基因检测与肿瘤个体化治疗

合集下载

肿瘤基因检测对癌症治疗的指导

肿瘤基因检测对癌症治疗的指导

肿瘤基因检测对癌症治疗的指导引言:癌症是一种严重威胁人类健康的疾病,其治疗一直以来都是医学界的焦点和挑战。

近年来,随着科技的快速发展,肿瘤基因检测逐渐成为了癌症治疗领域中不可或缺的一部分。

本文将从肿瘤基因检测的原理、技术应用以及对癌症治疗的指导作用等方面进行探讨。

一、肿瘤基因检测的原理肿瘤基因检测旨在分析个体胚系或体细胞中与发生癌变相关的遗传突变。

这些突变可能影响肿瘤抵抗力、增殖和生存能力等多个方面。

常见的基因检测方法包括全外显子组测序、靶向测序、荧光原位杂交等。

二、肿瘤基因检测的技术应用1. 预防性筛查通过肿瘤基因检测可以发现癌前状态,帮助人们了解患癌的风险。

一旦发现高风险群体,可以采取相应措施进行预防和早期干预,以减少患癌的可能性。

2. 诊断与分型肿瘤基因检测在确定癌症诊断和分型上起到了重要作用。

根据不同肿瘤的基因变异,可以帮助医生进行准确的诊断,并制定针对性的治疗方案。

3. 治疗选择通过肿瘤基因检测可以判断某个患者对某种药物是否具有敏感性。

这为临床医生选取合适的治疗药物提供了依据,有效避免了不必要的药物治疗。

4. 监测治疗效果肿瘤基因检测还能够评估患者对治疗反应的预测性指标。

通过监测特定基因突变,可以及时调整治疗方案,提高患者对于治疗的反应和存活率。

三、肿瘤基因检测在癌症治疗中的指导作用1. 个体化精准治疗肿瘤基因检测可以提供个体化精准治疗的依据。

通过检测患者肿瘤中的特定基因变异,可选择相应的靶向药物来抑制癌细胞的生长和扩散。

这种针对性治疗方法能够有效地降低不良反应和治疗失败的可能性。

2. 预测化疗效果肿瘤基因检测可以预测患者对于化疗药物的敏感性。

根据检测结果调整化疗方案,能够避免不必要的毒副作用,并提高治疗效果。

3. 监测复发风险肿瘤基因检测有助于评估患者复发风险。

通过监测特定基因是否存在,可以预判患者是否容易出现肿瘤复发。

这为临床医生在术后采取进一步干预措施提供了指导。

4. 辅助临床决策肿瘤基因检测结果还可作为辅助临床决策的依据。

肿瘤基因检测与治疗

肿瘤基因检测与治疗

肿瘤基因检测与治疗肿瘤是一种致命的疾病,对于患者来说,早期诊断和治疗至关重要。

随着医学技术的不断进步,肿瘤基因检测逐渐成为一种新的治疗方法。

然而,肿瘤基因检测还是一个新兴领域,很多人对它的认识还比较浅薄。

本文将介绍肿瘤基因检测及其与治疗的关系。

一、肿瘤基因检测肿瘤基因检测正逐渐成为一种重要的诊断方法。

肿瘤基因检测的原理是通过检测癌症细胞的基因变异来诊断癌症类型和治疗方案。

目前,肿瘤基因检测已经可以检测出癌症发生的机制。

而且,肿瘤的发生与肿瘤相关基因的变化密切相关,因此,通过检测肿瘤相关基因可为临床定制治疗方案,实现个性化治疗。

二、肿瘤基因检测与治疗的关系肿瘤基因检测可以为个体化治疗提供依据,使得患者能够获得更为贴心的治疗。

个体化治疗是一种基于肿瘤的基因特征和个人物质基础的治疗方式。

它根据患者的基因型、病理特征、生化特征和疗效反应来进行治疗。

不同患者的基因型和生物学表现不同,针对同一疾病的治疗方案也应该因人而异。

因此,要针对不同的肿瘤致病基因进行检测,针对不同的基因变异制定相应的治疗方案。

这种治疗方式,不仅可以提高治疗效果,还可以减少不必要的治疗副作用。

三、如何进行肿瘤基因检测肿瘤基因检测需要进行实验室的检测,通常需要患者去医院进行检测。

检测大多通过两种方式:样本检测和体液检测。

样本检测是指采集组织样本进行检测。

体液检测则是通过患者的血液、尿液等体液来检测指标。

其中,样本检测通常检测结果比较准确。

当前,公立医院和一些大型诊所提供基因检测服务。

四、肿瘤基因检测的优点和缺点肿瘤基因检测的优点是可以针对患者的特定情况进行治疗,可以提高治疗效果,减少治疗的副作用。

缺点是:一方面,该技术还处于发展阶段,精确性和可靠性都需要进一步提高,且成本较高;另一方面,由于涉及到患者的基因信息,涉及到个人隐私安全方面的问题。

五、结论与传统的治疗方式相比,个体化治疗物是基于个体基因特征,具有显著的实际效果。

因此,肿瘤基因检测对于肿瘤治疗具有重要的意义。

临床医学中的药物治疗个体化及基因检测技术应用

临床医学中的药物治疗个体化及基因检测技术应用

临床医学中的药物治疗个体化及基因检测技术应用一、引言在临床医学领域,药物治疗个体化及基因检测技术的应用正日益受到重视。

个体化药物治疗侧重于根据每个患者的个体特征和基因变异,制定精确的药物治疗方案,以提高治疗效果和降低不良反应的发生。

基因检测技术则可以通过分析患者的基因组信息,为医生选择最适合的药物和剂量提供有力的依据。

本文将探讨临床医学中药物治疗个体化及基因检测技术的应用,以及对患者治疗效果和安全性的影响。

二、药物治疗个体化的意义及方法1. 个体化治疗的意义传统的药物治疗方案通常采用的是“一刀切”的模式,即相同疾病的患者被给予同样的药物和剂量。

然而,由于每个人的生理特征和基因变异都有所不同,同样的药物在不同个体中的反应也会有所差异。

因此,通过个体化治疗可以更好地满足患者的需求,提高治疗效果,并减少不必要的不良反应。

2. 个体化治疗的方法个体化治疗的方法包括根据病情和患者特征进行药物选择、剂量调整以及药物联合应用等。

在药物选择上,医生可以根据患者的基因型、病因学特征等方面进行判断,选择适合的治疗药物。

在剂量调整方面,可以根据患者的代谢能力、肾功、肝功等指标进行调整。

另外,药物联合应用也是个体化治疗的重要手段,不同药物的组合可以产生协同作用,提高治疗效果。

三、基因检测技术在临床医学中的应用1. 基因检测技术的原理和方法基因检测技术主要包括SNP分析、基因组测序和表达谱分析等方法。

SNP分析可以检测单核苷酸多态性,了解基因在个体中的突变情况;基因组测序可以全面了解个体的基因组信息,包括突变、重组等变异情况;表达谱分析可以测定个体中基因的表达水平,从而了解基因功能的差异。

2. 基因检测技术在药物治疗中的应用基因检测技术可以为医生选择最适合的药物和剂量提供依据,提高个体化治疗的效果。

以癌症治疗为例,某些患者对某些化疗药物的敏感性较高,而另一些患者则对这些药物耐受性较强。

通过基因检测,可以筛选出对某种药物敏感的患者,并为其制定相应的治疗方案。

肿瘤个体化治疗基因检测.doc

肿瘤个体化治疗基因检测.doc

第一部分项目背景一、肿瘤临床转化医学背景21世纪伊始,人类基因组研究成果斐然,在循证医学的浪潮推动下,基因组学、RNA组学和反应组学等生命科学与医学领域交融,转化,率先在肿瘤个体化靶向治疗领域进入了NCCb和ASCO CSCO各种肿瘤临床治疗规范。

在一系列转化应用中,使患者明显获益,各种基于循证医学的肿瘤多中心、大样本、随机性双盲的前瞻性研究结果,共同提示基因检测用于肿瘤转化医学靶向治疗和个体化化疗,不仅是肿瘤医药学领域里程碑式的革命,也将诊断病理学科带入了分子病理、个体化治疗的新时代。

美国Kalorama In formation 公司在2007年发表了关于分子诊断的专题市场调查报告“分子诊断:全球主要市场”(Molecular Diag nostics: Major World Market )。

报告预计从2006年到2016年分子诊断市场的平均年增长率达到41.5%。

药物基因组学在这10年间将有184%勺平均年增长率,预计癌症相关基因的检测平均年增长率将达到68%据我国卫生部统计,20世纪90年代我国肿瘤发病率已上升为127例/10万人。

近年来我国每年新增肿瘤患者160〜170万人,总数估计在600万人左右,肿瘤已经成为我国的第一死亡原因。

肿瘤患者对治疗有效性的提高需求迫切,2007年我国医院肿瘤用药销售额累计约为158.7亿元人民币,同比上一年增长高达61.2%,大大高于其它医疗药品的市场增长幅度。

但抗肿瘤药物广泛应用的同时,给患者带来严重的问题:治疗的有效率不高、针对性不强、副反应较多、费用昂贵等。

基于药物基因组学临床检测的肿瘤个体化治疗为上述问题解决带来曙光,美国ASCO已公布的多个临床实验已证实,通过检测肿瘤患者肿瘤组织中的基因突变靶点及基因SNP分型、mRNA基因定量表达,为临床提供靶向及个体化化疗的依据,能显著提高治疗的有效率,降低药物毒副作用。

如:2009年1月美国ASCO消化肿瘤会议总结:选择K-ras野生基因型患者应用EGFR单抗使美国2008年节约了601亿美金,并把这一晚期患者生存期提高了11.5个月。

临床分析基因检测在个体化治疗中的意义

临床分析基因检测在个体化治疗中的意义

临床分析基因检测在个体化治疗中的意义基因检测是一项先进的技术,可以通过分析个体的基因组信息来了解其遗传风险、疾病易感性以及药物反应性等。

近年来,随着各项技术的不断发展和成熟,基因检测在临床实践中的应用日益广泛。

特别是在个体化治疗中,基因检测的意义更加凸显。

首先,基因检测可以为个体提供个性化的治疗方案。

临床治疗的有效性往往受到个体基因差异的影响。

通过基因检测,可以了解个体的基因表达情况、突变状态等信息,进而预测其对特定药物的反应性。

在制定治疗方案时,医生可以根据检测结果进行针对性的调整,提高治疗的精准度和疗效。

其次,基因检测可以帮助确定疾病风险,并进行早期干预和预防。

许多疾病的发生与个体的基因变异密切相关,例如乳腺癌、肺癌等常见恶性肿瘤。

通过基因检测,可以筛查出高风险个体,并及早采取预防措施,如定期检查、生活方式干预等。

这有助于提前发现疾病的迹象,并采取有效的干预手段,降低疾病发生率和死亡风险。

此外,基因检测还可以评估药物代谢能力,避免药物不良反应。

每个人对药物的代谢能力存在一定的差异,这与个体基因型有关。

通过基因检测,可以了解个体对某些药物的代谢能力,进而根据检测结果调整药物剂量和给药方案,减少药物不良反应的风险。

另外,基因检测还可以为家族遗传性疾病的筛查和预测提供依据。

一些遗传性疾病存在家族聚集现象,通过基因检测,可以了解个体是否携带相关疾病的易感基因变异。

对于高风险个体,可以采取相应的预防和干预措施,减少疾病的发生和传播。

综上所述,临床分析基因检测在个体化治疗中具有重要意义。

它可以为医生制定个体化的治疗方案提供依据,提高治疗的精准度和疗效;同时,基因检测还可以帮助预测疾病风险,进行早期干预和预防,降低疾病的发病率和死亡率;此外,基因检测还可以评估药物代谢能力,避免药物不良反应;最后,基因检测还可以为家族遗传性疾病的筛查和预测提供依据。

因此,临床分析基因检测应该得到广泛的应用和推广,以促进个体化治疗的发展,为人们健康提供更好的保障。

肿瘤个体化用药指导基因检测

肿瘤个体化用药指导基因检测
临床实验表明,当患者UGT1A1 为野生型时,使用伊立替康 后毒副作用较低,但为突变型时,毒副作用明显提高。
第十五页,共28页。
化疗用药指导基因检测产品
化疗药物
铂类药物
吉西他滨 紫杉醇 甲氨碟呤 培美曲赛
检测位点 XRCC1(R194W) XRCC1(R399Q)
ERCC1(C118T)
GSTP1(I105V) CDA(A79C) CDA(G208A) MDR1(C3435T) MDR1(G2677T/A) MDR1(C3435T) MTHFR(C677T) TYMS mRNA表达量
靶向药物
吉非替尼(易瑞沙) 厄洛替尼(特罗凯) 埃克替尼(凯美纳) 西妥昔单抗(爱必妥) 帕尼单抗(维克替比) 维罗菲尼、曲美替尼、达拉非尼 伊马替尼(格列卫)
克唑替尼
曲妥珠单抗(赫赛汀)
拉帕替尼(泰克泊)
靶向治疗用药指导基因检测产品
检测基因
检测位点
EGFR
EGFR 18,19,20,21号外显子
CA:A Cancer Journal for Clinicians ,Cancer Statistics in China, 2015
第二页,共28页。
癌症的治疗手段
约90%肿瘤患者在治疗过程中 会用到抗肿瘤药物
第三页,共28页。
肿瘤临床用药存在的问题
• 化疗药物在杀灭肿瘤的同时,对增生活 跃的骨髓、胃肠道黏膜、生殖细胞、毛
结果解读 SNP-R194W:疗效CT、TT>CC SNP-R399Q:疗效GG>GA>AA SNP-C118T: 疗效CC>CT>TT
化疗药物 长春新碱
环磷酰胺
检测位点 MDR1(G2677T/A) MDR1(G2677T/A) XRCC1(R399Q)

肿瘤科基因检测与个体化治疗

肿瘤科基因检测与个体化治疗

肿瘤科基因检测与个体化治疗近年来,随着科技的不断进步和医学的飞速发展,肿瘤治疗领域也迎来了一次革命性的变革。

基因检测与个体化治疗作为肿瘤科研究的重要领域,为患者提供了更加精确、个性化的治疗方案。

本文将探讨肿瘤科基因检测与个体化治疗的意义、方法和前景。

一、基因检测的意义1. 基因检测可以帮助发现遗传突变肿瘤的发生与基因突变密切相关。

基因检测可以帮助医生发现与肿瘤相关的遗传突变,从而对患者的病情进行更准确的评估。

通过对肿瘤基因的检测,可以了解肿瘤的发生机制,针对性地选择合适的治疗方法。

2. 基因检测可以预测治疗效果不同个体对同一治疗方法的反应可能存在差异。

基因检测可以帮助医生预测患者对某种治疗方案的敏感性和耐药性,避免因试错而造成的不良影响。

基因检测结果可以为医生制定个性化治疗方案提供有力的依据。

二、基因检测的方法1. 常见的基因检测技术常见的基因检测技术包括PCR、测序技术和芯片技术。

PCR技术是最常用的基因检测方法之一,它可以通过扩增目标基因片段,检测该基因的突变情况。

测序技术可以对DNA或RNA的序列进行测定,帮助全面了解基因的变异情况。

芯片技术则可以同时分析多个基因的表达水平,快速筛查出与肿瘤相关的基因。

2. 基因检测的操作流程基因检测的操作流程主要包括样本采集、DNA或RNA提取、PCR扩增、测序分析和结果解读等步骤。

在样本采集过程中,通常采用活检组织、血液或体液等方式获取患者的生物样本。

提取样本中的DNA或RNA后,可以通过PCR扩增目标基因,在测序仪或芯片上进行测序或芯片检测,最终解读结果得出。

三、个体化治疗的意义1. 个体化治疗可以提高治疗效果个体化治疗是根据患者的基因检测结果,为其量身定制治疗方案。

通过了解患者的基因信息,医生可以选择更加有效的治疗手段,提高治疗的成功率。

个体化治疗在一定程度上解决了传统治疗方法的不足,为患者提供更好的治疗效果。

2. 个体化治疗可以减少副作用传统的治疗方法往往对患者的整体产生一定的影响,包括不可避免的副作用。

肿瘤个体化治疗基因检测教程课件

肿瘤个体化治疗基因检测教程课件
法律框架的建立
需要建立完善的法律框架来规范肿瘤个体化治疗基因检测 的相关活动,保护患者的权益和隐私,同时也保障技术的 正常发展。
监管体系的完善
为了确保基因检测的准确性和可靠性,需要建立完善的监 管体系,对相关机构和实验室进行严格的认证和监管。
05
肿瘤个体化治疗基因检测 案例分析
肺癌基因检测案例
患者情况
患者为52岁男性,长期吸烟史,诊断为肺腺 癌。
个体化治疗方案
针对T790M突变,采用第三代EGFR抑制剂 奥希替尼进行治疗。
基因检测结果
检测到EGFR基因突变,为T790M突变。
治疗效果
患者病情得到有效控制,肿瘤缩小,生活质 量提高。
结直肠癌基因检测案例
01
患者情况
患者为45岁女性,有家族遗传史, 诊断为结直肠癌。
肿瘤个体化治疗基因检测教 程课件
目 录
• 肿瘤个体化治疗基因检测概述 • 肿瘤个体化治疗基因检测的方法与技术 • 肿瘤个体化治疗基因检测的应用领域 • 肿瘤个体化治疗基因检测的挑战与前景 • 肿瘤个体化治疗基因检测案例分析
01
肿瘤个体化治疗基因检测 概述
定义与重要性
定义
肿瘤个体化治疗基因检测是指通过检测肿瘤组织或血液样本 中的基因变异情况,为患者提供针对性的治疗方案。
基因表达谱分析的结果有助于临床医生深入了解肿瘤的生 物学特征,为制定更加精准的治疗方案提供科学依据。
03
肿瘤个体化治疗基因检测 的应用领域
靶向治疗
靶向治疗是一种针对特定基因突变的治疗方法,通过抑制肿 瘤细胞的生长和扩散来达到治疗目的。基因检测可以检测出 与靶向治疗相关的基因突变,为患者提供更精准的治疗方案 。
个体化治疗方案

精准医疗在肿瘤治疗中的应用

精准医疗在肿瘤治疗中的应用

精准医疗在肿瘤治疗中的应用近年来,精准医疗在肿瘤治疗中得到了广泛的应用和推广。

精准医疗是指将个体基因组信息等数据信息与临床相关数据相结合,实现对每位患者进行精确疾病预测、诊断和治疗的新兴医学模式。

在肿瘤治疗中,精准医疗有着显著的优势和应用前景。

一、基础科学手段——基因检测技术精准医疗在肿瘤治疗中的核心是基因检测技术。

在对某种肿瘤进行精准治疗时,首先需要对患者的肿瘤进行基因检测。

基因检测可以告诉医生哪些基因突变与患者肿瘤形成有关系,从而为治疗提供有针对性的信息。

目前临床上应用比较广泛的有基因扫描工具,例如市场上比较热门的华大基因、生物芯片技术等。

通过这些科技工具,可以扫描基因组中的数千个基因变异,同时正在开发的一些新的分子诊断技术,如血浆肿瘤特异性 DNA 检测等,也能在肿瘤检测和监测中发挥巨大作用。

基因检测技术的出现,为肿瘤治疗的精准化提供了前提条件,基因诊断在肿瘤治疗中具有不可替代的地位。

二、精准诊断——个体化诊疗基于疾病基因组信息的精准诊断,有助于提高临床诊断的敏感性和准确性,使得医生可以更加准确地判断患者属于哪种肿瘤及其分期和临床病情。

在肿瘤治疗中,不同肿瘤类型和患者之间差异很大。

同一种疾病治疗方法对不同人群的疗效也不相同,大量文献数据表明,个体差异导致一份标准治疗方案不可能适合所有患者,甚至某种治疗对某些患者起到反作用。

精准医疗通过把患者的基因组信息与疾病状态相结合,发挥出其优势,为患者提供有效的治疗方案,推进个体化的治疗。

三、精准治疗——靶向治疗精准治疗是一种以基因为导向的治疗方式。

通过针对患者手中的高倍基因突变进行靶向治疗,达到最佳疗效的治疗方式。

针对的治疗方式有:小分子口服的药物治疗和供体淋巴细胞治疗。

目前临床上明确的靶向治疗有:抗癌靶向药物,靶向放疗和肿瘤免疫疗法等。

靶向药物是通过抑制肿瘤细胞的生长和凋亡,达到有效治疗的目的。

针对性强的靶向药物,可以大幅提高治疗带来期望的生存率,同时泛用性药物,可以显著降低不良反应的风险,提高患者的生活质量。

肿瘤的基因检测与个体化治疗

肿瘤的基因检测与个体化治疗

肿瘤的基因检测与个体化治疗在癌症治疗中,个体化医疗一直是一个重要的领域。

个性化医疗旨在根据病人个体特征和基因组信息,为其提供量身定制的治疗方案。

近年来,基因检测逐渐受到人们的关注,现在许多医院都提供基因检测服务。

本文将讨论基因检测在肿瘤治疗中的作用以及如何利用基因检测实现个性化治疗。

什么是基因检测?基因检测是一种使用生物技术和生物信息学技术对人类基因组进行分析和检测的方法。

基因检测是一种用来寻找人类基因与疾病之间的相关性的方法。

对于肿瘤来说,基因检测可以检测出与肿瘤相关的基因变异。

肿瘤的基因检测肿瘤的基因检测主要关注的是病人身上的肿瘤基因变异。

肿瘤基因变异是指肿瘤细胞与正常细胞基因不同的基因,肿瘤细胞基因的突变可能导致癌症的发生。

通过检测肿瘤基因变异,医生可以识别出哪些突变是有可能导致癌症的,从而为治疗提供更多的选择。

基因检测提供了一个非常有力的工具来研究肿瘤。

有了这个工具,医生们可以检测出患者肿瘤基因的突变,并帮助医生进行治疗选择。

同时,基因检测还可以指导患者进行预防和筛查。

例如,如果一个人携带了某种基因变异,那么医生将会建议他进行特定的筛查和预防措施。

个体化治疗在癌症治疗中,个体化治疗已经成为一个有力的工具。

个体化治疗根据病人的基因组信息和整体状况定制药物治疗方案。

个性化治疗方案的制定主要包括两个方面:一是基于患者的基因检测结果制定出符合患者基因特征的治疗方案,并将其称为“精准医学”;二是通过临床试验和细胞治疗等个性化方法,找到适合不同患者的治疗方法。

精准医学为个性化治疗提供了重要的前提条件。

通过基因检测,医生可以了解到患者的基因变异情况,从而制定出针对特定基因变异的治疗方案。

这种治疗可以针对特定的基因变异,更有针对性,因此更加高效。

同时,精准医学也为患者提供了更好的治疗结果,减少了药物的副作用。

结论肿瘤的基因检测和个性化治疗提供了新的治疗思路。

通过这些方法,医生可以更好地了解患者的基因特征和疾病情况,制定更为精确的治疗方案,从而改善治疗效果和生活质量。

基因检测技术在肿瘤筛查中的应用

基因检测技术在肿瘤筛查中的应用

基因检测技术在肿瘤筛查中的应用肿瘤是一种常见的疾病,对人类健康造成了巨大的威胁。

然而,随着科技的发展,生物和医疗技术的进步为肿瘤的早期筛查提供了新的可能性。

其中,基因检测技术在肿瘤筛查中的应用正逐渐引起人们的关注。

本文将探讨基因检测技术在肿瘤筛查中的意义、方法和前景。

1. 基因检测技术的意义基因检测技术是一种分析个体遗传信息的方法,通过检测DNA中的突变和变异,可以提供个体患病风险的信息。

在肿瘤筛查中,基因检测技术可以帮助确定个体患肿瘤的风险,从而实现早期诊断和治疗的目标。

与传统的肿瘤筛查方法相比,基因检测技术具有更高的准确性和敏感性,有助于提高筛查的效果。

2. 基因检测技术的方法基因检测技术主要包括测序技术和芯片技术两种方法。

测序技术是一种直接测定DNA序列的方法,可以检测个体DNA中的突变和变异。

通过测序技术,可以发现与肿瘤相关的致病基因突变,从而确定个体患病风险。

芯片技术则是一种间接检测DNA序列的方法,通过将已知的基因变异信息固定在芯片上,再将个体DNA与芯片进行杂交反应,从而确定个体的基因型。

这两种方法各有优劣,可以根据具体情况选择适合的方法进行基因检测。

3. 基因检测技术的前景基因检测技术在肿瘤筛查中的应用前景广阔。

首先,基因检测技术可以帮助早期发现潜在的肿瘤风险,从而实现早期干预和治疗。

其次,基因检测技术可以帮助确定个体对特定药物的反应,从而实现个体化的治疗方案。

此外,基因检测技术还可以帮助评估肿瘤的预后和复发风险,指导治疗和监测疗效。

随着技术的不断进步,基因检测技术在肿瘤筛查中的应用将越来越广泛。

综上所述,基因检测技术在肿瘤筛查中具有重要的意义。

通过基因检测技术,可以提供个体患病风险的信息,实现早期诊断和治疗的目标。

基因检测技术的方法主要包括测序技术和芯片技术,可以根据具体情况选择适合的方法进行基因检测。

基因检测技术在肿瘤筛查中的应用前景广阔,有助于个体化治疗和监测疗效。

随着技术的不断进步,基因检测技术在肿瘤筛查中的应用将进一步发展。

肿瘤的基因检测

肿瘤的基因检测

靶向药物
针对特定肿瘤基因位点开发 直接作用于肿瘤组织 疗效好,副作用小
9/6/2019
6
靶向用药指导基因检测
根据NCCN肿瘤学临床实践指南建议:肿瘤 个体化用药基因检测是服用靶向药物时必 检项目
7
靶向药物
西妥昔单抗 (爱必妥) 帕尼单抗 (维克替比)
肿瘤类型
结直肠癌
伊马替尼 (格列卫)
胃肠间质瘤
索拉非尼 (多吉美)
肝癌
曲妥珠单抗 (赫赛汀)
2019/9/6
乳腺癌
检测项目
KRAS体细胞突变检测 (2,3外显子突变)
BRAF体细胞突变检测 (15外显子突变, T1799A)
PI3KCA体细胞突变检测 (9,20外显子突变)
C-Kit体细胞突变检测 (9外显子突变)
C-Kit体细胞突变检测 (11外显子突变)
9/6/2019
14
临床常用化疗药及相关基因
5-FU
DPYD MTHFR
铂类
ERCC1 XRCC1 GSTP1
伊立替康 UGT1A1
他莫西芬 CYP2D6
吉西他滨 CDA
巯嘌呤类 TPMT
9/6/2019
15
化疗用药指导基因检测列表
9/6/2019
16
化疗用药指导基因检测列表
9/6/2019
17
2、临床初诊,需要进行化疗的肿瘤患者; 3、肿瘤治疗后复发或发生转移,治疗方案无
效,需重新制定治疗方案的肿瘤患者;
9/6/2019
19
非小细胞肺癌基因检测
9/6/2019
20
结直肠癌基因检测
9/6/2019
21
胰腺癌基因检测

基因检测技术在肿瘤诊断中的应用研究

基因检测技术在肿瘤诊断中的应用研究

基因检测技术在肿瘤诊断中的应用研究近年来,随着基因检测技术的迅速发展,肿瘤诊断领域也迎来了巨大的变革。

基因检测技术在肿瘤诊断中的应用研究已经取得了显著的进展,为早期筛查、辅助诊断和个体化治疗提供了有力的工具。

本文将对基因检测技术在肿瘤诊断中的应用进行深入探讨。

基因检测是一种通过分析个体基因组中的遗传变异来评估个体患某种疾病的风险、检测和确认肿瘤的存在及其特征的方法。

基因检测技术利用高通量测序和生物信息学分析工具,可以对肿瘤相关基因进行全面的筛查和分析,从而帮助医生对肿瘤进行精确诊断。

首先,基因检测技术在肿瘤早期筛查中发挥了重要作用。

通过检测个体基因组中与肿瘤相关的突变或变异位点,可以预测个体患肿瘤的风险。

一些常见的肿瘤相关基因如BRCA1、BRCA2等,如果患者携带了突变位点,那么他们患乳腺癌或卵巢癌的风险将大大增加。

通过早期基因检测,医生可以提前采取预防措施,例如积极监测和定期筛查,以便在肿瘤发展到晚期之前进行干预治疗。

其次,基因检测在肿瘤诊断中的辅助作用逐渐显现。

传统的诊断方法主要依赖于组织活检,但这种方法存在一些局限性,如侵入性、有创性和可能导致并发症。

而基因检测技术可以通过体液、血液或尿液中的肿瘤标志物进行非侵入性的检测,从而提供辅助诊断的依据。

例如,通过检测血液中循环肿瘤DNA的浓度和特定突变位点,可以辅助判断肿瘤的存在并确定其类型。

这种无创性诊断方法在临床实践中为患者提供了更安全、更便捷的诊断方式。

此外,基因检测技术还可以为肿瘤患者提供个体化治疗方案。

肿瘤的发生和发展与个体基因组中的突变或变异密切相关,不同患者的基因表达和突变谱可能存在差异。

通过对患者的基因组进行分析,可以准确判断药物对患者的敏感性和耐药性。

这为临床医生提供了指导治疗决策的依据,从而避免了盲目、经验性的治疗方法。

例如,HER2基因在乳腺癌治疗中起着重要作用,因此通过对HER2基因进行检测,可以确定乳腺癌患者是否适合接受HER2靶向治疗。

肿瘤基因检测技术在个体化治疗中的作用和发展趋势

肿瘤基因检测技术在个体化治疗中的作用和发展趋势

肿瘤基因检测技术在个体化治疗中发挥着重要的作用,并且具有相当大的发展潜力。

以下是它在个体化治疗中的作用和发展趋势:1. 预测治疗反应:肿瘤基因检测可以通过分析肿瘤细胞中的遗传变异,预测患者对特定治疗方案的反应。

例如,通过检测肿瘤细胞中的某些基因突变,可以预测患者对特定靶向药物的敏感性,从而制定更为精确的治疗方案。

2. 精准治疗选择:基因检测可以帮助医生确定适合患者的个体化治疗方案。

通过了解肿瘤细胞中的遗传变异,可以选择针对具体突变的靶向药物或免疫疗法,以提高治疗效果并减少不必要的副作用。

3. 监测治疗效果:基因检测还可以用于监测治疗效果和疾病进展。

通过定期检测肿瘤细胞中的遗传变异,可以评估治疗的有效性,并及时调整治疗方案。

4. 开发新药和靶点:肿瘤基因检测还可以为新药开发和靶点发现提供重要线索。

通过分析大量肿瘤样本中的遗传变异,可以发现新的致病基因和潜在的治疗靶点,推动抗癌药物的研发进展。

未来,肿瘤基因检测技术的发展趋势如下:1. 多组学技术的整合:除了基因检测外,将进一步整合转录组、蛋白质组、代谢组等多组学数据,全面了解肿瘤发生和发展的机制,以更好地指导个体化治疗。

2. 高通量测序技术的发展:随着高通量测序技术的不断改进,将能够更快速、更准确地进行肿瘤基因检测,包括全基因组测序、外显子组测序等,为个体化治疗提供更全面的信息。

3. 微流控技术的应用:微流控技术可以实现对单个肿瘤细胞的捕获和分析,突破组织样本限制,实现对肿瘤异质性的深入研究,提供更精准的治疗策略。

4. 人工智能的应用:结合人工智能和机器学习算法,可以更好地解读大规模基因数据,并预测患者的治疗反应和预后,为个体化治疗提供更可靠的预测和决策支持。

总之,肿瘤基因检测技术在个体化治疗中的作用越来越重要。

随着技术的不断发展和创新,相信将能够更好地实现精准医疗,为肿瘤患者提供更有效、个性化的治疗方案。

肿瘤治疗的个体化和靶向治疗

肿瘤治疗的个体化和靶向治疗

肿瘤治疗的个体化和靶向治疗是现代肿瘤治疗的重要发展方向。

个体化和靶向治疗通过对每个患者独特的肿瘤生物特征进行分析,利用分子靶向药物等方法,实现针对性治疗,不仅提高了治疗效果,还减少了治疗的副作用。

个体化治疗主要是针对肿瘤组织进行基因检测,以确定患者癌症的生物特征,随后制定相应的治疗方案。

该治疗模式可以根据患者的遗传变异信息,确定最有效的药物治疗方案,并有助于避免使用无效药物。

靶向治疗是一种特别设计用于抑制癌细胞生长和扩散的药物,通过靶向肿瘤细胞表面的特定分子,清除癌细胞,而不会损害正常细胞。

这些药物通常具有更好的耐受性,并且由于针对性较强,能够获得更好的治疗效果。

值得注意的是,每个人的肿瘤都有其独特的基因变异和表达模式,治疗方案因此需要根据个体情况定制。

而且同一患者的不同病灶也可能存在生物学差异,相同的治疗方案在不同病灶上可能有不同的疗效。

因此,个体化和靶向治疗旨在提供更加精准和有效的治疗,承载着肿瘤治疗的未来发展方向。

乳腺癌基因检测与个体化治疗策略

乳腺癌基因检测与个体化治疗策略

乳腺癌基因检测与个体化治疗策略乳腺癌是女性最常见的恶性肿瘤之一,也可发生在男性身上。

乳腺癌的治疗方案往往需要根据患者个体情况来制定,而基因检测为个体化治疗提供了新的机会。

本文将探讨乳腺癌基因检测与个体化治疗策略。

一、乳腺癌基因检测的意义1. 早期发现和风险评估乳腺癌基因检测可以帮助早期发现患者是否携带与乳腺癌风险相关的突变基因。

这些突变基因包括BRCA1、BRCA2等,它们与遗传性乳腺癌以及卵巢癌有密切关联。

通过进行基因检测,我们可以评估患者罹患乳腺癌的风险,并采取相应的预防和监测措施。

2. 治疗选择不同个体对于药物治疗可能存在差异。

某些人可能比较容易出现药物副作用,而另一些人则能从某种特定治疗中获益更多。

基因检测可以帮助医生确定患者对于不同药物治疗的敏感度和抵抗力,从而更好地选择个体化的治疗策略。

二、乳腺癌基因检测的方法1. 基因测序技术目前,常用的乳腺癌基因检测方法是基因测序技术。

通过对乳腺癌相关基因进行全面或局部测序,可以检测出可能存在的突变或变异位点。

这种方法通常使用高通量测序技术,如下一代测序(NGS),其具有高效、准确、快速等特点。

2. 多重PCR技术多重PCR技术也是一种常用的乳腺癌基因检测方法。

该技术可以同时检测多个特定基因或某一特定区域的突变情况。

相比于全面的基因测序,多重PCR技术更便捷、经济,并且适合于大规模筛查。

三、个体化治疗策略1. 靶向治疗靶向治疗是根据乳腺癌患者肿瘤表面或内部异常信号来选择相应的药物进行治疗的策略。

靶向药物可以针对乳腺癌细胞具体的分子特征发挥作用,而不会对正常细胞产生明显影响。

基因检测为靶向治疗提供了重要信息,可以指导医生合理选择适用的靶向药物。

2. 药物代谢酶检测某些药物需要通过代谢酶来转化为活性形式或被清除出体内。

个体之间对这些代谢酶的活性存在差异,从而影响药物在体内的浓度和效果。

基因检测可以帮助确定患者是否存在与药物代谢相关的突变位点,从而制定更加个体化的治疗方案。

药物基因检测指导抗肿瘤药物个体化用药的例子

药物基因检测指导抗肿瘤药物个体化用药的例子

药物基因检测指导抗肿瘤药物个体化用药的例子一、背景介绍肿瘤是世界上最常见的疾病之一,也是导致死亡的主要原因之一。

随着医学技术的不断发展,抗肿瘤药物已成为治疗肿瘤的重要手段之一。

然而,由于每个人的基因差异,同样的药物在不同人身上可能会有不同的效果和副作用。

因此,针对个体基因特征进行药物基因检测已成为个体化用药的重要手段。

二、药物基因检测简介药物基因检测是通过检测患者某些基因的变异情况来预测其对某些药物反应和耐受性。

目前,常用于抗肿瘤药物个体化用药的基因包括CYP450酶家族、GSTP1、ERCC1等。

三、例子分析以乳腺癌为例,许多患者在接受化疗时会出现严重副作用和治疗失败。

然而,在进行了药物基因检测后,根据患者个体化特征选取相应的抗肿瘤药物,则可以有效提高治疗效果和降低副作用。

1. CYP450酶家族基因检测CYP450酶家族是参与肝脏代谢药物的重要酶系,其中CYP2D6、CYP3A4、CYP3A5等基因在乳腺癌化疗中起到关键作用。

通过检测患者这些基因的突变情况,可以预测其对某些药物的代谢能力,从而选择适合的药物和剂量。

例如,对于某些患者来说,使用紫杉醇(paclitaxel)会导致严重的神经毒性,而这种毒性与CYP2D6基因的突变相关。

因此,在进行了CYP2D6基因检测后,可以根据患者突变情况调整紫杉醇的剂量或选择其他药物。

2. GSTP1基因检测GSTP1是参与细胞解毒过程的重要基因,在乳腺癌化疗中也起到关键作用。

通过检测GSTP1基因的突变情况,可以预测患者对环磷酰胺(cyclophosphamide)等药物的耐受性和反应。

例如,在进行了GSTP1基因检测后,可以根据患者突变情况调整环磷酰胺的剂量或选择其他药物。

3. ERCC1基因检测ERCC1是参与DNA修复过程的重要基因,在乳腺癌化疗中也起到关键作用。

通过检测患者ERCC1基因的突变情况,可以预测其对顺铂(cisplatin)等药物的耐受性和反应。

肿瘤基因检测的意义与应用前景

肿瘤基因检测的意义与应用前景

肿瘤基因检测的意义与应用前景一、引言肿瘤是现代社会面临的重大健康挑战之一。

随着分子生物学和遗传学的进步,肿瘤基因检测逐渐成为了临床诊断和治疗的重要工具。

本文将探讨肿瘤基因检测的意义及其应用前景。

二、肿瘤基因检测的意义1. 提供个体化治疗方案肿瘤是异质性疾病,不同患者对药物的敏感性各不相同。

通过基因检测,可以发现肿瘤特定的突变或变异,从而确定针对该突变或变异的靶向治疗药物。

精确的诊断能够为患者制定个体化治疗方案,提高治愈率和生存率。

2. 预防遗传性癌症部分肿瘤具有明显的家族倾向。

通过进行肿瘤基因检测,可以帮助确定高风险人群,并采取相应预防措施,如早期筛查或预防手术。

这对于预防遗传性癌症的发生至关重要。

3. 辅助临床诊断肿瘤基因检测可以为医生提供重要的辅助临床诊断信息。

通过分析肿瘤特定基因的突变情况,可以帮助鉴别不同类型的肿瘤或判断其恶性程度。

这有助于提高准确率和早期诊断率,为患者争取更多治疗机会。

4. 规避不必要的治疗有些肿瘤患者存在对某种特定药物的耐药性。

在进行肿瘤基因检测后,可以明确是否有对某种药物产生耐药性的突变,在制定治疗方案时避免不必要的试错和资源浪费。

三、肿瘤基因检测应用前景1. 基于液体活检技术随着基因测序技术的发展和成本降低,液体活检作为一种无创、快速、敏感和具有较高特异性的方法已经成为现实。

通过血液或其他体液样本中可溶解DNA含量过量增加、细胞内自噬与凋亡失调等现象,可以检测到肿瘤细胞释放出的DNA 片段与其突变情况。

液体活检技术将彻底改变肿瘤基因检测的方式和范畴。

2. 个体化治疗的推广随着人类基因组学及相关生物技术的进步,个体化医疗将逐渐成为未来肿瘤治疗的主流模式。

通过对患者的遗传背景和肿瘤基因进行综合分析,为每位患者制定个性化治疗方案,最大程度地提高治疗效果。

3. 肿瘤早期诊断与预防肿瘤基因检测可通过对高风险人群进行筛查,并评估他们罹患某种特定肿瘤的可能性。

这有助于实施早期干预措施,并提供预防建议,从而有效降低患癌风险。

肿瘤基因检测技术的应用与结果解读指南

肿瘤基因检测技术的应用与结果解读指南

肿瘤基因检测技术的应用与结果解读指南绪论:随着现代医学的快速发展,肿瘤基因检测技术作为一种革命性的诊断工具出现在临床实践中。

它通过分析肿瘤细胞内基因组的变异情况,帮助医生确定患者的肿瘤类型、预测治疗效果和确定治疗方案。

本文将介绍肿瘤基因检测技术的应用以及结果解读的指南。

一、肿瘤基因检测技术的应用领域1. 个体化治疗指导:肿瘤基因检测可以帮助医生了解肿瘤细胞中特定基因的变异情况,为个体化治疗提供指导。

例如,HER2基因变异与乳腺癌的关联已被证明,可以用于指导靶向治疗药物的选择,提高治疗效果。

2. 疾病风险评估:通过检测个体的基因变异情况,可以评估其患肿瘤的风险。

比如,一些BRCA基因变异与乳腺癌和卵巢癌的遗传风险密切相关,因此可以用于家族遗传性肿瘤的筛查,帮助人们采取预防措施,降低患病风险。

3. 病情监测与预后评估:通过定期检测肿瘤基因变异情况,可以监测肿瘤的进展和耐药性的发展情况。

这种监测可以帮助医生及时调整治疗方案,有效延长患者的生存期。

二、肿瘤基因检测的方法和技术1. 整外显子组测序(WES):WES是一种全局的测序方法,可以同时检测肿瘤细胞内几乎所有外显子的突变情况。

这种方法通常用于寻找未知的驱动突变。

2. 靶向测序:靶向测序是通过选择性地测定特定的基因片段来进行检测,其主要优点是成本低、通量高、速度快。

靶向测序通常用于已知的癌症相关基因的检测。

3. 基因芯片技术:基因芯片技术是一种高通量的基因检测方法,可以同时测定数千个基因的变异情况。

这种方法适用于大规模的肿瘤基因筛查以及疾病风险评估。

三、肿瘤基因检测结果解读的指南1. 确定突变是否致病性:在解读肿瘤基因检测结果时,首要任务是确定突变是否具有致病性。

这需要综合考虑突变的频率、遗传模式、功能影响等多方面因素。

2. 针对已知致病突变的治疗选择:对于已知的与特定肿瘤类型相关的致病突变,可以根据研究结果选择相应的靶向治疗药物。

例如,EGFR基因突变与非小细胞肺癌的靶向治疗效果密切相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.5
0.0 0 4 8 12 自随机时间 (月) 16 20 24
Mok T et al. Ann Oncol 2008; 19 (suppl 8): Abstract #LBA2.
EGFR信号通路
PTEN Shc Grb2 PI3-K Sos-1 Ras
AKT MEKK-1
Raf
MEK
mTOR
PTK
细胞内
扩增的患者尝试用Crizotinib,显示非常好的效
Met FISH阳性(扩增)可使用克唑替尼
Met的结构
果,在贲门腺癌、恶性胶质瘤中也发现类似个案

1. Birchmeier and Gherardi, Trends Cell Bio 1998; 8:404-410. 2. Trusolino et al., Nat Rev Mol Cell Biol 2010; 11:834-848 3. Cappuzzo et al., J Clin Oncol 2009; 27:1667-1674. 4. Engelman et al., Science 2007; 316:1039-1043 5. Onitsuka et al., J Thorac Oncol 2010; 5:591-596. 6. J Thorac Oncol. 2011 May;6(5):942-6.
Cancer Cell 21, March 20, 2012
EGFR:肺癌经典靶点
单抗类: 西妥昔单抗(爱必妥) 帕尼单抗(维克替比) 尼妥珠单抗(泰欣生) ……
TKI类: 吉非替尼(易瑞沙) 厄洛替尼(特罗凯) 埃克替尼(凯美纳) ……
N Engl J Med 2008;359:1367-80.
EURTAC 厄洛替尼 OPTIMAL
LUX-LUNG3 阿法替尼 LUX-LUNG6
61% : 22%
吉西他滨 /顺铂
66.9% : 23%
HR=0.95, p=0.7593
Mok et al NEJM 2009, Lee et al WCLC 2009, Mitsudomi et al Lancet Oncology 2010, Maemondo NEJM 2010, Zhou et al ESMO 2010, Rosell Lancet Oncol 2012, Yang JC et al ASCO 2012, Wu YL et al ASCO 2013
1
7 4 2 0 57.1%
Sex M/F
Never smoker Caucasian Asian Adenocarsinoma Prior treatment none
8/7
1 10 4 15 12
Shaw A et al. ASCO 2012 J Clin Oncol. 2012 Mar 10;30(8):863-70 Nat Med. 2012 Feb 12;18(3):378-81.;J Clin Oncol 30, 2012 (suppl; abstr 7508)
EGFR突变阴性患者使用EGFR-TKI 增加疾病进展风险
吉非替尼 EGFR M+ (n=132)
1.0 0.8 0.6 无进展概率 吉非替尼 EGFR M- (n=91) 卡铂 / 紫杉醇 EGFR M+ (n=129) 卡铂 / 紫杉醇 EGFR M- (n=85)
1.5
0.4 0.2
5.5
6.3
血浆作为替代样本检测的临床价值
样本补充:30-40%的NSCLC肿瘤组织消失; 降低痛苦:手术等侵袭性样本获取方法对患者伤害大; 疾病复发监控:NSCLC患者EGFR-TKI获得性耐药机制的监测。 ctDNA:循环肿瘤DNA
血浆检测EGFR突பைடு நூலகம்面临的争议
1 血浆EGFR突变检测能否预测疗效与生存获益?
基因检测与肿瘤个体化治疗
医学模式的转变
经验医学
个体化医学
个体化治疗的理念
individualized Diagnosis
The right treatment for the right person at the right time.
个体化治疗的优势
再换药
疾 病 严 重 程 度
换药 选药 确诊
吸烟未发生EGFR突变的肺腺癌中约30%发生EML4-ALK融合突变;
克唑替尼是针对ALK和MET靶点的酪氨酸激酶抑制剂,该药用在EML4ALK突变的晚期非小细胞肺癌患者是,显示出非常高的疾病控制率(
90%)。
Shaw AT et al. J Clin Oncol. 2009;27:4247-53;Shaw AT, et al. Lancet Oncol. 2011;12:1004-1012 Soda M, et al. Nature. 2007;448:561-566.
Placebo
PD
Primary endpoint: PFS with IRC confirmation Secondary endpoints: subgroup analyses, OS in all patients and subgroups, ORR, duration of response, TTP, NPR at 16 weeks, safety, QoL
● 2013年ASCO报到在三阴性NSCLC患者人群中ROS1融合率为8.2% 。
Evaluable patients 14 Median age 54
Complete response
Partial response Stable disease Progressive disease Other Response rate
八项随机研究
研究 药物
IPASS M+
对照组
卡铂 紫杉醇 卡铂 紫杉醇
ORR
71% : 47%
PFS
9.5 : 6.3月
OS TKI CT
21.6 : 21.9月
(HR 0.48)
10.8 : 5.4月 (HR 0.30)
(HR 1.0)
27.7 : 26.6月 (HR 0.89) 35.5 : 38.8月 (HR 1.18) 19.3 : 19.5月 (HR 1.04) 22.7 : 28.9月 (HR 1.04) NA
吉非替尼
NEJ002
74% : 31%
WJTOG3405
9.6 : 6.6月 顺铂 62% : 32% 无论一代还是二代 TKI,无论国内还是国外, 多西他赛 (HR 0.52)
9.7 : 5.2月 /顺铂 卡铂 都在重复诉说同一个故事! 58% : 15% 吉西他滨/多西他赛 (HR 0.37) 卡铂 吉西他滨 顺铂 培美曲塞 83% : 36% 13.7 :4.6月 (HR 0.16) 13.6 :6.9月 (HR 0.47) 11 :5.6 月 HR = 0.28
Maintenance phase
Erlotinib 150mg/day
PD
Previously untreated stage IIIB/IV NSCLC, PS 0/1 (n=451)
R
1:1; stratified by stage, histology, smoking status and chemo regimen Gemcitabine 1,250mg/m2 (d1, 8) + carboplatin AUC=5 or cisplatin 75mg/m2 (d1) + placebo (d15–28); q4wks x 6 cycles GC-placebo (n=225)
MKK-7 ERK JNK
抑制凋亡
促进增殖
血管生成 侵袭转移
EGFR靶向药物与KRAS突变
KRAS 是 EGFR 信 号 转 导 通 路中的一个关键的下游调节因子 。 KRAS 突变存在于( 15-30% )非小细胞肺癌患者中,且发生 该突变的患者预后普遍较差。
在研究 EGFR突变与吉非替尼治 疗进展期 NSCLC 患者的疗效间 的关系的研究中,也发现了 KRAS基因点突变。研究表明, KRAS基因突变与靶向药物的原 发性耐药有关。
PI3K
KRAS BRAF WT
KRAS 9.1% BRAF 0.6%
PI3K 3.8% EGFR E20 1.6%
其中350例双突变,296例同时携带敏感突变+耐药突变, 占EGFR敏感突变的7.3%。
FORM SUEREXAM DATA, 2014
ALK融合基因
目前ALK检测的标准为FISH,约4-8%的非小细胞肺癌有该突变,在不
+ 靶标检 测 时间 靶标检测是实现个体化治疗的前提和基础
确诊
传统治疗 个体化治疗
适合的药 物
疗效监测
肿瘤个体化治疗相关靶标
ERCC1 TUBB3 RRM1 TYMS DPYD UGT1A1 EGFR VEGFR ALK MET MSI 21基因
疗效
化疗
对化疗药物是否敏感
毒性
药物代谢
对特定药物的代谢 快/慢/有毒
活性。
Nat Med. 2012 Feb 12;18(3):378-81.
克唑替尼对ROS1+患者有效
● 2012年麻省总院证明含ROS1融合基因肺癌可被Crizotinib抑制,并在1073名NSCLC上发 现18位发生ROS1融合基因(1.7%),其中有一名患者服用了Crizotinib后出现CR 。 ● 2012年日本研究者在1529名日本肺癌患者上发现13名发生ROS1基因融合(0.9%) ,多 为年轻、不吸烟、分期高的肺腺癌患者。
MET基因扩增与EGFR TKI耐药
Sema
● Met信号参与肿瘤转移、浸润、扩增以及血管生 成1,2;
相关文档
最新文档