《初中物理受力分析》汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《初中物理受力分析》一、下面各图的接触面均光滑,对小球受力分析:
二、下面各图的接触面均粗糙,对物体受力分析:
图
1
图2
图
3
图
5 图
6 图
7
图9
图
11
图10 图
12
图
8
图
4
图19
物体静止在斜面上
图20 图21
图13
v
图15
v
图16
图14
物体处于静止
物体刚放在传送带上
图17
物体随传送带一起
做匀速直线运动
图18
图22
物体处于静止(请画出物体
受力可能存在的所有情况)
图23
三、分别对A 、B 两物体受力分析:
(对物体A 进行受力分析)
F 图24 物体处于静止 图26 物体刚放在传送带上 图28
杆处于静止状态,其中杆与半球面之间光滑 图29 杆处于静止状态,其中 杆与竖直墙壁之间光滑 图30 杆处于静止状态 图31 O
A B C
图32
匀速上攀 图33 v v 图34
匀速下滑 A B F
图36
A 、
B 两物体一起做匀速直线运动
A 、
B 两物体均静止 A B 图37 F 图42 B v A A 、B 两物体一起匀速下滑 A 、B 、
C 两物体均静止 B C
图38
A A 随电梯匀速上升
v
(4)
(6)
(7)
(5) (9)
(8)
(13)
(14)
(15)
滑轮重力不计
(10) (11)
(12) (1) (2)
(3)
水平地面粗糙
水平地面粗糙
碗光滑 以下各球均为光滑刚性小球
(16)
(17)
(18)
(19)
(20)
(21)
(28)
(29)
(30)
三球静止 (25)
(26)
(27)
小球A 静止
弹簧处于压缩状态
(22)
(23)
(24)
O
P
Q
B
AO 表面粗糙,OB 表面光滑 分别画出两环的受力分析图
(31)
(32)
(33)
(34) (35)
(36)
(37) (38) (39)
(40)
(41) (42)
(43)
(44) (45)
(46) (47) (48)
A 、
B 匀速运动
A 、
B 匀速运动
(37)(38)(39)(40)A 、B 、C 三者都静止,分别画出ABC 三者的受力图
分别画出各物块的受力分析图
猫虽沿杆往上爬,但不能上升,保持在原来的高度。足够长的杆往下运动
此环为轻环,重力忽略
A 匀速上升
A 沿墙壁向上匀速滑动
初三数学圆教案
一、本章知识框架
二、本章重点
1.圆的定义:
(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.
(2)圆是到定点的距离等于定长的点的集合.
2.判定一个点P是否在⊙O上.
设⊙O的半径为R,OP=d,则有
d>r点P在⊙O 外;
d=r点P在⊙O 上;
d 3.与圆有关的角 (1)圆心角:顶点在圆心的角叫圆心角. 圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质: ①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. (3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质: (1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论: (1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧. (4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等. 5.三角形的内心、外心、重心、垂心 (1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示. (2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示. (3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示. (4)垂心:是三角形三边高线的交点. 6.切线的判定、性质: (1)切线的判定: ①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线. (2)切线的性质: ①圆的切线垂直于过切点的半径. ②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心. (3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长. (4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形 (1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角. (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等. 8.直线和圆的位置关系: 设⊙O 半径为R,点O到直线l的距离为d. (1)直线和圆没有公共点直线和圆相离d>R. (2)直线和⊙O有唯一公共点直线l和⊙O相切d=R. (3)直线l和⊙O 有两个公共点直线l和⊙O 相交d 9.圆和圆的位置关系: 设的半径为R、r(R>r),圆心距. (1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离 d>R+r. (2)没有公共点,且的每一个点都在外部内含d (3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.