硅溶胶溶模铸造工艺

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅溶胶溶模铸造工艺

熔模铸造的基本特征是采用易熔材料为模样,以耐火材料为铸型,浇注前熔出模样而形成铸型空腔。早在3000年前,该工艺已经被用来铸造工艺品。第二次世界大战期间,由于军事工业的需要,美英等国用熔模铸造的方法生产涡轮喷气发动机的静叶片,从而将该工艺推向工业领域,并在半个多世纪里得到不断发展和提高。熔模铸造的生产工序繁多,从蜡模、型壳、浇注,一直到清理,是一个紧密的链条,任何环节出现问题都直接影响到最终铸件的成形和质量,需要特别加强工艺的控制与研究。

1.制壳工艺的重要性

所有生产工序中,蜡模制造和型壳制造是反映熔模铸造自身特色的两个工艺环节,需要在工艺研究中特别给予关注。

近些年来,世界范围的熔模铸造工艺在蜡模制造方面取得了长足的进步,生产者可以通过选择合适的模料和采用现代化的工艺装备保证蜡模的尺寸精度和表面质量。同时,与熔模铸造的后续制造过程相比,蜡模制造相对独立,可以通过外观检查和尺寸测量等手段筛除不合格品,避免继续生产而增加损失。

进入到型壳制造环节,与铸件最终质量相关的表面质量和尺寸精度等信息则被隐藏起来,直到铸件被清理出来之前,型壳内腔质量的变化可以看成一个“黑箱”,制造环节中无法直接观察其尺寸及质量的变化,只有对型壳的制造工艺与缺陷的关系了解得更加清楚,才能保证整个生产流程的可控性。更为重要的是型壳作为铸件成形的直接型腔,其性能最终影响液态金属的成形质量。因此,人们非常关注熔模铸造的制壳过程。在国际重要的熔模铸造专业会议——美国熔模铸造协会ICI每年一度的技术会议上,型壳研究始终是受关注的热点,有1/3左右的论文与型壳有关,说明型壳制造技术发展对熔模铸造的重要性。

在国际上通用的熔模铸造制壳工艺中,硅溶胶型壳由于环保优势占据了主导地位,但其同样需要面对激烈市场竞争的挑战:一方面是要适应航空航天及军工领域提出的更大、更薄、更复杂铸件的质量要求;另一方面对于大量民用产品而言,缩短生产周期,提高市场反应能力也成为当务之急。

2.型壳技术的发展对新型硅溶胶研制提出的要求

2.1满足复杂熔模铸件对硅溶胶型壳的要求

要制造出大型、薄壁、复杂铸件的型壳,一方面需要解决型壳制造能力的问题,比如适合大型型壳操作的装备,包括制壳机械手、脱蜡设备等。

另一方面,最终型壳在强度、抗变形能力和尺寸精度等性能方面有更高的要求,特别是型壳的强度和抗变形能力是浇铸大型熔模铸件的基础。只有在保证型壳这方面的性能要求,使铸件正确成形,才能进一步提到铸件尺寸精度问题。

硅溶胶型壳的强度按照其所受热作用不同,可以分为常温强度、高温强度和残留强度。常温

强度是要保证在制壳和脱蜡过程中型壳的完整性。高温强度则是要保证型壳在焙烧和浇注过程不被破坏。高温强度固然重要,但实验测定,经过950℃以上的高温焙烧后,硅溶胶的型壳强度可以达到7~14MPa,超过硅酸乙酯的6~8MPa,完全能够满足熔模铸造工艺的要求,反而是随着高温强度的提高,残留强度也提高,造成铸件清壳困难,需要适当降低。与硅酸乙酯相比,硅溶胶型壳的弱点在于常温强度相对低,从而当型壳做大和变复杂以后,容易造成制壳和脱蜡时型壳开裂或变形,影响铸件最终的表面质量和尺寸精度。因此,提高硅溶胶的常温强度已成为推广和发展硅溶胶型壳工艺的重要任务,也是研究新型硅溶胶的重要目标。

2.2 提高熔模铸造效率对硅溶胶发展的要求

相对于大型复杂薄壁铸件而言,民用产品对铸件质量要求低。但是,针对后者,缩短生产周期,提高生产效率的问题则变得更为突出。普通硅溶胶的胶凝过程主要依靠硅溶胶脱水干燥,比采用化学硬化的硅酸乙酯胶凝所需时间长。硅酸乙酯型壳采用氨干每层可以在2h左右完成硬化,而硅溶胶最终硬化则一般需要12h以上,对于一些深孔等难以干燥的部位则需要更长的时间。同时,由于熔模铸造型壳需要分层制造,每一层都需要干燥充分,保证下层制壳浸涂料时不会造成回溶脱落的问题,而浸涂料本身,水分会浸入已干燥的型壳内,从而造成整体干燥周期长。图1是一般情况下硅溶胶型壳熔模铸件生产周期的示意图。从图中可以看出,制壳的时间占整个铸件生产周期的50%以上。要缩短产品的交货时间,缩短制壳周期是问题的核心环节。而缩短制壳周期的关键因素可分为内因和外因两个方面,内因主要为粘结剂特性,外因则为干燥条件。

相关文档
最新文档