透射电镜(TEM)讲义
第七章TEM透射电子显微镜PPT课件
由电子光学系统、电源与控制 系统及真空系统三部分组成。
电子光学系统通常称镜筒,是
TEM的核心,它的光路原理与
透射光学显微镜十分相似。其
分为三部分:照明系统、成像
系统和观察记录系统。
(a)
(b)
一、照明系统
(1)电子枪 电子枪是TEM的电子源。 常用的是热阴极三极电子枪,
由发夹形钨丝阴极、阳极和栅 极组成。
➢ 作用:提高像衬度;减小孔径角,从而减小像 差;进行暗场成像; ➢ 光阑孔径:20-120um。
选区光阑(Diffraction lens holders)
➢ 来限定微区,对该微区进行衍射分析; ➢ 光阑孔直径:20-400um。
TEM的型号
Philips CM12透射电镜
加速电压20、40、60、80、100 、 120KV LaB6或W灯丝 晶格分辨率 2.04Å 点分辨率 3.4Å 最小电子束直径约2nm; 倾转角度α=±20度
具有很大的景深和焦长。
二、成像系统
样品在物镜的物平面上,物镜的像平面是中间镜的物平面, 中间镜的像平面是投影镜的物平面,荧光屏在投影镜的像平 面上。 物镜和投影镜的放大倍数固定,通过改变中间镜的电流来调 节电镜总M。 M越大,成像亮度越低,成像亮度与M2成反比。 高性能TEM大都采用5级透镜放大,中间镜和投影镜有两级。 放大成像操作:中间镜的物平面和物镜的像平面重合,荧光 屏上得到放大像。 电子衍射操作:中间镜的物平面和物镜的后焦面重合,得到 电子衍射花样。
二、成像系统
高倍放大
电子衍射
成像系统光路
三、观察记录系统
观察和记录装置包括荧光屏和照相机结构。 人眼无法观测电子,TEM中的电子信息通过荧光屏和
透射电镜(TEM)讲义
05
TEM操作与注意事项
操作步骤与技巧
01
02
03
04
准备样品
选择适当的样品,进行适当的 处理和固定,以确保观察效果 最佳。
调整仪器参数
根据观察需求,调整透射电镜 的加速电压、放大倍数等参数 ,以达到最佳观察效果。
操作步骤
按照仪器操作手册的步骤进行 操作,包括安装样品、调整焦 距、观察记录等。
技巧
定量分析方法
颗粒统计
对图像中颗粒的数量、大 小和分布进行统计,计算 颗粒的平均尺寸和粒度分 布。
电子衍射分析
利用电子衍射技术分析晶 体结构和相组成,确定晶 格常数和晶面间距。
能谱分析
通过能谱仪测定图像中各 点的元素组成和相对含量, 进行定性和定量分析。
04
TEM图像解析实例
晶体结构分析
利用高分辨的TEM图像,可以观察到晶体内部的原 子排列和晶体结构,如面心立方、体心立方或六方 密排结构等。
掌握操作技巧,如正确使用操 作杆、合理利用观察窗口等, 以提高观察效果和效率。
仪器维护与保养
定期清洁
定期对透射电镜进行清 洁,保持仪器内部和外
部的清洁度。
检查部件
更换消耗品
定期检查透射电镜的部 件,如电子枪、镜筒等,
确保其正常工作。
根据需要,及时更换透射 电镜的消耗品,如真空泵
油、电子枪灯丝等。
保养计划
在操作透射电镜时,应严格遵守操作规程, 确保仪器和人身安全。
THANK YOU
感谢聆听
80%
观察模式
根据观察目的选择不同的观察模 式,如明场、暗场、相位对比和 微分干涉等。
图像解析与解读
01
02
03
透射电镜的原理与演示ppt培训讲义
扫描电镜
光镜、透射电镜及扫描电镜的成像光路图解
四、扫描电镜的结构与成像原理
1. 扫描电镜的基本结构
扫描电镜
电子枪 电磁透镜 电子光学系统 扫描线圈 样品室 信号的收集处理及显示系统 真空系统 供电保护系统等
电子枪 (1~10KV)
显示系统(显象管)
电磁透镜 真空系统
扫描线圈
信号的收集处理系统 样品室
成像原理:
高压电子枪 高速电子束
电磁透镜
样品
电子束发生投射
荧光屏 电能转变成光能
浓淡不同的图像 图像各处浓淡的不同真实反映
了样品不同部位的物质结构
透射电镜照片演示
微管蛋白的免疫荧光照片
透 图像各处浓淡的不同真实反映了样品中不同部位的物质结构 射 电 镜 照 片 演 示
一个植物细胞的透射电镜照片
供电 保护 系统
电磁 透镜
电磁 透镜
电子枪灯丝
电子光学系统
Байду номын сангаас
扫描线圈的 束偏转器
显象管
样品 样品托
探测器 扫描电镜的结构简图
2. 扫描电镜的成像原理
电子枪
电子束 荧光点的亮度 扫描线圈
样品表面上相应点 所发出的次级电子数
电磁透镜 次级电子信号
样品表面
探测器
接 受、 转变成光子
放 大、
光电倍增管 转换成电压信号
以提高真空度
➢降低温度可防止电子的热漂移
样品室
样品放置室
冷阱
液氮罐 金属导杆
铜网 样品
物镜
成像与放大装置 中间镜I
中间镜II 投影镜
放大50倍 放大3倍 放大15倍 放大200倍
500,000倍
《TEM操作培训》课件
04 TEM操作注意事项
CHAPTER
安全注意事项
确保操作区域安全
01
在操作TEM(透射电子显微镜)时,应确保操作区域没有障碍
物,避免人员和物品与设备发生碰撞。
遵守安全操作规程
02
在进行TEM操作前,应仔细阅读并遵守设备的安全操作规程,
确保正确使用设备。
避免高电压和高电流
03
在操作过程中,应避免高电压和高电流对人员和设备造成伤害
数据存储与备份
及时存储数据
在观察和记录TEM图像时,应及时将数据存储在稳定的存储介 质上,如硬盘或云端存储。
定期备份数据
为防止数据丢失,应定期备份存储的数据,并确保备份数据的可 读性和可用性。
加密存储和备份数据
为了保护数据的机密性和完整性,应对存储和备份的数据进行加 密处理,以确保数据的安全性。
05 实践操作与案例分析
,特别是在调节电压和电流时。
设备维护与保养
定期检查设备状态
在使用TEM后,应定期检查设备 的状态,包括电子显微镜的镜头
、真空系统和照明系统等。
清洁设备表面
应定期清洁设备的表面,保持设备 的清洁度,避免灰尘和污垢对设备 造成损害。
定期更换消耗品
在操作过程中,某些部件会逐渐磨 损或消耗,如灯丝和真空过滤器等 ,应定期更换以确保设备的正常运 行。
样品制备方法
总结词
样品的制备是TEM操作中的关键步骤,直接影响观察结果的准确性和可靠性。
详细描述
样品制备是TEM操作中的重要环节,需要采用一系列精细的制样技术。这包括将样品切成薄片、进行 减薄处理、以及在特定环境中进行保护和固定等步骤。制备良好的样品能够提供更清晰、更准确的观 察结果,并有助于提高实验的可重复性。
《透射电镜原理》课件
构。
立体感强
透射电镜的图像具有很强的立体感 ,能够呈现出样品的层次感和深度 。
色彩丰富
透射电镜的图像可以通过不同的染 色技术呈现出丰富的色彩,增强视 觉效果。
透射电镜的图像解析步骤
图像获取
通过透射电镜获取样品的图像。
特征提取
从图像中提取出样品的主要特征,如细胞核 、细胞质等。
。
透射电镜的维护与保养
定期清洁透射电镜的镜筒和样品室,保持清洁度。 定期更换透射电镜的灯丝,保证电子源的正常工作。
检查透射电镜的真空系统和气体系统是否正常工作,确 保电子束传输畅通无阻。
定期进行校准和维护,确保透射电镜的各项参数准确性 和稳定性。
透射电镜的图像解
05
析
透射电镜的图像特点
高分辨率
复型样品制备
总结词
复型样品制备是为了保护原样品,将其复制成另一种材料并制成薄膜,以便在电镜中观察其微观结构 。
详细描述
复型样品制备通常采用硅橡胶、环氧树脂等材料作为基质,将原样品放置在基质中,经过聚合、固化 等步骤后,将原样品取出,留下一个与原样品相似的薄膜。制备过程中需要注意控制温度和压力,以 确保复型样品的准确性和稳定性。
冷冻样品制备
总结词
冷冻样品制备是为了保持生物样品的活 性和天然状态,将样品快速冷冻并制成 薄膜,以便在电镜中观察其微观结构。
VS
详细描述
冷冻样品制备通常采用液氮等低温介质将 生物样品迅速冷冻,然后将其转移到冷冻 切片机中进行切片。制备过程中需要严格 控制温度和切片的厚度,以确保样品的结 构和成分不受影响。同时,冷冻样品制备 还可以用于观察细胞内部的结构和动态过 程。
透射电子显微镜(TEM)详解
(一)间接样品的制备(表面复型)
透射电镜所用的试样既要薄又要小,这就大大限 制了它的应用领域,采用复型制样技术可以弥补 这一缺陷。复型是用能耐电子束辐照并对电子束 透明的材料对试样的表面进行复制,通过对这种 复制品的透射电镜观察,间接了解高聚物材料的 表面形貌。
蚀刻剂:高锰酸钾-浓 硫酸 将无定形部分腐蚀掉
八、透射电镜在聚合物研究中的应用
(一)结晶性聚合物的TEM照片
PE单晶及其电子衍射谱
Keller提出的PE折叠链模型
尼龙6 折叠链 片晶
单斜晶系 的PP单晶
2、树枝晶: 从较浓溶液(0.01~0.1%)结晶时,流动力 场存在,可形成树枝晶等。
PE的树枝状结晶
(3)染色:通常的聚合物由轻元素组成,在用厚 度衬度成像时图像的反差很弱,通过染色处理后 可改善。
所谓染色处理实质上就是用一种含重金属的试剂 对试样中的某一组分进行选择性化学处理,使其 结合上重金属,从而导致其对电子的散射能力增 强,以增强图像的衬度。
(a)OsO4染色,可染-C=C-双键、-OH基、-NH2基。 其染色反应是:
(二)直接样品的制备
1.粉末样品制备 粉末样品制备的关键是如何将超细粉的颗粒分散开来,
各自独立而不团聚。
胶粉混合法:在干净玻璃片上滴火棉胶溶液,然后在玻 璃片胶液上放少许粉末并搅匀,再将另一玻璃片压上, 两玻璃片对研并突然抽开,稍候,膜干。用刀片划成小 方格,将玻璃片斜插入水杯中,在水面上下空插,膜片 逐渐脱落,用铜网将方形膜捞出,待观察。
常见的聚合物制样技术
(1)超薄切片:超薄切片机将大试样切成50nm 左右的薄试样。
聚甲基丙烯酸丁酯将 聚四氟乙烯包埋后切 片,白色部分表示颗 粒形貌, 切片时,有颗粒的部 分掉了
透射电子显微镜-TEM-医学课件
Transmission electron microscope
1
内容
简介 结构原理 样品制备 透射电子显微像 选区电子衍射分析
2
TEM 简介
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的 证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年, 透射电镜实现了工厂化生产。 上世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和 Howie等人建立电子衍射衬度理论并用于直接观察薄晶体缺陷和 结构。 1965年,扫描电子显微镜实现商品化。 70年代初,美国阿利桑那州立大学J.M. Cowley提出相位衬度理 论的多层次方法模型,发展了高分辨电子显微象的理论与技术。 饭岛获得原子尺度高分辨像(1970) 。 80年代,晶体缺陷理论和成像模拟得到进一步发展,透射电镜和 扫描电镜开始相互融合,并开始对小于5埃的尺度范围进行研究。 90年代至今,设备的改进和周边技术的应用。
21
成像系统
照明系统
成像系统
观察记录系统
22
(1)物镜 物镜是将试样形成一次放大像和衍射谱。 决定透射电镜的分辨本领,要求它有尽可 能高的分辨本领、足够高的放大倍数和尽 可能小的像差。通常采用强激磁,短焦距 的物镜。 放大倍数较高,一般为100~300倍。 目前高质量物镜分辨率可达0.1nm左右。
3
透射电子显微镜-TEM
TEM用聚焦电子束作照明源,使 用于对电子束透明的薄膜试样, 以透过试样的透射电子束或衍射 电子束所形成的图像来分析试样 内部的显微组织结构。
透射电镜(TEM)讲义
• rS 14Cs3
C s:球差系数
• 球差是像差影响电磁透镜分辨 率的主要因素,它还不能象光 学透镜那样通过凸透镜、凹透 镜的组合设计来补偿或矫正。
• 球差系数越大,由球差决定的分
为了确保透射电镜的分辨 本领,物镜的孔径半角必须 很小,即采用小孔径角成像。 一般是在物镜的背焦平面上 放一称为物镜光阑的小孔径 的光阑来达到这个目的。由 于物镜放大倍数较大,其物 平面接近焦点,若物镜光阑 的直径为D,则物镜孔径半 角α
α = D/2f
小孔径角成像意味着只
允许样品散射角小于α的散
• 透镜的实际分辨本领除了与衍射效应有关以外,还与透镜 的像差有关。 光学透镜,已经可以采用凸透镜和凹透镜的组合等办法 来矫正像差,使之对分辨本领的影响远远小于衍射效应的 影响; 但电子透镜只有会聚透镜,没有发散透镜,所以至今还 没有找到一种能矫正球差的办法。这样,像差对电子透镜 分辨本领的限制就不容忽略了。
n = eZ / rnU
或
rn = eZ/ nU
电子电荷 原子序数 电子加速电压
而相应的一个孤立原子核的散射截面为
n =πrn2=πe2Z2 / n2U2
散射截面的大小
当一个电子与一个孤立的核外电子作用时,也发生
类似的偏转,散射角由下式决定:
e = e / reU
或
re = e / e U
从而相应的一个核外电子的散射截面为
GNA M 0t2t1
即衬度G取决于质量厚度ρt,这就是所谓质量 厚度衬度(简称质厚衬度)的来源。实际上,这 里G仅与厚度有关,即
Gt
透射电镜(TEM)
⑥其它斑点确定.利用矢量相加法则,
R1 R2 R3
H1 H2 H3
K1 K 2 K3 L1 L2 L3
⑦根据晶带轴定律,确定零层倒易截面法线
方向. uvw 任选两晶面(HKL)1、(HKL)2
u K1L2 K 2 L1 v H 2 L1 H1L2 w H1K 2 H 2 K1
§透射电镜的显微成像
M M 物M中M 投影 物镜 中间镜 投影镜
衬度光阑 物镜焦平面
选区光阑 物镜像平面 中间镜物平面
◆衍衬成像
晶体试样各部分满足布拉 格反射条件不同和结构振幅的 差异。
衍衬成像----明、暗场像
明场像(BF)——上述采用物镜光栏将衍射束 挡掉,只让透射束通过而得到图象衬度的方法 称为明场成像,所得的图象称为明场像。
gHKL (HKL)
g HKL
1 d HKL
倒易基矢和正空间基矢之间的关系
*晶带定律与零层倒易界面
在正点阵中同时平行于某一晶向的一组晶面构 成一个晶带,这一晶向称为这一晶带的晶轴。
如果电子束沿晶轴方向入射,通过原点O*的倒 易平面只有一个,被称为零层倒易面,用(uvw) *表示。
0
g·r=0晶带定律
此外,散射强度高导致电子透射能力有限, 要求试样薄,这就使试样制备工作较X射 线复杂;在精度方面也远比X射线低。
◆电子衍射原理
◆ Bragg定律 ◆ 倒易点阵与爱瓦尔德球图解法 ◆ 晶带定律与零层倒易界面 ◆ 结构因子 ◆ 偏离矢量与倒易点阵扩展 ◆ 电子衍射基本公式
*Bragg定律
选择反射 满足 2d sinq n ,2dHKL sinq ,这是发生 衍射的必要条件,但不是充分条件。
FH2KL反映各晶面衍射强度大小, 将 FH2KL
透射电子显微镜TEM
JEM-2010透射电镜
加速电压200KV LaB6灯丝 点分辨率 1.94Å
JEM-2010透射电镜
加速电压200KV LaB6灯丝 点分辨率 1.94Å
EM420透射电子显微镜
加速电压20KV、40KV、60KV、 80KV、100KV、120KV 晶格分辨率 2.04Å 点分辨率 3.4Å 最小电子束直径约2nm 倾转角度α=±60度
扫描发生仪
电子束
显象管 和X-Y 记录仪扫描线圈Fra bibliotek数据 处理
能量选择光阑
入射光阑
放大器
探测器
电子能量 分析仪
图1-14 扫描电子衍射和电子能谱分析附件示意图
2 . 真空系统
为了保证在整个通道中只与试样发生相互作用,而
不与空气分子发生碰撞,因此,整个电子通道从电子
枪至照相底板盒都必须置于真空系统之内,一般真空
β=±30度
CEISS902电镜
加速电压50KV、80KV W灯丝 顶插式样品台 能量分辨率1.5ev 倾转角度α=±60度
Philips CM12透射电镜
加速电压20KV、40KV、60KV、80KV 、100KV、120KV LaB6或W灯丝 晶格分辨率 2.04Å 点分辨率 3.4Å 最小电子束直径约2nm; 倾转角度α=±20度
透射电子显微镜 (TEM)
内容提要 1.透射电镜的结构 2.透射电镜的成像原理 3.电子衍射 4.透射电镜样品的制备
目前,风行于世界的大型电镜,分辨本领为2~3 埃, 电压为100~500kV,放大倍数50~1200000倍。由于材料 研究强调综合分析,电镜逐渐增加了一些其它专门仪器附件, 如扫描电镜、扫描透射电镜、X射线能谱仪、电子能损分析 等有关附件,使其成为微观形貌观察、晶体结构分析和成分 分析的综合性仪器,即分析电镜。
第8讲_透射电子显微镜(TEM)_20111104
(2)样品室
样品室中有样品杆、样品杯及样品台
(3)成像系统
一般由物镜、中间镜和投影镜组成。物镜的 分辨本领决定了电镜的分辨本领,中间镜和 投影镜的作用是将来自物镜的图像进一步放 大
(4)图像观察与记录系统
该系统由荧光屏、照相机、数据显示等组成
2)真空系统
真空系统由机械泵、油扩散泵、换向阀门、 真空测量仪奉及真空管道组成。它的作用是 排除镜筒内气体,使镜筒真空度至少要在 托 以上 如果真空度低的话,电子与气体分子之间的 碰撞引起散射而影响衬度,还会使电子栅极 与阳极间高压电离导致极间放电,残余的气 体还会腐蚀灯丝,污染样品
第8讲 透射电子显微分析 2011年11月4日 Transmission Electron Microscope TEM
透射电子显微镜是以波长很短的电子束做 照明源,用电磁透镜聚焦成像的一种具有高 分辨本领,高放大倍数的电子光学仪器。测 试的样品要求厚度极薄(几十纳米),以便 使电子束透过样品。
发展历史
金相复型的制备方法
1.对金相试样的要求 试样要细心磨制,仔细抛光, 力求避免产生 微小的磨痕及变形层,浸蚀剂与做金相试验 时所用的浸蚀剂相同,浸蚀应浅些,这样可 保留组织细节。 2.塑料一碳二级复型 塑料一碳二级复型由于其制备过程不损 坏金相试样表面,重复性好,供观察的第二 级复型一碳膜导电导热性好,在电子束照射 下较为稳定,因而得到广泛的应用。具体制 备方法如下:
在孔洞边缘获得厚度小于500nm的薄膜。
生物磁铁矿晶体的完好晶形 (TEM照片)
沙尘暴的矿物颗粒
海盐气溶胶颗粒;匈牙利上空大陆大气层中收集到的煤灰/硫化 物混合颗粒的TEI
煤灰/硫化物混合颗粒的TEM图象
Sol-gel法合成羟磷灰石, 可分辨出毛发状、长柱状的晶 体轮廓, 但晶面发育不明显 (TEI)
透射电镜tem讲稿精品
清洗物镜、目镜和聚光镜,检查 真空系统和电子枪的工作状态。
维护保养建议及周期安排
每月维护
对电镜进行全面检查和维护,包括机械部件、真空系统、电子光 学系统和控制系统等。
年度维护
对电镜进行深度维护和保养,包括更换易损件、清洗内部部件和 调整仪器性能等。
THANK YOU
感谢聆听
纳米器件研究
研究纳米器件的结构、工作原理和性能,推动纳 米电子学、纳米光学等领域的发展。
3
纳米生物医学研究
利用TEM观察纳米药物、纳米载体等生物医学应 用中的纳米材料,评估其生物相容性和治疗效果。
05
实验操作规范与注意事项
实验前准备工作规范
02
01
03
样品制备
确保样品纯净,无杂质。
根据实验需求,选择合适的制样方法,如研磨、切片 等。
实验前准备工作规范
设备检查 检查透射电镜的真空度、电子枪、镜头等关键部件是否正常。
确保所有附件和工具齐全且处于良好状态。
实验前准备工作规范
安全防护 穿戴好实验服和防护眼镜。
熟悉紧急情况下的应对措施,如停电、真空泄露等。
实验过程中操作规范
样品安装 将制备好的样品放入样品台,并确保其稳定。
根据需要选择合适的放大倍数和观察模式。
常见故障现象及排查方法
故障现象1:图像模糊或失真
排查方法:检查物镜、目镜和聚光镜是否干净, 调整焦距和像散,检查电子枪和高压系统是否 正常。
故障现象2:真空度下降
排查方法:检查真空泵、真空管道和真空 计是否正常,查找漏气点并及时修复。
故障现象3:电子束不稳定
排查方法:检查电子枪、高压系统和电磁透 镜是否正常,调整电子束的聚焦和偏转。
透射电子显微镜(TEM)
日本日立公司H-700 电子显微镜,配有双倾台 ,并带有7010扫描附件和 EDAX9100能谱。该仪器 不但适合于医学、化学、 微生物等方面的研究,由 于加速电压高,更适合于 金属材料、矿物及高分子 材料的观察与结构分析, 并能配合能谱进行微区成 份分析。 ● ● ● ● ● 分 辨 率:0.34nm 加速电压: 加速电压:75KV-200KV - 放大倍数: 万倍 放大倍数:25万倍 能 谱 仪:EDAX-9100 - 扫描附件: 扫描附件:S7010
TEM 形貌分析
透射电镜具有很高的空间分辩能力,特别适合 纳米粉体材料的分析。 其特点是样品使用量少,不仅可以获得样品的 形貌,颗粒大小,分布,还可以获得特定区域 的元素组成及物相结构信息。 透射电镜比较适合纳米粉体样品的形貌分析, 但颗粒大小应小于300nm,否则电子束就不能 但颗粒大小应小于300nm,否则电子束就不能 透过了。对块体样品的分析,透射电镜一般需 要对样品进行减薄处理。
多晶花样的标定
1. 花样特征: 一组同心圆 花样特征: 一组同心圆
2.标定方法:比值法 2.标定方法: 标定方法 根据R1, 根据R1, R2 , R3 ….的比值来确定结构和标定花样 比值法主要适合立方晶系
3)显象部分
这部分由观察室和照相机构组成。 在分析电镜中,还有探测器和电子能量分析附件。 如下图所示。
电子束 扫描发生仪
显象管 和X-Y 记录仪
扫描线圈
数据 处理
能量选择光阑 入射光阑
放大器 探测器
电子能量 分析仪
图1-14 扫描电子衍射和电子能谱分析附件示意图
2 . 真空系统 为了保证在整个通道中只与试样发生相互作用,而 不与空气分子发生碰撞,因此,整个电子通道从电子 枪至照相底板盒都必须置于真空系统之内,一般真空 度为 毫米汞柱。
透射电镜教程PPT课件
•
电子激发俄歇电子能谱(XAES或AES)
第1页/共35页
TEM的形式
• 透射电子显微镜(简称透射电镜,TEM),可以以几种不同的形 式出现,如:
•
高分辨电镜(HRTEM)
•
透射扫描电镜(STEM)
•
分析型电镜(AEM)等等。
• 入射电子束(照明束)也有两种主要形式:
•
平行束:透射电镜成像及衍射
第2页/共35页
• ②柱体近似,即在计算样品下表面衍射波强度时,假设将样品分 割为贯穿上下表面的一个个小柱体(直径约2nm),而且相邻柱体 中的电子波互不干扰。
第34页/共35页
Hale Waihona Puke 感谢您的观看!第35页/共35页
•
质厚衬度 :非晶样品衬度的主要来源
• 振幅衬度
•
衍射衬度 :晶体样品衬度的主要来源
• 相位衬度
第28页/共35页
图9-18 质厚衬度成像光路图
第29页/共35页
图9-19 衍射衬度成像光路图
第30页/共35页
第四节 电子衍射运动学理论
• 透射电镜衍射衬度是由样品底表面不同部位的衍射束强度存在差异而造成的。要深入理 解和正确解释透射电镜衍衬像的衬度特征,就需要对衍射束的强度进行计算。
入射波强度。否则衍射波会发生较为显著的再次衍射,即动力学衍射。
第32页/共35页
为满足上述基本假设,在实践上可通过以下两条途径实现:
• ①使样品晶体处于足够偏离布拉格条件的位向,以避免产生强 的衍射,保证入射波强度不发生明显衰减;
• ②采用足够薄的样品,尽量减小电子受到多次散射的机会。 • 要达到这两个实验条件,实践上都有困难。 • 一方面,原子对电子的散射振幅较大,散射强度不会很弱,而
TEM高分辨透射电镜讲稿 精品 ppt课件
▪ 透射电镜的样品是放置在物镜的上下极靴之间,由于这里的空间很小, 所以透射电镜的样品也很小,通常是直径3mm的薄片。
成像部分:
▪ 物镜:为放大率很高的短距透镜,对样品成像和 放大。它是决定TEM分辨本领和成像质量的关键。 因为它将样品中的微细结构成像、放大,物镜中 的任何缺陷都将被成像系统中的其他透镜进一步 放大。
TEM高分辨透射电镜讲稿 精品
透射电镜的成像及应用(TEM)
精品资料
你怎么称呼老师?
如果老师最后没有总结一节课的重点的难点,你是 否会认为老师的教学方法需要改进?
你所经历的课堂,是讲座式还是讨论式? 教师的教鞭
“不怕太阳晒,也不怕那风雨狂,只怕先生骂我笨, 没有学问无颜见爹娘 ……”
“太阳当空照,花儿对我笑,小鸟说早早早……”
▪ 因为不同结构有不同的相互作用,这样就 可以根据透射电子图象所获得的信息来了 解试样内部的结构。由于试样结构和相互 作用的复杂性,因此所获得的图象也很复 杂。它不象表面形貌那样直观、易懂。
➢超高压和中等加速电压技术:电子经过试样后,对成像有贡献的弹性散射 电子所占的百分比决定了图像分辨率→信号/噪声的高低;
由于质厚衬度来源于入射电子与试样物质发生相互作用而引起的 吸收与散射。由于试样很薄,吸收很少。衬度主要取决于散射电 子(吸收主要取于厚度,也可归于厚度),当散射角大于物镜的 孔径角α时,它不能参与成象而相应地变暗。这种电子越多,其象越 暗。或者说,平均原子系数越大,散射本领大,透射电子少的部 分所形成的象要暗些,反之则亮些。
3.非晶体样品的质厚衬度成像原理:
入射电子透过样品时,若样品越厚→碰到的原子数目越多;或样 品原子序数Z越大或密度越大→样品原子核库仑电场越强,则散射角 α越大→被散射到物镜光阑外的电子就越多,而参与成像的电子强 度也就越低,从而在荧光屏显示出不同的衬度,这就是质厚衬度成 像原理 。
[指南]TEM透射电镜
透射电子显微镜实验目的1. 掌握透射电镜的工作原理和基本结构2. 了解和掌握透射电镜的样品前处理及数据后处理过程3. 了解透射电镜的操作方法实验原理根据阿贝成像原理,更短波长的光源才能得到更高分辨率的图像;而由波粒二象性可以知道,高速运动的电子波长非常短。
透射电镜就是利用磁场对电子进行聚焦,聚焦后的电子束与样品相互作用,从而得到高分辨的样品形貌。
图1 透射电镜的成像原理透射电镜的成像主要分为两个过程:一是平等电子束与样品作用产生衍射束经磁透镜聚集后形成各级衍射谱,即样品的结构信息通过衍射谱呈现出来;二是从各级衍射谱发出的相干波通过干涉重新在像平面上形成反映样品形貌特征的像。
显然从试样同一点发出的各级衍射波经过上述两个过程后在像平面上会聚集为一点,而从试样不同点发出的同级衍射波经过透镜后,都会聚集到后焦面上的一点。
当中间镜的物平面与物镜的像平面重合时,得到三级高倍放大像,即试样显微成像;当中间镜的位置与物镜的背焦面重合时,将得到放大了的衍射谱,即衍射花样成像。
当成像方式为显微成像时,总的透射电镜总的放大倍数就是各个透镜倍率的乘积。
而改变中间镜的电流,调节其焦距使得中间镜物平面移到物镜的后焦面,便可在屏上看到像的后焦面以及变换成衍射谱的过程。
用物镜光阑选择物镜后焦面上的不同衍射斑点,并使所选电子束成像就可以获得不同模式的像。
选择透射波时,观察到的是明场像;选择衍射波时,观察到的是暗场像;当后焦面上的物镜光阑尺寸较大时,可以使两个以上的波干涉成像,观察到的是高分辨电子显微像。
高分辨像主要有晶格条纹像,一维结构像,二维晶格像,二维结构像和特殊像五类。
透射电镜主要由电子光学系统、真空系统和电子控制系统等部分组成,其中电子光学系统是决定透射电镜性能最关键的部分。
另外,有些透射电镜还配置有X射线能谱、电子能量损失谱等附件。
电子光学系统由照明系统、成像系统和图像观察记录系统组成。
照明系统由电子枪和几个电磁聚光镜组构成,主要是提供一个亮度高、尺寸小、性能稳定的光源。
透射电子显微镜TEM(PPT121页)
透射电子显微镜 (Transmission Electron Microscope, TEM)
TEM是以波长极短的电子束作为照明源,用电磁透 镜聚焦成像的一种高分辨率、高放大倍数的电子光学 仪器。可同时实现微观形貌观察、晶体结构分析和成 分分析(配以能谱或波谱或能量损失 谱)。
为什么采用电子束而不用自然光?
β=±25度
EM420透射电子显微镜
(日本电子) 加速电压20KV、40KV、60KV、 80KV、100KV、120KV 晶格分辨率 2.04Å 点分辨率 3.4Å 最小电子束直径约2nm 倾转角度α=±60度
β=±30度
FEI Titan 80-300 kV S/TEM 世界上功能最强大的商用透射电子显 微镜 (TEM)。已迅速成为全球顶级研 究人员的首选 S/TEM,从而实现了 TEM 及 S/TEM 模式下的亚埃级分辨 率研究及探索。
➢ 电子显微镜发展史
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年,透射电
镜实现了工厂化生产。 20世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和Howie等人
主要技术参数: 1.TEM分辨率 <1 2.STEM分辨率 <1 3.能量分辨率 <0.15eV 或 <0.25eV 4.加速电压 80-300kV
内容
8.1 简介 8.2 结构原理 8.3 样品制备 8.4 透射电子显微镜的电子衍射 8.5 透射电子显微镜图像分析
8.2 透射电子显微镜结构原理
电磁透镜的分辨本领比光学玻璃透镜提高一千 倍左右,可以达到2Å 的水平,使观察物质纳米 级微观结构成为可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v 2eU m
式中e为电子所带电荷,e=1.6×10-19C。
将两式整理得:
h 1.226
单位是nm
2emU U
单位是V
不同加速电压下的电子波波长
• 加速电压U/KV 电子波波长λ/nm 加速电压U/KV 电子波波长λ/nm
20
0.00859 120
0.00334
4辨率
• 指显微镜能分辨的样品上两点间的最小距离
•
光学透镜分辨率的公式:
r0
0.61 n sin
式中:λ是照明束波长,α是透镜孔径半角,n 是物方介质
折射率,n·sinα或N·A称为数值孔径。
• 对于光学透镜,当n•sinα做到最大时(n≈1.5,α≈70-75°)
r0 2
• 波长是透镜分辨率大小的决定因素。 透镜的分辨本领主要取决于照明束波长λ。半波长是光学显
第二章 透射电镜
2.1 引言 - 电子光学基础
光学显微镜的发明为人类认识微观世界提供 了重要的工具。随着科学技术的发展,光学显 微镜因其有限的分辨本领而难以满足许多微观 分析的需求。上世纪30年代后,电子显微镜的 发明将分辨本领提高到纳米量级,同时也将显 微镜的功能由单一的形貌观察扩展到集形貌观 察、晶体结构、成分分析等于一体。人类认识 微观世界的能力从此有了长足的发展。
• 透镜的实际分辨本领除了与衍射效应有关以外,还与透镜 的像差有关。 光学透镜,已经可以采用凸透镜和凹透镜的组合等办法 来矫正像差,使之对分辨本领的影响远远小于衍射效应的 影响; 但电子透镜只有会聚透镜,没有发散透镜,所以至今还 没有找到一种能矫正球差的办法。这样,像差对电子透镜 分辨本领的限制就不容忽略了。
降低了ΔrS。
1
•
最佳孔径半角
p
1.25
Cs
4
1
3
相应的最小分辨率 rib 0.49Cs44
由球差和衍射所决定的电磁透镜的 分辨本领r对孔径半角α的依赖性
该式表达了由球差和衍射
所决定的理论分辨本领。
• 普遍式为:
αp=B(λ/Cs)1/4 rib =ACs1/4λ3/4
• 透射电镜孔径半角α通常是10-2-10-3rad;目前最 佳的电镜分辨率只能达到0.1nm左右
电磁透镜
• 短线圈磁场中的电子运动 显示了电磁透镜聚焦成像 的基本原理。电子运动的 轨迹是一个圆锥螺旋曲线, 最后会聚在轴线上的一点。
• 实际电磁透镜中为了增强 磁感应强度,通常将线圈 置于一个由软磁材料(纯 铁或低碳钢)制成的具有 内环形间隙的壳子里。
电磁透镜的像差及其对 分辨率的影响
• 最佳的光学透镜分辨率是波长的一半。对于电磁透镜来说, 目前还远远没有达到分辨率是波长的一半。以日立H-800透 射电镜为例,其加速电压达是200KV,若分辨率是波长的一 半,那么它的分辨率应该是0.00125nm;实际上H-800透射 电镜的点分辨率是0.45nm,与理论分辨率相差约360倍。
微镜分辨率的理论极限。若用波长最短的可见光(λ= 390nm )作 照明源,则
r0≈200nm 200nm是光学显微镜分辨本领的极限
如何提高显微镜的分辨率
• 根据透镜分辨率的公式,要想提高显微镜的分辨率,关键 是降低照明光源的波长。
• 顺着电磁波谱朝短波长方向寻找,紫外光的波长在13390nm之间,比可见光短多了。但是大多数物质都强烈地 吸收紫外光,因此紫外光难以作为照明光源。
• 原来的物点是一个几何 点,由于球差的影响现在 变成了半径为ΔrS的漫散 圆斑。我们用ΔrS表示球 差大小,计算公式为:
•
rS
1 4
C
s
3
Cs:球差系数
• 球差是像差影响电磁透镜分辨 率的主要因素,它还不能象光 学透镜那样通过凸透镜、凹透 镜的组合设计来补偿或矫正。
• 球差系数越大,由球差决定的分
电子波长
• 根据德布罗意(de Broglie)的观点,运动的
电子除了具有粒子性外,还具有波动性。这一点
上和可见光相似。电子波的波长取决于电子运动
的速度和质量,即
h
式中,h为普郎克常数:h=6.626m×v10-34J.s;
m为电子质量;v为电子运动速度,它和加速电
压U之间存在如下关系:
1 mv2 eU 即 2
辨本领越差,随着α的增大,分
辨本领也急剧地下降
衍射效应的分辨率和球差造成的分辨率
• 由球差和衍射同时起作用
的电磁透镜的理论分辨率
可以由这两个效应的线性
叠加求得,即
r
rs
rd
1 4
Cs
3
0.61
• 孔径半角α对衍射效应的分辨
率和球差造成的分辨率的影响
是相反的。提高孔径半角α可
以提高分辨率Δrd,但却大大
0.00285
60
0.00487 200
0.00251
80
0.00418 500
0.00142
100
0.00371 1000
0.00087
电磁透镜
• 电子波和光波不同,不能通过玻璃透镜会 聚成像。但是轴对称的非均匀电场和磁场 则可以让电子束折射,从而产生电子束的 会聚与发散,达到成像的目的
• 控制电子束的运动在电子光学领域中主要 使用电磁透镜装置
• 更短的波长是X射线(0.01~10nm)。但是,迄今为止还没 有找到能使X射线改变方向、发生折射和聚焦成象的物质, 也就是说还没有X射线的透镜存在。因此X射线也不能作为 显微镜的照明光源。
• 除了电磁波谱外,在物质波中,电子波不仅具有短波长, 而且存在使之发生折射聚焦的物质。所以电子波可以作为 照明光源,由此形成电子显微镜。
2.2透射电镜的工作原理和特点
• 透射电镜:是以波长极短的电子束作为照 明源,用电磁透镜聚焦成像的一种具有高 分辨本领、高放大倍数的电子光学仪器。
• 通常透射电镜由 电子光学系统、 电源系统、真空 系统、循环冷却 系统和操作控制 系统组成.
• 其中电子光学系 统是电镜的主要 组成部分,通常 称为镜筒.
图为日立公司H800透射电子显微镜(镜筒)
高压系统
真空系统
操作控制系统
• 由于像差的存在,使得电磁透镜的分辨率低于理论值。电 磁透镜的像差包括球差、像散和色差。
• 电镜的像差为:球差、像散、色差。其中 球差不可消除且对电镜分辨率影响最显著; 像散可以消除;色差的影响是电压波动和 样品厚度不均
球差
• 球差是因为电磁透镜近轴 区域磁场和远轴区域磁场 对电子束的折射能力不同 而产生的。