工科数学分析(下)考试题(带答案)
北京交通大学第二学期工科数学分析Ⅱ期末考试试卷及其答案
解此方程组,得
10.设函数 f ( x ) =
∫
0
x
sin t dt .⑴ 试将 f ( x ) 展成 x 的幂级数,并指出其收敛域.⑵ 若在上式中 t
令 x = 1 ,并利用其展开式的前三项近似计算积分 解: ⑴ 由于
∫
1
sin x dx ,试判断其误差是否超过 0.0001 ? x 0
( t 2 t 4 t 6 t 8 t 10 − 1) t 2 n −2 = 1− + − + − +"+ +" (2n − 1)! 3! 5! 7! 9! 11! 所以,在区间 [0, x ]上逐项积分,得
y x+ y ∫∫ e dxdy ,其中积分区域 D 是由直线 x = 0 , y = 0 及 x + y = 1 所围成的闭区 D
6.计算二重积分 域.
解: 作极坐标变换 x = r cos θ ,
y = r sin θ ,则有
rdr
∫∫ e
D
y x+ y
π
dxdy = ∫ dθ
0
2
1 cos θ + sin θ
Σ
(
)
(
)
= ∫∫∫ z + x + y dV
2 2 2
(
)
Ω
= ∫ dθ ∫ sin ϕdϕ ∫ ρ 4 dρ
0 0 0
−2
2π
π
2 a
2 = πa 5 5
8.求解微分方程 x y ′′ + xy ′ − 4 y = 2 x . 解:
2
这是 Euler 方程,令 x = e ,或 t = ln x ,原方程化为
2012-2013年华南理工大学期末考试《工科数学分析》下 试卷(A)(1)
,考试作弊将带来严重后果!华南理工大学期末考试《工科数学分析》2012—2013第二学期期末考试试卷(A )1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;本试卷共 5个 大题,满分100分, 考试时间120分钟。
一、单项选择题(每小题3分,共15分)1.下述函数中有可能成为二阶微分方程(,,'')0f x y y =的通解的是( )A .120C x C y +=;B .212e x yC C -=+;C . 312eC xC y C =;D .123ln y C x C x C =++.2.设(,)f x y 是可微函数,且(0,0)0,(0,0),(0,0)x y f f a f b ===,令()(,(,)t f t f t t ϕ=,则'(0)ϕ=( )A .a ;B .()a b a b ++;C .1a +;D .1ab-. 3.10d (,)d yy f x y x -⎰⎰交换积分顺序后,正确的结果是( )A .0111101d (,)d d (,)d x x f x y y x f x y y --+⎰⎰⎰⎰; B .1101d (,)d x f x y y ⎰⎰; C .011d (,)d xx f x y y --⎰⎰; D .111d (,)d xx f x y y -⎰⎰.4.设C 是右半圆周222,0,0x y a x a +=≥>,则曲线积分()d Cx y s +=⎰( )A .0;B .22a ; C .2a ; D .4a . 5. 设2()(01)f x x x =≤<,而1()s i n π()nn S x bn x x ∞==-∞<<+∞∑,其中102()sin πd (1,2,)n b f x n x x n ==⋅⋅⋅⎰,则1()2S -=( )A .12-;B .14-;C .14;D .12.二、填空题(每小题3分,共15分)1. 微分方程2'''0yy y -=的通解为 ; 2. 设(1)arcsinx u x y y =+-,则(1,2)ux ∂=∂ ; 3. 设区域:0,0πD y x x ≤≤≤≤,则二重积分d Dx y = ;4. 已知曲线C 为22x y ax +=,则曲线积分s =⎰;5. 幂级数1(2)4nnn x n ∞=-∑的收敛域为 . 三、计算题(每小题10分,共50分)1. 计算三重积分222()d I x y z V Ω=++⎰⎰⎰,其中Ω:2222x y z z ++≤.2.设∑是锥面z =被平面0z =及1z =所截部分的外侧,计算第二类曲面积分2d d d d (2)d d I x y z y z x z z x y ∑=++-⎰⎰.3.求幂级数0(21)nn n x ∞=+∑的和函数,并据此求数项级数0212nn n ∞=+∑的值.4. 求,a b 的值,使得包含圆周22(1)1x y -+=在其内部的椭圆22221(0,0,)x y a b a b a b +=>>≠有最小的面积.5. 求微分方程''2e x y y x -=的通解.四、证明题(本题10分)证明数项级数1sin(n ∞=∑条件收敛.五、应用题(本题10分)设某山峰可由曲面2252z x y =--表示。
2017级工科数分(下)期中考试卷(附解答)
,考试作弊将带来严重后果!华南理工大学期末考试《工科数学分析》2017—2018学年第二学期期中考试卷1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上(或答题纸上); .考试形式:开(闭)卷;本试卷共 4个 大题,满分100分, 考试时间90分钟。
10分,共60分)设函数f 有二阶连续偏导数,求函数22,x z f x y y ⎛⎫=+ ⎪⎝⎭的二阶混合偏导数.解:12212222211122223212,4112+24+210z f x f x yf f z x f x y y y y y f x xxyf f f y y y ∂''=⋅+⋅∂''∂∂∂-'=⋅+⋅∂∂∂∂'⎛⎫''''''=--- ⎪⎝⎭计算 2421222xxxdx dy dx dy yyππ+⎰⎰:()22421221322sin724210xy yx x dx dy dx dyyyx dy dx yπππππ+==+⎰⎰⎰⎰分分计算体密度为ρ=:z ∑=与1z =所围成立体的质量。
解:在球坐标下1z =即1cos 1,cos z r r ϕϕ===,z ∑=:cos sin r r ϕϕ==,进而tan 1,cos 04πϕϕϕ=≥⇒=。
z ∑=:1z =交线即221,1x y z +==得立体投影域22:1xy D x y +≤含原点。
从而立体1:02,0,04cos r πθπϕϕΩ≤≤≤≤≤≤,2分 用球坐标计算质量()1/cos 2/4201/cos /430sin 72sin 1106m d d r r drd r dr ϕππϕπθϕϕπϕϕπΩ==⋅==⎰⎰⎰⎰⎰4. 计算()221(1)Lx dy ydx x y ---+⎰,其中L 为下列闭曲线,沿逆时针方向:(1)点()1,0在L 所围区域之外;(2)点()1,0在L 所围区域之内。
09级《工科数分》(下A解答)
09级《工科数学分析》(下)试题A 参考答案一.填空题(每小题4分,总12分。
将答案按题号写在答题纸上,不写解题过程)1、222,0y C Cx C =+≥的常数;2、3 ;3、0 ,34-. 二.选择题(每小题4分,总12分。
每小题给出四种选择,有且仅有一个是正确的,将你认为正确的代号按题号写在答题纸上)1、C;2、B ;3、B.三(7分)、解:sin ,xz f e y x ∂'=∂2222sin sin ;x x z f e y f e y x∂'''=+∂ 同理2222sin cos ;x x zf ey f e y y∂'''=-+∂结合已知得0.f f ''-=解这个常微分方程得 1212(),,t t f t C e C e C C -=+为任意常数。
四(8分)、解:设32(18)F x y z x y z λ=+++-,令2233230200180x y z F x y z F x yz F x y F x y z λλλλ⎧=+=⎪=+=⎪⎨=+=⎪⎪=++-=⎩,解出9,6,3x y z ===由题意知最大产出必存在,所以9,6,3x y z ===为所求。
五(7分)、解:令23zF z e xy =-+-,则有()2|4,x P F P y '==()2|2,y P F P x '==()(1)|0.z z P F P e '=-=故 切平面方程为4(1)2(2)0(0)0x y z -+-+⋅-= 即 240x y +-= 法线方程120420x y z ---==即 120.210x y z ---== 六(8分)、解:依题意令密度函数为k ρ=为待定常数。
由球体的对称性只需求其对z 轴的转动惯量22()d z I x y V ρΩ=+⎰⎰⎰即可。
又由题设m dV ρΩ=⎰⎰⎰。
工科数学分析试卷+答案
工科数学分析试题卷及答案考试形式(闭卷):闭 答题时间:150 (分钟) 本卷面成绩占课程成绩 80 %一、填空题(每题2分,共20分)1.---→xx x x sin 11lim 30 3-2.若⎪⎩⎪⎨⎧=≠-+=0,0,13sin )(2x a x xe x xf ax 在0=x 处连续,则a 3- 3.设01lim 23=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x ,则 =a 1 , =b 0 4.用《δε-》语言叙述函数极限R U ⊂∈=→)(,)(lim 0x x A x f x x 的定义: εδδε)()()(:000A x f x x ∈→∈∀>∍>∀U 5.若当)1(,023+++-→cx bx ax e x x是3x 的高阶无穷小,则=a61=b21=c 1 6.设N ∈=--→n x x x f x f nx x ,1)()()(lim2000,则在0x x =处函数)(x f 取得何种极值? 答: 极小值姓名: 班级: 学号:遵守 考 试 纪 律 注 意 行 为 规 范7.设x x y +=,则dydx x)211(+⋅8.设x x y sin =,则=dy dx xxx x xx)sin ln (cos sin +9.⎰=+dx x x 21arctan C x +2arctan 21 10.⎰=+dx ee xx12 C e e x x ++-)1l n ( 二、选择题:(每题2分,共20分)1.设0,2)1()1l n (2s i n2t a n li m 2222≠+=-+-+-→c a e d x c xb x a x x ,则必有( D )(A )d b 4=;(B )c a 4-=;(C )d b 4-=;(D )c a 2-= 2.设9320:0<<>k x ,则方程112=+x kx 的根的个数为( B )(A )1 ;(B ) 2 ; (C ) 3 ; (D )03.设)(x f 连续,且0)0(>'f ,则存在0>δ使得( A )(A ))(x f 在),0(δ内单增; (B )对),0(δ∈∀x 有)0()(f x f >; (C )对)0,(δ-∈∀有)0()(f x f >; (D ))(x f 在)0,(δ-内单减。
10-11-2《高等数学A(工科数学分析)》第二学期期末考试试卷(精简版)及参考答案
河南理工大学 2010-2011 学年第 2 学期《工科数学分析》(下)试卷(A 卷)一、填空题(共28分,每小题4分)1.函数xyz z xy u -+=32在点()2,1,1处沿方向l (其方向角分别是00060,45,60)的方向导数 是 9/2 .2.设0 < p < 1,计算级数()∑∞=--1121k k p p k =)20(,22<<-p pp3. 函数())sin(,22y x y x f +=在点)0,0(的泰勒公式(到二阶为止)为()()()2222,y x y x y x f +=++=ρρο4.函数()xx f 3=的幂级数展开式为∑∞=0!3ln n nn x n .5.设()⎰-=22x xxy dy ex F ,则=')(x F ()⎰----+-223522x xxy x x dy ey ex e6.()⎰C ds x =()15532-,其中(C )为抛物线x y =从点()0,0到点()1,1的一段弧。
7.微分方程()02='+''y y ,满足初始条件1,000='===x x y y 的特解为1ln y +=x 。
二、解答题(共50分,每小题10分)1、 设()v u ,Φ具有连续偏导数,函数()y x z ,由隐方程()bz cy az cx --Φ,=0确定,求yz b x z a∂∂+∂∂。
解:将隐方程两边全微分可得:()()()()()0,2121=-⋅Φ'+-⋅Φ'=-⋅Φ'+-⋅Φ'=--Φbdz cdy adz cdx bz cy d az cx d bz cy az cx d ………………………………………………3分 整理得:dy b a c dx b a c dz 212211Φ'+Φ'Φ'+Φ'+Φ'Φ'=……………………………………6分所以,212211,Φ'+Φ'Φ'=∂∂Φ'+Φ'Φ'=∂∂b a c y zb ac x z …………………………………………8分 y zb x z a ∂∂+∂∂=c b a c b b a c a =Φ'+Φ'Φ'+Φ'+Φ'Φ'212211,………………………………………10分2、 判定正项级数∑⎰∞=+1141n n dx x x的敛散性。
知到全套答案工科数学分析下提高版2020章节测试答案.docx
知到全套答案工科数学分析下提高版2020章节测试答案问:“一带一路”重大倡议首次写入联合国大会决议是在()答:2016年问:具备()素质的创业者往往能够在创业的过程中先拔头筹。
答:把握机遇问:有一分数序列: 2/1 , 3/2 , 5/3 , 8/5 , 13/8 , 21/13 ,…求出这个数列的前 20 项之和。
答:略问:孔子主张“克己复礼”的修养方法,要求我们做到()答:非礼勿视非礼勿听非礼勿言非礼勿动问:当气压降低时,水的沸点随之()。
答:降低问:毛泽东指出:“反对主观主义以整顿党风,反对宗派主义以整顿学风,反对党八股以整顿文风,这就是我们的任务。
”答:×问:“一带一路”建设不是另起炉灶、推倒重来,而是实现战略对接、优势互补,以下属于“一带一路”建设中中国与其他国家实现规划对接的项目是()答:越南提出的“两廊一圈” 哈萨克斯坦提出的“光明之路” 波兰提出的“琥珀之路” 俄罗斯提出的欧亚经济联盟问:X射线由德国物理学家()于1895年发现。
答:伦琴问:《红楼梦》模仿明清传奇用()开场的惯例,开幕的时候,两个人物出来对话,预报整个剧情。
答:副末问:以下体现为归因的一致性和共同性的是()。
答:讲秩序的人通常是遵守规则的人问:共建“一带一路”不仅是经济合作,而且是完善全球发展模式和全球治理、推进经济全球化健康发展的重要途径。
答:正确问:()是社会主义核心价值体系的内核。
答:社会主义核心价值观问:计算理论是研究用计算机解决计算问题的数学理论,有3个核心领域,但不包括()。
(5.0分)答:抽象理论问:1931年8月,鲁迅邀请谁从木刻的起稿、用刀、刻法、拓印、套版等问题做了深入讲授?()。
答:内山嘉吉问:社会学恢复重建后,费孝通说:“我认为社会学最根本的任务是要解决一个生活在社会里的人,怎样学会做人的问题。
”这是指社会学的()答:教育功能问:《红楼梦》的哪些设定体现了隐喻方法?答:人名地名正邪对比男女对比阴阳互转问:细菌性食物中毒的特点?答:发病率高病死率低问:59. 换药的目的答:以上均是问:在带领宾客参观公司时,作为一个引导者,在进出无人电梯时你应该做到()答:加快脚步,进电梯时自己先进入,出电梯则相反问:囚徒困境不仅适用于经济学相关理论的研究,还适合于其他学科。
工科数学分析(下)智慧树知到答案2024年北京航空航天大学
工科数学分析(下)北京航空航天大学智慧树知到答案2024年第一章测试1.A:图中C B:图中A C:图中B D:图中D答案:B2.A:图中C B:图中D C:图中B D:图中A答案:A3.A:图中C B:图中A C:图中D D:图中B答案:B4.A:图中B B:图中D C:图中C D:图中A答案:A5.A:图中A B:图中B C:图中C D:图中D答案:D6.A:图中B B:图中A C:图中C D:图中D答案:B7.A:图中A B:图中C C:图中DD:图中B答案:C8.A:图中DB:图中B C:图中C D:图中A答案:A9.A:图中A B:图中C C:图中B D:图中D答案:A10.A:图中B B:图中C C:图中D D:图中A答案:D第二章测试1.A:图中A B:图中C C:图中B D:图中D答案:A2.A:(3)错 B:全错 C:(1)错 D:(2)错答案:C3.A:图中A B:图中B C:图中D D:图中C答案:A4.A:图中B B:图中A C:图中D D:图中C答案:AA:图中B B:图中D C:图中C D:图中A答案:D第三章测试1.A:图中C B:图中B C:图中A D:图中D答案:C2.A:图中C B:图中A C:图中D D:图中B答案:B3.A:图中C B:图中D C:图中A D:图中B答案:D4.A:图中B B:图中D C:图中A D:图中C答案:C5.A:图中B B:图中D C:图中C D:图中A答案:D6.A:图中D B:图中C C:图中A D:图中B答案:D7.A:图中C B:图中A C:图中D D:图中B答案:C8.A:图中D B:图中C C:图中B D:图中A答案:D9.A:图中B B:图中C C:图中A D:图中D答案:A10.A:图中D B:图中C C:图中B D:图中A答案:D第四章测试1.A:图中D B:图中B C:图中A D:图中C答案:C2.A:图中B B:图中A C:图中D D:图中C答案:B3.A:图中A B:图中B C:图中C D:图中D答案:B4.A:图中C B:图中B C:图中D D:图中A答案:B5.A:图中C B:图中A C:图中B D:图中D答案:D6.A:图中B B:图中C C:图中D D:图中A答案:D7.A:图中C B:图中B C:图中A D:图中D答案:C8.A:9 B:1 C:3 D:-1答案:C9.A:图中B B:图中C C:图中A D:图中D答案:C10.A:图中C B:图中A C:图中D D:图中B答案:C第五章测试1.A:图中A B:图中C C:图中D D:图中B答案:A2.A:图中B B:图中C C:图中A D:图中D答案:C3.A:图中C B:图中B C:图中A D:图中D答案:D4.A:图中C B:图中D C:图中A D:图中B答案:C5.A:图中D B:图中B C:图中A D:图中C答案:C第六章测试1.A:图中B B:图中D C:图中C D:图中A答案:D2.A:图中C B:图中B C:图中D D:图中A答案:C3.A:图中D B:图中C C:图中B D:图中A答案:D4.A:图中B B:图中A C:图中D D:图中C答案:D5.A:图中B B:图中C C:图中A D:图中D答案:B第七章测试1.A:图中B B:图中A C:图中D D:图中C答案:C2.A:图中A B:图中C C:图中D D:图中B答案:B3.A:图中A B:图中D C:图中C D:图中B答案:B4.A:图中B B:图中D C:图中A D:图中C答案:B5.A:图中A B:图中C C:图中B D:图中D答案:C第八章测试1.A:图中D B:图中C C:图中A D:图中B答案:A2.A:图中A B:图中D C:图中C D:图中B答案:B3.A:图中A B:图中B C:图中C D:图中D答案:B4.A:图中D B:图中B C:图中C D:图中A答案:A5.A:图中D B:图中C C:图中B D:图中A答案:D第九章测试1.A:图中D B:图中A C:图中B D:图中C答案:B2.A:图中D B:图中C C:图中A D:图中B答案:B3.A:图中D B:图中A C:图中B D:图中C答案:A4.A:图中A B:图中C C:图中D D:图中B答案:A5.A:图中B B:图中A C:图中D D:图中C答案:B第十章测试1.A:图中D B:图中B C:图中C D:图中A答案:C2.A:图中A B:图中C C:图中D D:图中B答案:D3.A:图中B B:图中D C:图中C D:图中A答案:B4.A:图中B B:图中C C:图中A D:图中D答案:D5.A:图中A B:图中D C:图中C D:图中B答案:C。
工科数学分析(下)考试题(带答案)培训资料
工科数学分析(下)期末考试模拟试题姓名:___________得分: _________一、填空题(每小题3分,满分18分)1、设()xz y x z y x f ++=2,,,则()z y x f ,,在()1,0,1沿方向→→→→+-=k j i l 22的方向导数为_________.2.,,,-__________.222L L xdy ydx L x y=⎰+Ñ设为一条不过原点的光滑闭曲线且原点位于内部其走向为逆时针方向则曲线积分1,()cc x y x y ds +=+=⎰Ñ3.设曲线为则曲线积分 ___________4、微分方程2(3xy y)dx 0x dy +-=的通解为___________5、2sin(xy)(y)______________.y yF dx x=⎰的导数为 6、{,01,0x (x),2x e x f x ππππ--≤<≤≤==则其以为周期的傅里叶级数在点处收敛于_____________.二、计算下列各题(每小题6分,满分18分) 1. (1) 求极限lim0→→y x ()xy yx y x sin 11232+-(2) 220)(lim 22y x x y x y +→→2.设f ,g 为连续可微函数,()xy x f u ,=,()xy x g v +=,求xvx u ∂∂⋅∂∂(中间为乘号).3..222V z x y z V +=设是由所围成的立体,求的体积.三、判断积数收敛性(每小题4分,共8分)1. ∑∞=1!.2n n n nn2.∑∞=-1!2)1(2n n nn四、(本小题8分)求向量场2(23)()(2)x z xz y y z =+-+++A i j k u r r r u r 穿过球面∑: 222(3)(1)(2)9x y z -+++-=流向外侧的通量; 五、(本小题7分)2(1sin )cos ,(0,1)(0,1)y y lx e x dy e xdx l x A B +--=-⎰计算其中为半圆到的一段弧。
工科数学分析下册其中考试(修改)附参考答案
z xv yu 2 ; 代入①即得 2 x x y
z vy xu 2 . 代入②即得 2 y x y
y2 6.(1) z x f ( ) : x
2y f
y2 2y3 2 y f ( 2 ) 2 f x x
y2 (2) z f ( x ) : x
7.在第一卦限作椭球面
的切平面,
使其在三坐标轴上的截距的平方和最小, 并求切点.
x2 y2 z 2 解: 设 F ( x, y, z ) 2 2 2 1, 切点为 a b c 则切平面的法向量为 2 x0 2 y0 2 z0 n ( Fx , Fy , Fz ) , 2 , 2 2 M a b c 切平面方程
z u v v u y y y
1 u ln( x 2 y 2 ) 2
②
由 x eu cos v, y eu sin v , 得
y v arctan x
u x 2 , 2 x x y y x y 2
唯一驻点
c2 c2 z 2 2 2 0 Fz 2 z z c
由实际意义可知
为所求切点 .
利用行列式解出 du, dv :
du
d x e u sin v d y e u cos v e u cos v e u sin v u u e sin v e cos v
e
u
cos v
e u sin v
e u sin v
e u cos v
z u v v u x x x ① u v z v u ② y y y
期中考试参考答案
1. 求过点( 2 , 1 , 3 ) 且与直线
工科数学分析试题及答案
A一、 求解下面问题(每小题6分,满分48分)1.设),(y x f 为一连续函数,求极限.),(122220lim dxdy y x f rr y x r ⎰⎰≤+→+π解 (0,0)),(12222limf dxdy y x f r r y x r =⎰⎰≤+→+π建议:中间过程4分2. 改变累次积分的积分顺序:dy y x f dx x x ),(-21-426-2⎰⎰0820-1(,)(,)ydy f x y dx dy f x y dx---=+⎰⎰⎰⎰3. 计算二重积分dxdy y x D22sin +⎰⎰,其中积分区域为}.4|),{(2222ππ≤+≤=y x y x D解:D⎰⎰4. 计算三重积分dxdydz x y V⎰⎰⎰+)1(2012,其中V 由22--4y x z =与223y x z +=所成的立体.解:由于V 是关于yoz 平面对称的,且x y 2012是关于x 的奇函数,所以02012=⎰⎰⎰d x d y d z x yV,于是23220121()r VVyx dxdydz dxdydz d πθ+==⎰⎰⎰⎰⎰⎰⎰⎰223)r d rdr πθ=⎰2223001)()2r d d r πθ=⎰22220012(4)()62r d r d r πθ⎤=--⎢⎥⎣⎦⎰34222001219(4)6236r d r πθπ⎡=⋅---=⎢⎥⎣⎦⎰ (写出对称性给2分,计算过程适当给分)2204sin 6d r rdr πππθπ==-⎰⎰5. 计算积分2(2)I x z ds Γ=+⎰,其中曲线Γ为2222,0.x y z a x y z ⎧++=⎨++=⎩(利用对称性)解: 利用轮换对称性知2322222212()333a a x ds y ds z ds x y z ds ds πΓΓΓΓΓ===++==⎰⎰⎰⎰⎰1()03zds xds yds x y z ds ΓΓΓΓ===++=⎰⎰⎰⎰ 所以322(2)3a x z ds πΓ+=⎰(建议:两个对称性各3分,写出参数方程直接计算适当给分)6. 计算第一型曲面积分()x y z dS ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分. (可利用对称性) 解: 利用对称性知0xdS ydS ∑∑==⎰⎰⎰⎰设xy D ={|),(y x 2222x y a h +≤-} 则()x y z dS ∑++⎰⎰=zdS ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-(建议:对称性0xdS ydS∑∑==⎰⎰⎰⎰2分 ,= 1分,zdS ∑⎰⎰计算过程3分)7. 证明向量场))2(),2(),2((z y x xy z y x xz z y x yz F ++++++= 是有势场,并求其势函数.解:先验证有势场0)2()2()2(=++++++=∂∂∂∂∂∂z y x xy z y x xz z y x yz F rot zyxk j故是有势场. ---------3分.)2()2()2(.),,222000000),,(),,(),,(),,(0000000C xyz z xy yz x dz z y x xy dy z y x xz dx z y x z y RdzQdy Pdx s d F z y x zzyy xx z y x z y x z y x z y x +++=++++++++=++==⎰⎰⎰⎰⎰(φ(另一种方法也可(这里略),请判卷的时候注意。
工科数学分析2016_2017_2_B 解答
xdy−ydx =
12π
;
Γ
3. 向量场 x2yzi + xy2zj + xyz2k 在点 (1, 1, 1) 的散度为
6
;
4.
初值问题
y′
+
3 x
y
=
y|x=1 = 1
2 x3
的解为
2 x2
−
1 x3
;
5.
设
f (x) = πx + x2, −π < x < π
的傅里叶
(Fourier)
级数为
a0 2
x ∈ (−1, 1).
当 x = −1 时,由幂级数的性质知 f (x) 在 x = −1 连续。而函数 − ln(1 − x) 也在 x = −1 连续。 因此,
f (x) = − ln(1 − x), x ∈ [−1, 1). · · · · · ·(3 分)
《工科数学分析》试卷 第 6 页 共 8 页
所以,
ˆ S = xyds
Γ
ˆπ 2
= 4 cos t sin t · 2dt
0
= 4. · · · · · ·(3 分)
《工科数学分析》试卷 第 5 页 共 8 页
√ 3. 设 Σ 是锥面 z = x2 + y2 被平面 z = 0 及 z = 1 截下的部分的下侧,
˜ 计算第二类曲面积分 xdydz + ydzdx + (z2 − 2z)dxdy。
λ2 + 4λ + 3 = 0.
特征方程有两个实数根 λ1 = −3 和 λ2 = −1。因此微分方程的通解为 y = C1e−3x + C2e−x. · · · · · ·(5 分)
2021-2022学年数学分析第二学期期末考试(含答案)
2021-2022学年第二学期期末《数学分析》一.填空题 ( 每题5分,共30分 )1. 已知势函数 2u x yz =,则其梯度 grad u = ,其梯度的散度 ()div grad u = 。
2. 曲面:ln x z y y ⎛⎫∑=+ ⎪⎝⎭在点0(1,1,1)P 处的单位法向量为 ,在该点处的切平面方程为 .3. 设22()d ,x x u x f x e u -=⎰ 则'()f x = .4. 设Γ是以(0,0),(1,0),(0,1)O A B 为顶点的三角形的边界,则曲线积分()x y ds Γ+⎰ = .5. 设Ω是由锥面z =和上半球面 z = 围成的空间区域, 则三重积分222()d f xy z V Ω++⎰⎰⎰ 在球坐标系下的累次积分为.6. 利用Γ函数和B 函数的性质,可知 2560sin cos d x x x π⎰ = .二. 计算题 (10分) 计算二重积分D,其中 D 是由22221x y a b += 所围的平面区域。
设Γ是任意一条包围着原点(不经过原点)的分段光滑、逆时针定向曲线,试计算曲线积分22.2xdy ydxx y Γ-+⎰四. 计算题 (10分)设∑为曲面 )20(222≤≤+=z y x z 的下侧.计算曲面积分33()d d ()d d 2()d d x y y z y z z x x y z x y ∑++-++-⎰⎰.计算曲线积分22I y dx xdy z dz Γ=-++⎰,其中Γ是平面2y z +=与柱面221x y +=的交线,从Oz 轴正向往下看为逆时针方向.六.计算题 (10分)计算双曲面z xy = 被围在圆柱面222x y a +=内部的面积.设()f x 是[,]a b 上的连续函数,利用二重积分性质证明不等式22()d ()()d b b a a f x x b a f x x ⎡⎤≤-⎢⎥⎣⎦⎰⎰八. 证明题 (10分)设(,)f x u 在[,][,]a b αβ⨯上连续,证明对任意 0[,]u αβ∈,总有0lim (,)d (,)d b baau u f x u x f x u x →=⎰⎰设Ω为闭区域,∂Ω是Ω的边界外侧,n是∂Ω的单位外法向量。
工科数学分析习题答案(下)
习题6.11.(1)(a )23()()()d ()d ,x y x y σσσσ+>+⎰⎰⎰⎰ (b )23()()()d ()d ,x y x y σσσσ+<+⎰⎰⎰⎰(2)(a)2()()e d e d xyxy σσσσ<⎰⎰⎰⎰, (d )2()()e d e d xy xy σσσσ>⎰⎰⎰⎰2.(1)02I ≤≤; (2)0I ≤≤ (3)e I ππ≤≤ (4)3075I ππ≤≤习题6.21.(1)221; (2)3221; (3)4(3115-; (4)62e 9e 4--;(5)54ln 22-; (6)425-; (7)21)15; (8)3cos1sin1sin 42+-2.(1)2 44 04d (,)d d (,)d yy xI x f x y y y f x y x ==⎰⎰⎰⎰;(2) sin 1 arcsin 0 0 0 arcsin d (,)d d (,)d ;xyyI x f x y y y f x y x ππ-==⎰⎰⎰⎰(3)()()()⎰⎰⎰⎰⎰⎰+==21212121211d ,d d ,d d ,d yyxxx y x f y x y x f y y y x f x I(4)21 01 01 21d (,)d d (,)d I x f x y y y f x y x ---==⎰⎰⎰⎰.3.(1)2 10 d (,)d xx x f x y y ⎰⎰; (2) 1 0d (,)d y f x y x ⎰⎰; (3) 1eed (,)d y y f x y x ⎰⎰;(4)1220 0 1d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰; (5) 132 0d (,)d yy f x y x -⎰;(6)22 2 2 00 22d (,)d d (,)d d (,)d aa aa aay y a aaay f x y x y f x y x x f x y x +++⎰⎰⎰⎰⎰⎰;(7)214d (,)d yy f x y x -⎰⎰; (8) 12 01d (,)d yy f x y x -⎰⎰。
最新工科数学分析(下)考试题(带答案)
工科数学分析(下)期末考试模拟试题姓名:___________得分: _________一、填空题(每小题3分,满分18分)1、设()xz y x z y x f ++=2,,,则()z y x f ,,在()1,0,1沿方向→→→→+-=k j i l 22的方向导数为_________.2.,,,-__________.222L L xdy ydx L x y =⎰+设为一条不过原点的光滑闭曲线且原点位于内部其走向为逆时针方向则曲线积分1,()cc x y x y ds +=+=⎰3.设曲线为则曲线积分 ___________4、微分方程2(3xy y)dx 0x dy +-=的通解为___________5、2sin(xy)(y)______________.y yF dx x=⎰的导数为 6、{,01,0x (x),2x e x f x ππππ--≤<≤≤==则其以为周期的傅里叶级数在点处收敛于_____________.二、计算下列各题(每小题6分,满分18分) 1. (1) 求极限lim0→→y x ()xy yx y x sin 11232+-(2) 220)(lim 22y x x y x y +→→2.设f ,g 为连续可微函数,()xy x f u ,=,()xy x g v +=,求xvx u ∂∂⋅∂∂(中间为乘号).3..222V z x y z V +=设是由所围成的立体,求的体积.三、判断积数收敛性(每小题4分,共8分)1. ∑∞=1!.2n n n nn2.∑∞=-1!2)1(2n n nn四、(本小题8分)求向量场2(23)()(2)x z xz y y z =+-+++A i j k 穿过球面∑:222(3)(1)(2)9x y z -+++-=流向外侧的通量; 五、(本小题7分)2(1sin )cos ,(0,1)(0,1)y y lx e x dy e xdx l x A B +--=-⎰计算其中为半圆到的一段弧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工科数学分析(下)期末考试模拟试题
姓名:___________ 得分: _________
一、填空题(每小题3分,满分18分)
1、设()xz y x z y x f ++=2
,,,则()z y x f ,,在()1,0,1沿方向→
→→→+-=k j i l 22的方向导数为
_________.
2.,,,-__________.222L L xdy ydx L x y
=⎰+Ñ设为一条不过原点的光滑闭曲线且原点位于内部其走向为逆时针方向则曲线
积分
1,()c
c x y x y ds +=+=⎰Ñ3.设曲线为则曲线积分 ___________
4、微分方程2
(3xy y)dx 0x dy +-=的通解为___________
5、2
sin(xy)
(y)______________.y y
F dx x
=
⎰
的导数为 6、
{
,01,0x (x),2x e x f x ππ
ππ--≤<≤≤=
=则其以为周期的傅里叶级数在点处收敛于
_____________.
二、计算下列各题(每小题6分,满分18分) 1. (1) 求极限lim
0→→y x ()xy y x y x sin 1
12
32+-
(2) 2
20
)
(lim 22
y x x y x y +→→
2.设f ,g 为连续可微函数,()xy x f u ,=,()xy x g v +=,求x
v
x u ∂∂⋅∂∂(中间为乘号).
3..222V z x y z V +=设是由所围成的立体,求的体积.
三、判断积数收敛性(每小题4分,共8分) 1. ∑∞
=1!.2n n n n
n
2.∑∞
=-1
!2)1(2
n n n
n
四、(本小题8分)求向量场2
(23)()(2)x z xz y y z =+-+++A i j k u r r r u r 穿过球面∑:
222(3)(1)(2)9x y z -+++-=流向外侧的通量;
五、(本小题7分)
2(1sin )cos ,(0,1)
(0,1)y y l
x e x dy e xdx l x A B +--=-⎰计算其中为半圆到的一段弧。
六、(本小题8分)将函数2
31)(2
++=x x x f 展开成4+x 的幂级数.
(0)0,'()1(sin ()),()
0x
t f f x e t f t dt f x ==++-⎰七、(本小题9分)已知求
22
34
23(,)x y x dx dy u x y y y -+八、(本小题7分)验证是某个函数的全微分,并求出这个函数。
(y x,y z)0,G(xy,)0(y),z z(y),
z
F x x y --====九、(本小题7分)设方程组确定隐函数
其中F ,G 都具有一阶连续偏导数,求dx
dy
十、(本小题10分)求旋转椭球面14
2
2
2
=++z y x 在第一卦限部分上的点,使该点处的切平面 在三个坐标轴上的截距平方和最小.
工科数学分析(下)期末考试题答案
一、1. 3
5
3. 4. x
e Cx y 1
3
-
-= 5.
32
3sin 2sin y y y -
6.1+2e π
二、1.(1)1
2-
(2)
|)ln(|4)(|)ln(|0222
222
2
2
2y x y x y x y x ++≤+≤,
又 0ln 4lim )ln(4
)(lim
202
22220
0==+++→→→t t y x y x t y x , ∴ 1)
(lim )22ln(22)
0,0(),(lim 2
222
0==++→→→y x y x y x y x y x e
y x 。
2.()()'211g y yf f x
v
x u ++=∂∂⋅∂∂
3.3
π
()
三、1.解:11
11
)1(2lim )1()!1(2!
.2lim lim
-∞
→--∞→-∞→-=--=n n n n n n n n n
n n n n n n n u u 12)11(lim 21.<=-+=---∞→e n n n n n
由比值法,级数
∑∞
=1!.2n n n n
n 收敛 2. 解: 12lim )!
1(2
!
2lim lim
12)1(122
>∞==-=-∞→-∞→-∞→n n n u u n n n n n n n
n
由比值法,级数∑∞
=-1
!
2)
1(2
n n n
n 发散
四、108π(提示:高斯公式的应用)
五、103
六、解:设4+=x t 则4-=t x
1
1
21341)24(1)(---=+--+-=
t t t t x f
t t -+--
=112
121∑∑∞
=∞=+-=002)2(21n n n t t )2(<t 所以231)(2++=x x x f =∑∑∞=∞=+-=0
02)2(21n n n t t
七、解:,即)(sin )(x f x e x f x -+=''
x e x f x f x
sin )()(+=+'' 特征方程:.,012
i r r ±==+
齐次方程通解为x C x C y sin cos 21+= 再考虑方程①的特解,设特解为
)sin cos (*x C x B x Ae y x
++= 代入方程①定出系数 0
,21
,21=-==C B A
于是
.cos 21
21*x x e y x -=
式的通解.
cos 21
21sin cos 21x x e x C x C y x -++=
将1
21
1)0(',0)0(21=,=-代入上式,得C C f f ==。
所求 .
cos 21
21cos 21sin )(x x e x x x f x -+-= 231
(,)1
x u x y y y =-+八、
1221221221111
[(1)]/[]
dx z FG xF G F G FG yF G dy y y y y =++--九、
十、设所取的点为()z y x M ,,,在点M 处切平面的法向量为⎭
⎬⎫⎩⎨⎧
2,2,2z y x ,切平面方程为
()()()02
22=-+
-+-z Z z
y Y y x X x ,即 14
=++Z z yY xX (考虑到1422
2=++z y x ) 此平面在三个坐标轴上的截距分别为:
x 1,y 1,z
4 问题即为求()z y x ,,,使得函数()2221611,,z y x z y x F ++=在条件⎪⎩
⎪⎨⎧>>>=+
+0
,0,014
222z y x z y x 下求极值 令 ()⎪⎪⎭
⎫ ⎝⎛-+++++=141611,,,22
2222z y x z y x z y x G λλ
则 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨
⎧=-++==+-==+-==+-
=0
140220
22
022
22
2'
2'2'
2'z y x G z z
G y y G x x G z y x λλλλ 解得 λ1822
2=
==z y x 代入约束条件得 14181812
=⎪⎭⎫
⎝
⎛++z 由 0,0,0>>>z y x 知 21=
=y x ,2=z , ∴所求点为 ⎪⎭⎫
⎝⎛2,21,21M。