泰勒公式 迈克劳林 拉格朗日余项 课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
(x
x0
)2
特例:
f
(n) (x0 n!
)
(x
x0
)n
f (n1) ( )
(n 1) !
(
x
x0 )n1
( 在 x0
与x
之间)
(1) 当 n = 0 时, 泰勒公式变给为出拉格朗日中值定理
f (x) f (x0 ) f ( )(x x0 )
( 在 x0 与x 之间)
(2) 当 n = 1 时, 泰勒公式变为
由此得近似公式
f (x) f (0) f (0)x
若在f (公x) 式 成f (立x0的) 区f间(x上0 )(
x f
f (nx10)
()2x(!0) )fx22M(x!0,则) (x有误fx(0nn差))!(20估) 计xn式
f
(
n) (x0 ) (x n ! Rn (x)
x0
)n Mf((nn1x)1()n!)1
(n 1) !
(x x0 )n1
( 在 x0 与
x
之间)
二、几个初等函数的麦克劳林公式
f (k) (x) ex , f (k) (0) 1 (k 1, 2,)
ex
1
x
x2 2!
x3 3!
xn n!
Rn (x)
其中
f (k) (x) sin(x k )
2
f
(k)
(0)
sin
k
2
n!
xn Rn (x)
其中
Rn (x)
(
1)(
(n 1) !
n) (1
x) n1 xn1
(0 1)
已知
f
(k) (x)
(1)k
1
(k 1)! (1 x)k
(k 1,2,)
类似可得
ln(1
x)
x
x2 2
x3 3
(1)n1
xn n
Rn (x)
其中
Rn (x)
(1)n xn1
n 1 (1 x)n1
e 11 1 1 2.718281
2! 9!
说明: 注意舍入误差对计算结果的影响.
本例 e 11 1 1 2! 9!
若每项四舍五入到小数点后 6 位,则
各项舍入误差之和不超过 7 0.5106, 总误差为 7 0.5106 106 5106 这时得到的近似值不能保证误差不超过 106.
(3) 其他应用
求极限 , 证明不等式 等.
思考与练习
计算
解: ex2 1 x2 1 x4 o(x4 ) 2!
cos x 1 x2 x4 o(x5) 2! 4!
ex2 2cos x 3 ( 1 2 1 )x4 o(x4 ) 2! 4!
原式
lim
x0
7 12
x4
o(x4 ) x4
7 12
2. 证明 e 为无理数 .
证: e 11 1 1 e (0 1)
2!
n ! (n 1) !
两边同乘 n !
n!e = 整数 + e (0 1)
n 1 假设 e 为有理数 p ( p , q 为正整数) ,
q 则当 n q 时, 等式左边为整数;
当n 2 时, 等式右边不可能为整数.
因此计算时中间结果应比精度要求多取一位 .
例2. 用近似公式
计算 cos x 的近似值,
使其精确到 0.005 , 试确定 x 的适用范围.
解: 近似公式的误差
R3(x)
x4 cos( x)
4!
x4 24
令
x 4 0.005
24
解得
x 0.588
即当 x 0.588 时, 由给定的近似公式计算的结果
Rn (x) Rn (x0 ) (x x0 )n1 0
(n
Rn (1) 1)(1
x0
)n
(1 在 x0 与x 之间)
Rn (1) Rn (x0 ) (n 1)(1 x0 )n 0
Rn(2 ) (n 1)n(2 x0 )n1
(2 在 x0 与 1 之间)
(n
Rn(n) (n ) Rn(n) (x0 ) 1)2(n x0 ) 0
Rn(n1) ( )
(n 1) !
( 在 x0 与xn 之间)
Rn (x) f (x) pn (x)
( 在 x0 与x 之间)
pn(n1) (x) 0, Rn(n1) (x) f (n1) (x)
Rn (x)
f (n1) ( )
(n 1) !
(
x
x0
)n1
( 在 x0 与x 之间)
第三节 泰勒 ( Taylor )公式
理论分析
用多项式近似表示函数 — 应用
近似计算
一、泰勒公式的建立 二、几个初等函数的麦克劳林公式
三、泰勒公式的应用
一、泰勒公式的建立
在微分应用中已知近似公式 :
y
f (x) f (x0 ) f (x0 )(x x0 )
y f (x)
特点:
x 的一次多项式
(x0 )
f (x0 )(x
x0 )
f (x0 ) (x 2!
x0 )2
f
(n) (x0 ) (x n!
x0 )n
o[(x
x0 )n ]
④
公式 ③ 称为n 阶泰勒公式的佩亚诺(Peano) 余项 .
* 可以证明:
④ 式成立
f (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
f (x0 ) f (x0 )
p1(x)
o x0 x
x
以直代曲
如何提高精度 ? 需要解决的问题
如何估计误差 ?
1. 求 n 次近似多项式
要求:
令 pn (x) a0 a1(x x0 ) a2 (x x0 )2 an (x x0 )n
则 pn (x)
a1 2a2 (x x0 ) n an (x x0 )n1
0, (1)m1
,
k 2m (m 1,2,) k 2m 1
sin
x
x
x3 3!
x5 5!
(1)m1 x2m1 (2m 1) !
R2m (x)
其中 R2m (x)
s(in1()mxcos2(m2x1) ) x2m1
(2m 1) !
(0 1)
类似可得
cos x
1 x2 2!
x4 4!
(1)m
例1. 计算无理数 e 的近似值 , 使误差不超
过 解: 已知 的麦克劳林公式为
ex 1 x x2 x3 xn
2! 3!
n!
令x=1,得
11 1 1
e
2!
n ! (n 1) !
由于 0 e e 3, 欲使
(0 1) (0 1)
Rn (1)
(n
3 106
1) !
由计算可知当 n = 9 时上式成立 , 因此
(0 1)
三、泰勒公式的应用
1. 在近似计算中的应用
f (x) f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
误差
Rn (x)
M (n 1) !
x
n1
M 为 f (n1) (x) 在包含 0 , x 的某区间上的上界.
需解问题的类型: 1) 已知 x 和误差限 , 要求确定项数 n ; 2) 已知项数 n 和 x , 计算近似值并估计误差; 3) 已知项数 n 和误差限 , 确定公式中 x 的适用范围.
矛盾 ! 故 e 为无理数 .
1
x
x2
1
(1
x)
5 2
x3
2 8 16
(0 1)
( 11)x (1nx) (1x2 x)(xn10x)n1 (n 1) ! 2 8
(0 1)
内容小结
1. 泰勒公式
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 ) (x n!
x0 )n Rn (x)
x2
o(x
2
)
原式 (xlim(01n)112)(!196
nx)2(1o(
x2
xx)2)n1x3n921
(0 1)
3. 利用泰勒公式证明不等式
例4. 证明
证:
1
1 x (1 x)2
1 x 1 1 (1 1)x2 2 2! 2 2
1
1 (1
1)( 1
2)(1
x)
5 2
x3
3! 2 2 2
)
n
Rn
(
x)
①
其中 Rn (x)
f (n1) ( )
(n 1) !
(
x
x0
)n1
( 在 x0 与x 之间) ②
公式 ① 称为 的 n 阶泰勒公式 .
公式 ② 称为n 阶泰勒公式的拉格朗日余项 .
注意到 Rn (x) o[(x x0 )n ]
③
在不需要余项的精确表达式时 , 泰勒公式可写为
f
可见
f
(x)
f
(x0 )
f
(x0 )(x x0 )
f
( )
2 (!
(x x0 )2
在 x0 与x
之间)
误差
( 在 x0 与x 之间) d f
在泰勒公式中若取 x0 0 , x (0 1) , 则有
f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
称为麦克劳林( Maclaurin )公式 .
f (x0 )
f (x0)(x x0)
1 2!
f
( x0
)(x
x0 )2
1 n!
f (n) (x0 )(x x0 )n
2. 余项估计
令 Rn (x) f (x) pn (x)(称为余项) , 则有
Rn (x0 ) Rn (x0 ) Rn(n) (x0 ) 0 Rn (x)
(x x0 )n1
x2m (2m)
!
R2m1
(
x)
其中
R2m1(x)
(1)m1 cos( x)
(2m 2) !
x2m2
(0 1)
f (k) (x) ( 1)( k 1)(1 x)k
f (k) (0) ( 1)( k 1) (k 1,2,)
(1 x) 1 x ( 1) x2
2!
( 1)( n 1)
其中余项
Rn (x)
f (n1) ( )
(n 1) !
(
xFra Baidu bibliotek
x0
)n1
o((x x0 )n )
( 在 x0 与x 之间)
当 x0 0 时为麦克劳林公式 .
2. 常用函数的麦克劳林公式
ex , ln(1 x), sin x, cos x, (1 x)
3. 泰勒公式的应用 (1) 近似计算
(2) 利用多项式逼近函数 , 例如 sin x
当在 x0 的某邻域内 f (n1) (x) M 时
Rn (x)
M (n 1)!
x
x0
n1
Rn (x) o((x x0 )n ) (x x0 )
泰勒中值定理 :
阶的导数 , 则当
时, 有
f
(x0 )
f
(x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 n!
)
(
x
x0
能准确到 0.005 .
2. 利用泰勒公式求极限
例3. 求
用洛必塔法则 不方便 !
解: 用泰勒公式将分子展到 x2 项, 由于
3x 4 2
1
3 4
x
2
1
1 2
(
3 4
x)
1 2!
1 2
(12
1)
(
3 4
x)2
o(
x2
)
2
3 4
x
1 4
9 16
x2
o( x2 )
4 3x
2
3 4
x
1 4
196
pn(x)
pn(n) (x)
2 !a2 n(n 1)an (x x0 )n2 n!an
a0 pn (x0 ) f (x0 ),
a1 pn (x0) f (x0),
a2
1 2!
pn
(
x0
)
1 2!
f
(x0), , an
1 n!
pn(n)
(
x0
)
1 n!
f
(n) (x0 )
故
pn (x)