TTL电平和CMOS电平总结
TTL电平与CMOS电平总结文档
TTL电路的电平就叫TTL 电平,CMOS电路的电平就叫CMOS电平TTL集成电路的全名是晶体管-晶体管逻辑集成电路(Transistor-Transistor Logic),主要有54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。
标准TTL 输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V。
S-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.5V。
LS-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大Ⅰ类0.7V,Ⅱ、Ⅲ类0.8V,输出低电平最大Ⅰ类0.4V,Ⅱ、Ⅲ类0.5V,典型值0.25V。
TTL电路的电源VCC供电只允许在+5V±10%范围内,扇出数为10个以下TTL门电路。
TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。
TTL 电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。
TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。
这是由于可靠性和成本两面的原因。
CMOS电平和TTL电平
CMOS 电平和TTL 电平
CMOS 电平和TTL 电平:
CMOS 逻辑电平范围比较大,范围在3~15V,比如4000 系列(4011 与非门),当5V 供电时,输出高电平在4.6 以上,低电平在0.05V 以下;输入在3.5V 以上为高电平,1.5V 以下为低电平。
而对于TTL 芯片,供电范围在0~5V,常见都是5V,如74 系列5V 供电,输出在2.7V 以上为高电平,输出在0.5V 以下为低电平,输入在2V 以上为高电平,在0.8V 以下为低电平。
因此,CMOS 电路与TTL 电路就有一个电平转换的问题,使两者电平域值能匹配。
有关逻辑电平的一些概念:要了解逻辑电平的内容,首先要知道以下几个概念的含义:
输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih 时,则认为输入电平为高电平。
输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil 时,则认为输入电平为低电平。
输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
TTL与CMOS电平
TTL和COMS电平匹配以及电平转换的方法一.TTLTTL集成电路的主要型式为晶体管-晶体管逻辑门(transistor-transistor logic gate),TTL大部分都采用5V电源。
1.输出高电平Uoh和输出低电平UolUoh≥2.4V,Uol≤0.4V2.输入高电平和输入低电平Uih≥2.0V,Uil≤0.8V二.CMOSCMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
CMOS电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平Uoh和输出低电平UolUoh≈VCC,Uol≈GND2.输入高电平Uoh和输入低电平UolUih≥0.7VCC,Uil≤0.2VCC (VCC为电源电压,GND为地)从上面可以看出:在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路则不能直接驱动CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则CMOS电路就不能检测到高电平,低电平小于0.4V 满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进行判断。
如果电路中出现3.3V的COMS电路去驱动5V CMOS 电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT(74系列的输入输出在下面有介绍)的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
三.74系列简介74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT这三种,这三种系列在电平方面的区别如下:输入电平输出电平74LS TTL电平TTL电平74HC COMS电平COMS电平74HCT TTL电平COMS电平++++++++++++++++++++++++++++++++++++TTL和CMOS电平1、TTL电平(什么是TTL电平):输出高电平>2.4V,输出低电平<0.4V。
ttl和cmos的电平范围
ttl和cmos的电平范围(最新版)目录1.TTL 和 CMOS 的定义与特点2.TTL 的电平范围3.CMOS 的电平范围4.TTL 与 CMOS 电平范围的比较5.应用领域与优缺点正文1.TTL 和 CMOS 的定义与特点TTL(Transistor-Transistor Logic)即晶体管 - 晶体管逻辑,是一种数字集成电路技术。
它是通过晶体管的开关状态来表示和传输二进制信号(0 和 1)。
TTL 具有速度快、噪声抗干扰能力强、功耗低等优点,因此在数字电路领域得到了广泛应用。
CMOS(Complementary Metal-Oxide-Semiconductor)即互补金属氧化物半导体,是另一种数字集成电路技术。
CMOS 电路由 nMOS 和 pMOS 晶体管组成,通过对它们的控制实现对信号的放大和开关。
CMOS 具有低功耗、高噪声抗干扰能力等优点,在现代集成电路设计中占据主导地位。
2.TTL 的电平范围TTL 电平范围通常为 5V,即输入和输出信号的电压在 0V(低电平)和 5V(高电平)之间。
在这范围内,TTL 电路可以正确地识别和传输信号。
3.CMOS 的电平范围CMOS 的电平范围较宽,一般为 3.3V、5V、12V 等。
不同电压等级的CMOS 电路有不同的功耗和性能特点。
低电压 CMOS(如 3.3V)具有更低的功耗,但信号传输速度较慢;高电压 CMOS(如 12V)则具有较快的信号传输速度,但功耗相对较高。
4.TTL 与 CMOS 电平范围的比较虽然 TTL 和 CMOS 都是数字集成电路技术,但它们的电平范围存在差异。
这使得它们在不同应用场景下有各自的优势和局限。
例如,在高速信号传输和低功耗要求的应用中,CMOS 技术具有更好的性能;而在对噪声抗干扰能力要求较高的场景下,TTL 技术可能更为适合。
5.应用领域与优缺点TTL 和 CMOS 技术各自在不同应用领域有优势。
TTL 适合在高速、高噪声抗干扰能力的场景下应用,如计算机内存、数字信号处理器等;CMOS 则在低功耗、高集成度的领域具有优势,如微处理器、手机芯片等。
各种电平总结
TTL和CMOS电平总结TTL和CMOS电平总结TTL——Transistor-Transistor LogicHTTL——High-speed TTLLTTL——Low-power TTLSTTL——Schottky TTLLSTTL——Low-power Schottky TTLASTTL——Advanced Schottky TTLALSTTL——Advanced Low-power Schottky TTLFAST(F)——Fairchild Advanced schottky TTLCMOS——Complementary metal-oxide-semiconductorHC/HCT——High-speed CMOS Logic(HCT与TTL电平兼容)AC/ACT——Advanced CMOS Logic(ACT与TTL电平兼容)(亦称ACL)AHC/AHCT——Advanced High-speed CMOS Logic(AHCT与TTL电平兼容)FCT——FACT扩展系列,与TTL电平兼容FACT——Fairchild Advanced CMOS Technology1,TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
TTL与CMOS总结
TTL与CMOS总结首先,TTL是一种基于双极型晶体管的数字逻辑家族。
TTL使用NPN型和PNP型的双极型晶体管来构建逻辑门电路。
主要有TTL、LSTTL和HCTTL等子家族。
TTL家族使用5V电源供电,逻辑高电平为约2.4V,逻辑低电平为约0.8V。
TTL的优点包括速度快、功耗低、噪声容限高以及驱动能力强。
然而,TTL也有一些缺点,例如功耗较大、电压容限窄以及温度敏感性高等。
其次,CMOS是一种基于金属-氧化物-半导体场效应晶体管(MOSFET)的数字逻辑家族。
CMOS使用P型和N型MOSFET来构建逻辑门电路。
主要有CMOS、HC-CMOS和AC-CMOS等子家族。
CMOS家族使用3.3V或5V电源供电,逻辑高电平为供电电压,逻辑低电平为0V。
CMOS的优点包括功耗低、噪声容限高、电压容限宽以及集成度高。
然而,CMOS的缺点是速度相对较慢、驱动能力较弱。
在功耗方面,TTL的功耗普遍较大,主要是由于使用双极型晶体管构建逻辑门电路。
而CMOS的功耗较低,主要是由于MOSFET在静态情况下几乎不消耗电流。
在速度方面,TTL的响应速度较快,主要是由于双极型晶体管的速度较快。
而CMOS的响应速度较慢,主要是由于MOSFET的速度较慢。
在电压容限方面,TTL的电压容限比CMOS窄。
TTL的逻辑高电平约为2.4V,逻辑低电平为约0.8V。
而CMOS的逻辑高电平等于供电电压,逻辑低电平为0V。
在噪声容限方面,TTL的噪声容限较高,可以适应较高的干扰噪声。
而CMOS的噪声容限较低,对噪声容限较为敏感。
总的来说,TTL和CMOS在不同方面有各自的优势和缺点。
TTL适用于对速度和驱动能力要求较高的场景,例如高速计数器、时序电路等。
CMOS适用于需要低功耗和高集成度的场景,例如微处理器、存储器等。
此外,随着技术的不断进步,TTL和CMOS也得到了改进和发展。
例如,低功耗TTL(LSTTL)是TTL的改进版本,使用低功耗技术降低功耗。
谈谈TTL和CMOS电平
谈谈TTL和CMOS电平TTL——Transistor-Transistor LogicHTTL——High-speed TTLLTTL——Low-power TTLSTTL——Schottky TTLLSTTL——Low-power Schottky TTLASTTL——Advanced Schottky TTLALSTTL——Advanced Low-power Schottky TTLFAST(F)——Fairchild Advanced schottky TTLCMOS——Complementary metal-oxide-semiconductorHC/HCT——High-speed CMOS Logic(HCT与TTL电平兼容)AC/ACT——Advanced CMOS Logic(ACT与TTL电平兼容)(亦称ACL)AHC/AHCT——Advanced High-speed CMOS Logic(AHCT与TTL电平兼容) FCT——FACT扩展系列,与TTL电平兼容FACT——Fairchild Advanced CMOS Technology1.TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2.CMOS电平:逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3.平转换电路:因为TTL和COMS的高低电平的值不一样(TTL 5v<==>CMOS 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压。
4.OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
什么是TTL电平和CMOS电平-ttl电平和cmos电平区别和比较
什么是TTL电平和CMOS电平?ttl电平和cmos电平区别和比较1、TTL电平(什么是TTL电平):TTL电平信号被利用的最多是由于通常数据表示采纳二进制规定,+5V等价于规律“1”,0V等价于规律“0”,这被称做TTL(晶体管-晶体管规律电平)信号系统,这是计算机处理器掌握的设备内部各部分之间通信的标准技术。
TTL电平信号对于计算机处理器掌握的设备内部的数据传输是很抱负的,首先计算机处理器掌握的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器掌握的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满意这个要求。
TTL型通信大多数状况下,是采纳并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。
这是由于牢靠性和成本两面的缘由。
由于在并行接口中存在着偏相和不对称的问题,这些问题对牢靠性均有影响。
TTL电路不使用的输入端悬空为高电平。
输出高电平2.4V,输出低电平0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平=2.0V,输入低电平=0.8V,噪声容限是0.4V。
2、CMOS电平:1规律电平电压接近于电源电压,0规律电平接近于0V。
而且具有很宽的噪声容限。
CMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc。
CMOS电路不使用的输入端不能悬空,会造成规律混乱。
另外,CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。
3、电平转换电路:由于TTL和COMS的凹凸电平的值不一样(ttl 5v==cmos 3.3v),所以相互连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4、OC门,又称集电极开路与非门门电路,Open Collector(Open Drain)。
逻辑电平介绍TTL,CMOS
逻辑电平介绍TTL,CMOSTTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<= 0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
TTL和CMOS的逻辑电平关系图2-1:TTL和CMOS的逻辑电平图上图为5V TTL逻辑电平、5V CMOS逻辑电平、LVTTL逻辑电平和LVCMOS逻辑电平的示意图。
5V TTL逻辑电平和5V CMOS逻辑电平是很通用的逻辑电平,注意他们的输入输出电平差别较大,在互连时要特别注意。
另外5V CMOS器件的逻辑电平参数与供电电压有一定关系,一般情况下,Voh≥Vcc-0.2V,Vih≥0.7Vcc;Vol≤0. 1V,Vil≤0.3Vcc;噪声容限较TTL电平高。
JEDEC组织在定义3. 3V的逻辑电平标准时,定义了LVTTL和LVCMOS逻辑电平标准。
LVTTL逻辑电平标准的输入输出电平与5V TTL逻辑电平标准的输入输出电平很接近,从而给它们之间的互连带来了方便。
TTL和CMOS电平总结
1,TTL电平(什么是TTL电平):输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
6,COMS电路的使用注意事项1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。
电平标准(总结)
数字信号的标准现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。
下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。
一、TTL电平TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。
TTL集成电路的全名是晶体管-晶体管逻辑集成电路(Transistor-Transistor Logic),主要有54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。
1.标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H>2V,输入L>0.8V;输出L=3.4V,输出L=0.2)。
2.S-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.5V。
3.LS-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大Ⅰ类0.7V,Ⅱ、Ⅲ类0.8V,输出低电平最大Ⅰ类0.4V,Ⅱ、Ⅲ类0.5V,典型值0.25V。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。
TTL电平和CMOS电平总结
TTL电平和CMOS电平总结TTL电平是一种基于双极型晶体管的数字电平标准。
它使用NPN和PNP型晶体管作为信号的放大和开关元件。
TTL电平标准定义了电压范围,表示逻辑低电平(0)和逻辑高电平(1)。
通常情况下,TTL逻辑低电平的范围为0V至0.8V,逻辑高电平的范围为2.2V至5V。
TTL电平的特点包括:1.高噪声抗干扰能力:由于TTL电路中采用了差分信号传输原理,使得TTL电平对噪声和干扰的抗干扰能力较强,适用于工业控制等环境噪声较大的场合。
2.低功耗:TTL电路采用双极型晶体管,功耗相对较低,适用于需要长时间运行的场合。
3.低输入输出阻抗:TTL电路的输入输出阻抗较低,使得信号传输速度较快,适用于需要高速传输的场合。
4.灵敏度高:TTL电路的输入灵敏度较高,可以读取较低的输入电压信号,适用于处理较小的信号。
然而,TTL电平也存在一些不足之处,如功耗较高、不适用于低电压供电等。
CMOS电平是一种使用CMOS晶体管构成的数字电平标准。
CMOS电平使用PMOS和NMOS晶体管作为信号的放大和开关元件。
CMOS电平标准也定义了逻辑低电平(0)和逻辑高电平(1)的电压范围。
通常情况下,CMOS逻辑低电平的范围为0V至0.3V,逻辑高电平的范围为0.7V至VCC(供电电压)。
CMOS电平的特点包括:1.低功耗:CMOS电路以其低功耗而闻名。
由于CMOS晶体管在不同的状态下只消耗微小的电流,适用于需要长时间运行和低功耗的电子设备。
2.高噪声抗干扰能力:CMOS电路抗噪声和抗干扰能力较强,适用于高精度和高灵敏度的应用。
3.高输入输出阻抗:CMOS电路的输入输出阻抗较高,使得它对电压和电流的源和负载较为适应。
4.宽电源电压范围:CMOS电路的供电电压范围较宽,可以适应不同的供电电压要求。
然而,与TTL电平相比,CMOS电平的传输速度较慢,灵敏度略低。
总的来说,TTL和CMOS电平各有优势,应根据具体的应用场景和需求来选择。
TTL和CMOS电平总结
TTL和CMOS电平总结1.TTL电平:TTL是早期使用广泛的数字电平标准,其电平定义如下:- 高电平 (logic 1):大约2.4V到5V之间。
- 低电平 (logic 0):大约0V到0.4V之间。
-高电平噪声容限:1.3V。
-低电平噪声容限:0.8V。
-输出电流:约为-0.4mA至+16mA。
TTL电平的优点包括:速度较快、抗噪声能力较好、成本较低。
然而,TTL电平的缺点是功耗较高,因为它使用了较高的供电电压和较大的电流来驱动逻辑门。
此外,TTL信号电平的电压范围相对较窄,容易受到电源电压波动的影响。
2.CMOS电平:CMOS是现代数字电路中使用较多的电平标准,其电平定义如下:- 高电平 (logic 1):大约0.7V到VDD(供电电压)之间。
- 低电平 (logic 0):大约0V到0.3V之间。
-高电平噪声容限:VDDx0.7-低电平噪声容限:0.3V。
-输出电流:接近0mA。
CMOS电平的优点包括:功耗较低、较高的噪声容限、较宽的电压范围和较大的输入输出电阻。
CMOS因其低功耗特性而广泛应用于便携式设备和低功耗电子设备。
此外,它对电源电压波动的容忍度更高,因此在电源电压不稳定的环境下工作更可靠。
然而,CMOS电平的缺点是速度相对较慢,尤其在大容量的负载下。
此外,由于其输入输出电阻较大,CMOS信号对于电磁干扰更敏感。
总之,TTL和CMOS是两种常见的数字电平标准。
TTL电平使用高电流和较高的电压,速度较快但功耗较高;CMOS电平使用较低的电压和电流,功耗较低但速度相对较慢。
选择哪种电平标准取决于具体的应用要求和设计约束。
TTL和CMOS电平汇总
TTL和CMOS电平汇总1. TTL(Transistor-Transistor Logic)TTL电平是一种基于双极型晶体管的逻辑电平标准。
它使用晶体管的导通和截止来表示逻辑电平的高低。
TTL电平通常具有以下特点:-高电平(H):在TTL中,高电平通常定义为2.6V到5V之间的电压范围,其中2.6V以下被认为是低电平。
高电平表示逻辑“1”。
TTL电平的高电平较高,可以有效地减小误差和干扰。
-低电平(L):TTL的低电平通常在0V到0.4V之间,其中0.4V以上被认为是高电平。
低电平表示逻辑“0”。
-噪声容忍度差:由于TTL电平的高电平较高,因此对噪声和干扰的容忍度较低。
-低功耗:与CMOS相比,TTL电路的功耗较高。
这是由于TTL使用了较高的工作电压和功耗较大的双极型晶体管。
-输出电流较大:TTL电路的输出电流能达到较大数值,通常在20mA 左右。
这使得TTL电路可以驱动多个输入负载。
TTL电平由于其较高的工作电压和较大的输出电流,适用于需要较高工作稳定性和较强驱动能力的应用,比如数据传输、时序控制和数字信号处理等。
CMOS电平是一种基于互补金属氧化物半导体的逻辑电平标准。
它使用n型和p型金属氧化物半导体场效应管(NMOS和PMOS)来实现逻辑门电路。
CMOS电平通常具有以下特点:-高电平(H):在CMOS中,高电平通常在3.5V以上,其中3.5V以下被认为是低电平。
高电平表示逻辑“1”。
CMOS电平的高电平较低,功耗较少,也有助于噪声和干扰的抑制。
-低电平(L):CMOS的低电平通常在0V到1.5V之间,其中1.5V以上被认为是高电平。
低电平表示逻辑“0”。
-噪声容忍度好:由于CMOS电平的高电平较低,因此对噪声和干扰的容忍度较好。
-低功耗:与TTL相比,CMOS电路的功耗较低。
这是由于CMOS使用了较低的工作电压和功耗较小的场效应管。
-输出电流较小:CMOS电路的输出电流较小,一般在几毫安以下。
TTL电平与CMOS电平区别(TTLlevelisdifferentfromCMOSlevel)
TTL 电平与 CMOS 电平区别(TTL level is different from CMOSlevel)晶体管晶体管逻辑高速晶体管-晶体管逻辑--高速TTLLTTL --低功耗TTL解决-- Schottky TTL低功耗肖特基TTL输入通道TTL -先进的肖特基TTLALSTTL --先进的低功耗肖特基TTL快(f)-飞兆半导体先进的肖特基TTL互补金属氧化物半导体HC—高速CMOS逻辑(HCT与TTL电平兼容)交流/行为--先进的CMOS逻辑(行为与TTL电平兼容)(亦称ACL)AHC / AHCT --先进的高速CMOS逻辑(AHCT与TTL电平兼容)FCT --事实扩展系列,与TTL电平兼容事实上,飞兆半导体先进的CMOS技术,其1、TTL电平:输出高电平> 2.4V,输出低电平<0.4V的。
在室温下,一般输出高电平是3.5V,输出低电平是0.2v。
最小输入高电平和低电平:输入高电平> = 2.0V,输入低电平< = 0.8V,噪声容限是0.4v。
2、CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3、电平转换电路:因为TTL和COMS的高低电平的值不一样(TTL 5v <==> CMOS 3.3V),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4、OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5、TTL和COMS电路比较:1)TTL电路是电流控制器件,而COMS电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
公司电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
公司电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
TTL电平和CMOS电平总结
(1)学过TTL电路,CMOS电路,也总是听说TTL电平,CMOS电平,那是不是TTL电路的电平就叫TTL 电平,CMOS电路的电平就叫CMOS电平?答:你的理解基本正确。
能让TTL电路正常工作的电平,或是正确传递和识别的逻辑状态值即为TTL电平;同理,CMOS电平。
(2)它们的区别是什么?答:本质上没有区别,但是对于具体的逻辑器件,其电平受到器件的电源电压限制。
通常TTL逻辑器件,其电源电压为5V,故其高低电平的分界点为2.5V。
而CMOS逻辑器件的工作电压有5V、3.3V、2.5V等,其高低电平的分界点为电源电压的一半。
(3)单片机里常说的高电平低电平是指CMOS电平吗?如果是的话,是不是因为它的P0,P1,P2,P3口的内部结构是CMOS电路啊?答:其实所谓的TTL电平和CMOS电平都是我们的教科书里才这样说的,真正的元器件规格书里是没有这种说法的。
单片机或者其它的逻辑器件规格书中所说的高低电平是其本身能够识别和处理、并将处理后的结果再正确输送到下一级电路的逻辑电平。
要学会看器件的规格书,不要被教科书误导。
(4)有一本电片机的书上说,“一般的,单片机的端口只是驱动TTL电平,不提供或者提供很小的驱动电流.........." 我不明白驱动TTL电平是什么意思,为什么不直接说能允许多大的负载电流呢?答:这本书上的说法可能有误,我们知道驱动TTL器件所需的驱动电流会比驱动CMOS器件的驱动电流大,所以一般是单片机只是驱动CMOS电平的负载而不是TTL电平(这仅仅是一般哦,具体的一定要看单片机的规格书)。
其实直接说允许多大的负载电流表达更准确!其规格书里就是这么表达的!所以你不必纳闷!(5)如果在编程时,让P2口出高电平或低电平,那么这个电平值是不是固定的(在不同的负载下)?如果是的话,是多少呢?我还有些不明白的地方。
我举一例子,P2.0接一限流电阻470欧,然后接一发光二极管,发光二极管的一端接电源5伏。
CMOS与TTL的区别
1、TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2、CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3、电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4、OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5、TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS 电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
6、COMS电路的使用注意事项1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。
TTL和CMOS的区别(全面-自己整理)
TTL和CMOS的区别TTL和COMS电平比较:(一)TTL高电平~5V,低电平0V~CMOS电平Vcc可达到12VTTL电路不使用的输入端悬空为高电平另外,CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。
(二)TTL电平是5V,CMOS电平一般是12V。
因为TTL电路电源电压是5V,CMOS电路电源电压一般是12V。
5V的电平不能触发CMOS电路,12V的电平会损坏TTL电路,因此不能互相兼容匹配。
(三)TTL电平标准输出L:< ;H:>。
输入L:< ;H:>TTL器件输出低电平要小于,高电平要大于。
输入,低于就认为是0,高于就认为是1。
CMOS电平:输出L:<*Vcc ;H:>*Vcc。
输入L:<*Vcc ;H:>*Vcc.TTL和COMS电路比较:TTL CMOSTTL电路是电流控制器件,而coms电路是电压控制器件。
TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25--50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象总体特性比较:是场效应管构成,TTL为双极晶体管构成的逻辑电平范围比较大(5~15V),TTL只能在5V下工作的高低电平之间相差比较大、抗干扰性强,TTL则相差小,抗干扰能力差功耗很小,TTL功耗较大(1~5mA/门)的工作频率较TTL略低,但是高速CMOS速度与TTL差不多相当。
3、COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:(1)、在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
(2)、芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
ttl和cmos的电平范围
TTL和CMOS的电平范围1. 介绍TTL(Transistor-Transistor Logic)和CMOS(Complementary Metal-Oxide-Semiconductor)是常见的数字电路家族,用于实现逻辑功能。
它们在电平范围上有一些不同,本文将详细介绍TTL和CMOS的电平范围及其特点。
2. TTL的电平范围TTL是一种基于晶体管的数字逻辑家族,它使用0V和5V的电平表示逻辑0和逻辑1。
TTL的电平范围如下:•逻辑0:0V至0.8V•逻辑1:2V至5VTTL的电平范围有以下特点:•高噪声抗干扰能力:TTL逻辑门的输入电平范围较宽,可以有效抵御噪声的干扰。
•高功耗:TTL门电路在逻辑1状态下,输出电平接近于5V,因此功耗较高。
•快速响应:TTL逻辑门的传输延迟较短,响应速度较快。
3. CMOS的电平范围CMOS是一种由互补金属氧化物半导体(CMOS)技术制造的数字逻辑家族,它使用0V和VDD(供电电压)的电平表示逻辑0和逻辑1。
CMOS的电平范围如下:•逻辑0:0V至0.3VDD•逻辑1:0.7VDD至VDDCMOS的电平范围有以下特点:•低功耗:CMOS逻辑门在逻辑1状态下,输出电平接近于VDD,但功耗较低。
•抗噪声能力较弱:CMOS逻辑门的输入电平范围较窄,对噪声的抵抗能力相对较弱。
•延迟相对较长:CMOS逻辑门的传输延迟相对较长,响应速度较慢。
4. TTL和CMOS的比较TTL和CMOS在电平范围上有一些不同,这直接影响了它们的特性和应用场景。
下面是TTL和CMOS的比较:•功耗:TTL的功耗较高,而CMOS的功耗较低。
因此,对于功耗敏感的应用,如便携式设备,CMOS更适合。
•抗噪声能力:TTL的抗噪声能力较强,而CMOS的抗噪声能力较弱。
因此,在噪声环境下,TTL更可靠。
•响应速度:TTL的响应速度较快,而CMOS的响应速度较慢。
因此,在需要高速操作的应用中,TTL更适合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,TTL电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施:1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
6,COMS电路的使用注意事项1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。
所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。
2)输入端接低内组的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。
3)当接长信号传输线时,在COMS电路端接匹配电阻。
4)当输入端接大电容时,应该在输入端和电容间接保护电阻。
电阻值为R=V0/1mA.V0是外界电容上的电压。
5)COMS的输入电流超过1mA,就有可能烧坏COMS。
7,TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):1)悬空时相当于输入端接高电平。
因为这时可以看作是输入端接一个无穷大的电阻。
2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。
因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。
这个一定要注意。
COMS门电路就不用考虑这些了。
8,TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。
OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?那是因为当三机管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。
而这个就是漏电流。
开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。
它可以吸收很大的电流,但是不能向外输出的电流。
所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。
OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。
9,什么叫做图腾柱,它与开漏电路有什么区别?TTL集成电路中,输出有接上拉三极管的输出叫做图腾柱输出,没有的叫做OC门。
因为TTL就是一个三级关,图腾柱也就是两个三级管推挽相连。
所以推挽就是图腾。
一般图腾式输出,高电平400UA,低电平8MA要了解逻辑电平的内容,首先要知道以下几个概念的含义:1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。
2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。
3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
5:阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。
它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平对于一般的逻辑电平,以上参数的关系如下:Voh > Vih > Vt > Vil > Vol。
6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。
7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。
8:Iih:逻辑门输入为高电平时的电流(为灌电流)。
9:Iil:逻辑门输入为低电平时的电流(为拉电流)。
门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。
开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。
对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件:(1): RL < (VCC-Voh)/(n*Ioh+m*Iih)(2):RL > (VCC-Vol)/(Iol+m*Iil)其中n:线与的开路门数;m:被驱动的输入端数。
常用的逻辑电平·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。
·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。
·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。
·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。
·低电压的逻辑电平还有2.5V和1.8V两种。
·ECL/PECL和LVDS是差分输入输出。
·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。
TTL和CMOS的逻辑电平关系图2-1:TTL和CMOS的逻辑电平图上图为5V TTL逻辑电平、5V CMOS逻辑电平、LVTTL逻辑电平和LVCMOS逻辑电平的示意图。
5V TTL逻辑电平和5V CMOS逻辑电平是很通用的逻辑电平,注意他们的输入输出电平差别较大,在互连时要特别注意。
另外5V CMOS器件的逻辑电平参数与供电电压有一定关系,一般情况下,Voh≥Vcc-0.2V,Vih≥0.7Vcc;Vol≤0.1V,Vil≤0.3Vcc;噪声容限较TTL电平高。
JEDEC组织在定义3.3V的逻辑电平标准时,定义了LVTTL和LVCMOS逻辑电平标准。
LVTTL逻辑电平标准的输入输出电平与5V TTL逻辑电平标准的输入输出电平很接近,从而给它们之间的互连带来了方便。
LVTTL逻辑电平定义的工作电压范围是3.0-3.6V。
LVCMOS逻辑电平标准是从5V CMOS逻辑电平关注移植过来的,所以它的Vih、Vil和Voh、Vol与工作电压有关,其值如上图所示。
LVCMOS逻辑电平定义的工作电压范围是2.7-3.6V。
5V 的CMOS逻辑器件工作于3.3V时,其输入输出逻辑电平即为LVCMOS逻辑电平,它的Vih大约为0.7×VCC=2.31V左右,由于此电平与 LVTTL的Voh (2.4V)之间的电压差太小,使逻辑器件工作不稳定性增加,所以一般不推荐使用5V CMOS器件工作于3.3V电压的工作方式。
由于相同的原因,使用LVCMOS输入电平参数的3.3V逻辑器件也很少。
JEDEC组织为了加强在3.3V上各种逻辑器件的互连和3.3V与5V逻辑器件的互连,在参考LVCMOS和LVTTL逻辑电平标准的基础上,又定义了一种标准,其名称即为3.3V逻辑电平标准,其参数如下:图2-2:低电压逻辑电平标准从上图可以看出,3.3V逻辑电平标准的参数其实和LVTTL逻辑电平标准的参数差别不大,只是它定义的Vol可以很低(0.2V),另外,它还定义了其 Voh 最高可以到VCC-0.2V,所以3.3V逻辑电平标准可以包容LVCMOS的输出电平。
在实际使用当中,对LVTTL标准和 3.3V逻辑电平标准并不太区分,某些地方用LVTTL 电平标准来替代3.3V逻辑电平标准,一般是可以的。
JEDEC组织还定义了2.5V逻辑电平标准,如上图所示。
另外,还有一种2.5V CMOS逻辑电平标准,它与上图的2.5V逻辑电平标准差别不大,可兼容。
低电压的逻辑电平还有1.8V、1.5V、1.2V的逻辑电平。
TTL和CMOS逻辑器件逻辑器件的分类方法有很多,下面以逻辑器件的功能、工艺特点和逻辑电平等方法来进行简单描述。
TTL和CMOS器件的功能分类按功能进行划分,逻辑器件可以大概分为以下几类:门电路和反相器、选择器、译码器、计数器、寄存器、触发器、锁存器、缓冲驱动器、收发器、总线开关、背板驱动器等。
1:门电路和反相器逻辑门主要有与门74X08、与非门74X00、或门74X32、或非门74X02、异或门74X86、反相器74X04等。
2:选择器选择器主要有2-1、4-1、8-1选择器74X157、74X153、74X151等。
3:编/译码器编/译码器主要有2/4、3/8和4/16译码器74X139、74X138、74X154等。
4:计数器计数器主要有同步计数器74X161和异步计数器74X393等。
5:寄存器寄存器主要有串-并移位寄存器74X164和并-串寄存器74X165等。
6:触发器触发器主要有J-K触发器、带三态的D触发器74X374、不带三态的D触发器74X74、施密特触发器等。
7:锁存器锁存器主要有D型锁存器74X373、寻址锁存器74X259等。
8:缓冲驱动器缓冲驱动器主要有带反向的缓冲驱动器74X240和不带反向的缓冲驱动器74X244等。
9:收发器收发器主要有寄存器收发器74X543、通用收发器74X245、总线收发器等。