanx 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象 与 x 轴的交点等),理解正切函数在区间-π2,2π内的单调性.
板块一 知识梳理·自主学习
考点 1 周期函数和最小正周期
递增;π 在 2
+2kπ,32π+2kπ]
,k∈Z 上 ,k∈Z 上
在 [(2k-1)π,2kπ] k∈Z 上递增;
,在-π2
+kπ,
在 [2kπ,(2k+1)π],k∈Z 上递增
π2+kπ,
递减
k∈Z 上递减
-xπ2=+π22+kπ2(kkπ∈Z(k)∈时Z),时y,miny=max-=11;x=
[必备知识]
考点 2 正弦函数、余弦函数、正切函数的图象和性质
函数
y=sinx
y=cosx
y=tanx
图象
定义 域
值域
x∈R [-1,1]
x∈R [-1,1]
{ x|x∈R 且 x≠π2+kπ,k∈Z } R
续表 函数
单调性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 第三节 三角函数的图象和性质1.函数y =tan 4x π(-)的定义域是 ( ) A .{x |x ≠π4,x ∈R}B .{x |x ≠-π4,x ∈R}C .{x |x ≠kπ+π4,k ∈Z ,x ∈R}D .{x |x ≠kπ+3π4,k ∈Z ,x ∈R}解析:∵x -π4≠kπ+π2,∴x ≠kπ+34π,k ∈Z.答案:D2.求下列函数的定义域:(1)y =cos x +tan x ;(2)y =lg(2sin x -1)+-tan x -1cos(x 2+π8).解:(1)要使函数有意义,则⎩⎪⎨⎪⎧ cos x ≥0,tan x ≥0,即⎩⎨⎧ 2kπ-π2≤x ≤2kπ+π2,kπ≤x <kπ+π2,(k∈Z), 所以2kπ≤x <2kπ+π2(k ∈Z).所以函数y =cos x +tan x 的定义域是{x |2kπ≤x <2kπ+π2,k ∈Z}.(2)由函数式有意义得⎩⎪⎨⎪⎧2sin x -1>0,-tan x -1≥0,cos(x 2+π8)≠0,得⎩⎪⎨⎪⎧ sin x >12,tan x ≤-1,x 2+π8≠kπ+π2,(k ∈Z).即⎩⎪⎨⎪⎧ 2kπ+π6<x <2kπ+5π6,kπ-π2<x ≤kπ-π4,x ≠2kπ+3π4,(k ∈Z).求交集得2kπ+π2<x <2kπ+3π4(k ∈Z). 所以函数的定义域是{x |2kπ+π2<x <2kπ+3π4,k ∈Z}. 3.若函数y =sin x +f (x )在[-π4,3π4]内单调递增,则f (x )可以是 ( ) A .1 B .cos x C .sin x D .-cos x解析:y =sin x -cos x =2sin(x -π4),-π2≤x -π4≤π2,满足题意,所以f (x )可以是-cos x . 答案:D4.求y =3tan(π6-x 4)的周期及单调区间. 解:y =3tan(π6-x 4)=-3tan(x 4-π6), ∴T =π|ω|=4π, ∴y =3tan(π6-x 4)的周期为4π. 由kπ-π2<x 4-π6<kπ+π2,得4kπ-4π3<x <4kπ+8π3(k ∈Z), y =3tan(x 4-π6)在(4kπ-4π3,4kπ+8π3)(k ∈Z)内单调递增. ∴y =3tan(π6-x 4)在(4kπ-4π3,4kπ+8π3)(k ∈Z)内单调递减.5.已知函数y =sin x 的定义域为[a ,b ],值域为[-1,12],则b -a 的值不可能是 ( )A.π3B.2π3 C .π D.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为[2π3,4π3]. 答案:A6.已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ω的最小值等于( ) A.23 B.32C .2D .3 解析:由题意知⎩⎨⎧ T 4≤π3,T =2πω,解得ω≥32. 答案:B 7.设函数f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,π2]上的最小值为-4,那么a 的值等于 ( )A .4B .-6C .-4D .-3解析:y =cos2x +3sin2x +a +1=2sin(2x +π6)+a +1, ∵x ∈[0,π2],∴2x +π6∈[π6,7π6], ∴y min =2×(-12)+a +1=a =-4. 答案:C8.(2010·诸城模拟)设函数f (x )=2cos 2x +23sin x ·cos x +m (m ,x ∈R)(1)化简函数f (x )的表达式,并求函数f (x )的最小正周期;(2)当x ∈[0,π2]时,求实数m 的值,使函数f (x )的值域恰为[12,72]. 解:(1)f (x )=2cos x +23sin x cos x +m=1+cos2x +3sin2x +m=2sin(2x +π6)+m +1, ∴函数f (x )的最小正周期T =π.(2)∵0≤x ≤π2, ∴π6≤2x +π6≤7π6, ∴-12≤sin(2x +π6)≤1,m ≤f (x )≤m +3.又12≤f (x )≤72,故m =12.9.(2009·江西高考) ( )A .2π B.3π2 C .π D.π2解析:f (x )=(1+3tan x )cos x =cos x +3sin x=2sin(x +π6),T =2π|ω|=2π. 答案:A10.(2009·福建四地六校联考)若函数f (x )同时满足下列三个性质:①最小正周期为π;②图象关于直线x =π3对称;③在区间[-π6,π3]上是增函数.则y =f (x )的解析式可以是 ( )A .y =sin(2x -π6)B .y =sin(x 2+π6) C .y =cos(2x -π6) D .y =cos(2x +π3) 解析:逐一验证,由函数f (x ) 的周期为π,故排除B ;又∵cos(2×π3-π6)=cos π2=0,故y =cos(2x -π6)的图象不关于直线x =π3对称; 令-π2+2kπ≤2x -π6≤π2+2kπ,得-π6+kπ≤x ≤π3+kπ,k ∈Z , ∴函数y =sin(2x -π6)在[-π6,π3]上是增函数. 答案:A11.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)有最小值,无最大值,则ω=________. 解析:由f (π6)=f (π3), 知f (x )的图像关于x =π4对称.且在x =π4处有最小值, ∴π4ω+π3=2kπ-π2, 有ω=8k -103(k ∈Z). 又∵12T =πω>π3-π6=π6,∴ω<6,故k =1,ω=143. 答案:14312.(文)若a =(3cos ωx ,sin ωx ),b =(sin ωx,0),其中ω>0,记函数f (x )=(a +b )·b +k .(1)若函数f (x )的图象中相邻两条对称轴间的距离不小于π2,求ω的取值范围; (2)若函数f (x )的最小正周期为π,且当x ∈[-π6,π6]时,函数f (x )的最大值是12,求函数f (x )的解析式,并说明如何由函数y =sin x 的图象变换得到函数y =f (x )的图象. 解:∵a =(3cos ωx ,sin ωx ),b =(sin ωx,0),∴a +b =(3cos ωx +sin ωx ,sin ωx ).故f (x )=(a +b )·b +k =3sin ωx cos ωx +sin 2ωx +k =32sin2ωx +1-cos2ωx 2+k =32sin2ωx -12cos2ωx +12+k =sin(2ωx -π6)+k +12. (1)由题意可知T 2=π2ω≥π2,∴ω≤1. 又ω>0,∴0<ω≤1.(2)∵T =2π2ω=π,∴ω=1. ∴f (x )=sin(2x -π6)+k +12. ∵x ∈[-π6,π6],∴2x -π6∈[-π2,π6]. 从而当2x -π6=π6,即x =π6时,f (x )max =f (π6)=sin π6+k +12=k +1=12, ∴k =-12.故f (x )=sin(2x -π6). 由函数y =sin x 的图象向右平移π6个单位长度,得到函数y =sin(x -π6)的图象,再将得到的函数图象上所有点的横坐标变为原来的12倍(纵坐标不变),得到函数y =sin(2x -π6)的图象. (理)(2009·重庆高考)设函数f (x )=sin(π4x -π6)-2cos 2π8x +1. (1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时,y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3), 故f (x )的最小正周期为T =2ππ4=8. (2)法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )). 由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,从而g (x )=f (2-x )=3sin[π4(2-x )-π3] =3sin(π2-π4x -π3) =3cos(π4x +π3). 当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g max =3cos π3=32. 法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x =1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值. 由(1)知f (x )=3sin(π4x -π3), 当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为 g max =3sin π6=32.。