电控悬架的功能、类型、原理
电子控制悬架系统
3、主动悬架及其特点
、悬架初始刚度可以设计很小以保证正常行驶时的乘坐 舒适性。由于刚度可调,使车辆转弯出现的一些情况得到 解决。 、可将车辆抗侧倾、抗纵摆得刚度设计较大从而提高车 辆稳定性。 、车辆载荷变化时能自动维持车身高度不变,即使在凸 凹不平道路上行驶也可保持车身平稳。 、可以在制动时使车位下沉从而利用车轮与地面的附着 条件,加速制动过程,缩短制动距离。 、可以使车轮与地面保持良好接触,因而可提高车轮与 地面的附着力,从而提高车辆抵抗侧滑能力。
4、油气弹簧悬架系统的工作原理
通常在行驶状态,伺服阀 两侧A室的系统油压与B室的反 馈油压相互平衡,机械压力伺 服阀于主油路与液压缸相通的 位置,控制车体震动。当路面 不平车辆发生跳动时,悬架液 压力缸压力上升,机械压力伺 服阀B室反馈压力超过A室,推 动伺服阀芯左侧移动,液压缸 与回油通道接通,排出液压油, 维持压力不变,从而车轮振动 被吸收而衰减。在悬架伸张行 程,液压缸内的压力下降,伺 服阀A室压力大于B室,阀芯右 移,主油路与液压缸接通,来 自系统的压力油又进入液压缸, 以保持液压缸内的压力不变。
1、阻尼可控液压减震器
阻尼可控液压减震 器通过控制杆旋转一定 的角度来改变由旋转阀 和节流阀组成的控制阀 节流孔得流通面积,从 而实现阻尼得无极变化。 实际应用中该系统由电 子控制元、传感器和执 行器组成。
2、执行器
电子控制单元接受传感器 送入的车辆起步、加速等信号, 计算出相应得阻尼值,发出控 制信号到执行器,经控制杆调 节控制阀,使节流孔阻尼变化。
1、车身高度调节
空气弹簧模式开关选在在自动模式时,电子控制单元能够调节高位、 正常和低位3种车身高度状况。 Eg:前照灯接通时 车速达到90km/h时,前空气弹簧放气,车身前端降低。 车速在90~99km/h且保持10s以上,后空气弹簧放气,车身后端降低。 车速下降到70km/h以下时,车身上升到正常高度。
汽车电控悬架原理及检修分析
汽车电控悬架原理及检修分析汽车电控悬架是汽车技术领域里的一项重要的技术创新,这种悬架可以调节车身高度、阻尼和弹簧的硬度,达到更加舒适平稳的行驶效果,并可改善车辆的操纵性和稳定性。
本文将深入分析汽车电控悬架的工作原理和检修分析。
一、汽车电控悬架工作原理汽车电控悬架装置是一种集机电一体化的新型悬架,分别由机械部分和电子控制部分组成。
主要包括四个主要的电动执行器、几个传感器和一台电控计算机。
整个系统的电动执行器位于车轮附近,可以升降车身,增加或减少车身的高低位置,实现各种各样的动态调整,并能根据不同的路面状态自适应地调节路面硬度和减震性能。
传感器可以检测路面状态、车身高度、车速、加速度和转向等数据,电控计算机根据传感器传回的信号实时分析、计算后控制悬架系统的调整。
电控悬架系统的工作原理如下:1. 传感器检测:悬架系统通过装配在车辆上的各种传感器检测路面的状态、车身的高度、车速、加速度和转向等数据,并向电控计算机发出反馈信号。
2. 数据处理:电控计算机对传感器传回的信号进行分析和处理,并结合车辆当前的工况,采取最优控制策略。
3. 电动执行器调整:电控计算机通过对电动执行器的控制,升降车身,增加或减少车身的高低位置,以实现车身的动态调整。
4. 反馈控制:调整完成后,执行器将调整信息反馈到电控计算机,以便更好地应对路面或车辆状态的任何变化。
二、汽车电控悬架检修分析汽车电控悬架系统由于具有高度智能化的特点,在使用过程中更容易遇到故障,而这些故障在短时间内可能会影响整个汽车的行驶效果。
以下是一些常见的汽车电控悬架故障和检修方法:1. 卡住或升降不动若电动执行器没有正常工作,则车身可能会无法升降。
产生这种问题的主要原因是机械部分的故障,例如马达断路和控制器故障。
这时应该检查发现和更换故障的元件。
2. 过度波动如果你车身过度波动或颠簸,通常是后悬挂器的问题,而这是一个比较普遍的问题。
该问题的主要原因是弹簧或减震器老化或损坏。
模块9 汽车电控悬架控制系统《汽车电子控制技术》教学课件
二、电控悬架系统的分类
1.按有、无动力源分类
按有、无动力源可分为半主动悬架和主动悬架两大类。
2.按悬架介质的不同分类
按悬架介质的不同可分为两种类型,一种是控制液压来调 节悬架的阻尼力及弹簧刚度和车身高度,另外一种是控制气压 来调节车身高度和阻尼弹簧的刚度。这些控制形式根据厂家的 设计需要,既可以独立使用,也可以综合使用。
图9-12车身高度控制机构悬架结构
如图9-13所示为空气压缩机的结构图。图9-14所示为二位二通电磁阀控 制的车身高度控制阀,通过控制向主气室内进气(将进气路与主气室相通) 和排气(将主气室与大气相通),实现车身高度的调节。
图9-4差动变压器式加速度传感器的工作原理 l、2-二次绕组;3、6–次绕组;4-电源;5-心杆
(2)钢球位移式加速度传感器 钢球位移式加速度传感器的结构如图9-5所示。根据所检测的力(横向力 、纵向力或垂直力)不同,加速度传感器的安装方向也不一样。
图9-5 钢球位移式加速度传感器结构
3.车身高度传感器 车身高度传感器又称为车身位置传感器。车身高度一般都采用光电式高度 传感器进行检测,结构如图9-6所示,主要由光电耦合元件、遮光盘、壳体和 防护盖等组成。实际结构中,光电式车身高度传感器固定在车架上,传感器 轴的外端装有导杆,导杆的另一端通过一连杆与独立悬架的下摆臂连接,如 图9-7所示。
光电耦合元件输出信号状态
车高区间
车身高度定判结果
备注
SH1
SH2
SH3
SH4
1
1ቤተ መጻሕፍቲ ባይዱ
0
1
15
过高
1
1
0
0
14
0
1
0
0
13
汽车电控悬架
➢ 电控悬架系统,在车身电脑的控制下,弹簧刚度、 减振器阻尼可随车速、载荷、路面状况及汽车行 驶条件而自动变化,提高了行驶的平顺性和操纵 稳定性
四、丰田电控悬架(TEMS)的组成
▪ 选择器开关 ▪ 转向传感器 ▪ 停车开关 ▪ 车速传感器 ▪ 节气门位置传感器 ▪ 空档起动开关(仅限A/T车辆) ▪ TEMSECU ▪ 执行器 ▪ 减振器 ▪ TEMS指示灯 ▪ 检查连接器
丰田电控悬架各组成的功用
丰田电控悬架(TEMS)的电路图
选择器开关
此装置的阻尼力能在几 毫秒内由最小变到最大, 电控单元从传感器接收 速度、移位、加速度等 信号,计算出所需相应 的阻尼值,向步进电机 发出控制信号,经阀杆 调节阀门,使节流阀阻 尼连续变化
主动悬架系统工作原理 主动悬架系统能够根据车身高度、车速、 转向角度及速率、制动等信号,由电控单 元控制悬架执行机构,使悬架系统的刚度、 减振器的阻尼及车身高度等参数得到改变, 使汽车具有良好的乘座舒适性和操纵稳定 性
图为可调减振器阻尼调节原理
调节电动机带动控制杆使回转阀转动,来 控制通、断油孔和油路截面积的变化,使 控制阀具有大、中、小三个位置,产生三 个阻尼值,适应不同的行驶条件。高阻尼 利于安全性的提高,但舒适性下降;低阻 尼可降低系统的自振频率,减少对车身的 冲击,有利于舒适性的提高
图为一种阻尼力可连续 调节的半主动悬架系统 简图
电子控制悬架
一 、电控悬架系统的分类与功用 汽车悬架的作用是缓和冲击、衰减振动、并将路面 作用于车轮的各种力和力矩传递给车身 传统的悬架主要弹簧、减振器和导向装置三部分组 成
简述电控悬架的作用和工作原理
简述电控悬架的作用和工作原理电控悬架是一种利用电子技术控制弹簧刚度和减震器阻尼的悬挂系统,主要用于汽车、船舶等交通工具的制造和修理。
本文将简述电控悬架的作用和工作原理。
一、电控悬架的作用电控悬架的主要作用是可以根据车辆的不同状态和行驶条件,自动调整弹簧刚度和减震器阻尼,以达到最佳的悬挂效果。
具体来说,它可以通过传感器采集车辆的数据,分析车辆的状态,如车速、转向角度、车轮转速等,然后根据这些数据计算出所需的弹簧刚度和减震器阻尼,从而实现对悬挂系统的自动控制。
电控悬架的作用还包括提高车辆的舒适性和安全性。
由于它可以根据车辆的不同状态和行驶条件自动调整悬挂系统,使得车辆在行驶时感觉更加平稳舒适,同时也提高了车辆的安全性能。
二、电控悬架的工作原理电控悬架的工作原理主要涉及两个主要部分:传感器和控制系统。
1. 传感器传感器是电控悬架系统中的重要组成部分,它可以通过采集车辆的数据,将车辆的状态信息传递给控制系统。
传感器通常包括车速传感器、转向角度传感器、车轮转速传感器等。
2. 控制系统控制系统是电控悬架的核心部分,它根据传感器采集到的数据,分析车辆的状态,然后根据计算出的参数对悬挂系统进行自动控制。
控制系统通常由微控制器、计算机、传感器、执行器等组成。
控制系统根据传感器采集到的数据,分析车辆的状态,然后根据计算出的参数对悬挂系统进行自动控制。
具体来说,它可以通过调整弹簧刚度、减震器阻尼等参数,使得车辆在行驶时感觉更加平稳舒适,同时也提高了车辆的安全性能。
三、总结综上所述,电控悬架是一种利用电子技术控制弹簧刚度和减震器阻尼的悬挂系统,主要用于汽车、船舶等交通工具的制造和修理。
它可以通过传感器采集车辆的数据,分析车辆的状态,然后根据计算出的参数对悬挂系统进行自动控制,从而实现最佳的悬挂效果。
汽车底盘电控技术-5-电控悬架系统
使弹簧刚度变成“硬”状态和使减振阻尼变 成“中”状态。该项控制能改善汽车高速行驶时 的稳定性和操纵性
弹簧刚度和减振阻尼控制
不平整道路 控制
颠动控制
使弹簧刚度和减振阻尼视需要变成“中”或“ 软”状态,以抑制汽车车身在悬架上下跳动, 改善汽车在不平坦道路上行驶时的乘坐舒适 性
光电耦合元件的状态与车高的对照表
车高
1
光电耦合元件的状态
2
3
车高范围
计算结果
4
OFF
OFF
ON
OFF
15
过高
高
OFF
OFF
ON
ON
14
ON
OFF
ON
ON
13
ON
OFF
ON
OFF
12
高
ON
OFF
OFF
OFF
11
ON
OFF
OFF
ON
10
ON
ON
OFF
ON
9
普通
ON
ON
OFF
OFF
8
ON
ON
ON
OFF
一般原理:
利用传感器(包括开关)检测汽车行驶时路面的状况和车 身的状态,输入ECU后进行处理,然后通过驱动电路控制 悬架系统的执行器动作,完成悬架特性参数的调整。
二、传感器的结构与工作原理
转向盘转角传感器
传感器位置
加速度传感器
车身高度传感器 加速度传感器
车身高度传感器
1、转向盘转角传感器
【作用】检测转向盘的中间位置、转动方向、转向角 度和转动角度。以判断转向时侧向力的大小和方向, 以控制车身的侧倾。
电控悬架控制系统
装在各空气弹簧和可调减振器的上方, UcF10的悬架控制执行器是一个有3步动 作的电磁阀;ucF20的则是一个有9步动 作的步进电机。执行器同时驱动减振器的 转阀和空气弹簧的连通阀,以改变减振器 的减振阻尼和空气弹簧的刚度; 对于ucF20车型,执行器只驱动减振器的 转阀。
(1)电磁式悬架执行器
(3)主动悬架 根据车载负荷、道路状况、可以 对悬架的车身高度、阻尼系数、 弹性刚度进行调节
空气悬架系统 主动悬架系统
电控悬架 半主动悬架系统
油气弹簧系统
二、悬架的功能
1、防点头功能(或防前倾) 悬架ECU根据制动灯开关信号,将两 个前悬架减振器进行调节,使前悬架 的阻尼增大。 2、防后倾功能 悬架ECU根据节气门位置或加速度传 感器信号,对两个后悬架减振器进行 调节,使其阻尼系数增大。
(2)制动灯开关 悬架ECU利用这一信号判断汽车 是否在制动。使弹簧刚度和减振 阻尼变成 “硬”状态。防止汽车 制动“点”头,使汽车的姿势变 化减至最小。
(3) 门控灯开关
用于降低车身高度,便于乘客上下车。
(4) 车速传感器
车速传感器位于变速器输出轴上,用来检 测变速器输出轴的转速。当车速超过 90km/h,自动降低车身高度,以减少空 气阻力,当车速下降40~90km/h,又 提高车身高度,以提高汽车的通过性提高 汽车行驶的稳定性。
第四章:电控悬架控制系统
一、概述 1、悬架的分类(按功能分) (1)被动悬架 由螺旋弹簧和减振器组成,不能 根据道路状况、车载负荷、车速 等因素,自身改变弹性刚度和减 震系数。
(2)半主动悬架 由螺旋弹簧和可调式减振器组成, 只能根据道路状况车速等因素,调 节减振器的阻尼系数,弹性高度不 可调。
简述电控悬架的作用和工作原理
简述电控悬架的作用和工作原理电控悬架作为汽车悬架系统的重要组成部分,其作用是通过电子控制单元(ECU)控制悬架系统的工作,以实现对车辆悬架系统的调节和控制。
电控悬架的工作原理是通过传感器感知车辆的运动状态和路面情况,并将这些信息传输给ECU,然后ECU根据预设的控制策略,通过控制执行器调节悬架系统的工作状态,以提高车辆的悬挂稳定性、操控性和乘坐舒适性。
电控悬架的作用主要有以下几个方面:1. 提高悬挂稳定性:电控悬架可以根据车辆的运动状态和路面情况实时调节悬架系统的刚度和阻尼,以提高车辆的悬挂稳定性。
当车辆在高速行驶或急转弯时,悬架系统可以自动增加刚度和阻尼,减小车身的侧倾和俯仰,提高车辆的稳定性和操控性。
2. 提高悬挂舒适性:电控悬架可以根据路面情况调节悬架系统的刚度和阻尼,以提高乘坐舒适性。
当车辆行驶在崎岖不平的路面上时,悬架系统可以自动降低刚度和阻尼,减小车身对路面的冲击和震动,提供更舒适的乘坐体验。
3. 优化悬挂性能:电控悬架可以根据不同的驾驶模式和需求,调节悬架系统的工作状态,以优化悬挂性能。
例如,在运动模式下,悬架系统可以提供更高的刚度和阻尼,以提供更好的操控性和车辆响应;在舒适模式下,悬架系统可以提供较低的刚度和阻尼,以提供更好的乘坐舒适性。
电控悬架的工作原理是基于车辆动力学原理和控制理论。
首先,通过传感器感知车辆的运动状态和路面情况,比如车身加速度、车轮位置和车轮加速度等。
然后,将这些信息传输给ECU,ECU根据预设的控制策略,通过控制执行器调节悬架系统的工作状态。
在控制执行器方面,电控悬架通常采用液压执行器或电动执行器。
对于液压执行器,通过控制液体的流动和压力来调节悬架系统的刚度和阻尼。
而对于电动执行器,通过控制电机的转动和位置来调节悬架系统的刚度和阻尼。
在控制策略方面,电控悬架通常采用PID控制器或模糊控制器等。
PID控制器通过比较当前状态和预设状态的偏差,计算出控制信号,使悬架系统逐渐趋近于预设状态。
电子控制悬架系统
电子控制单元的基本工作原理:各 传感器和控制开关产生的电信号,经输 入接口电路整形放大后,送入计算机 CPU中,经过计算机处理和判断后分 别输出各控制信号,驱动相关的执行器 和显示器工作。
ECU系统原理图
这些控制信号有:促使执行器改变 悬架减振器阻尼力的阻尼控制信号;促 使发光二极管显示悬架系统当前阻尼力 状态的显示控制信号。
电子控制悬架系统
一,概述
1、汽车悬架的作用
汽车悬架是指连接车架(或承 载式车身)与车桥(或车轮)的一系 列传力装置。
(1) 承载即承受汽车各方向的载荷, 这些载荷包括垂直方向、纵向和 侧向的各种力。
(2) 传递动力即将车轮与路面间产生 的驱动力和制动力传递给车身, 使汽车向前行驶、减速或停车。
(3) 缓冲即缓和汽车和路面状况等引 起的各种振动和冲击,以提高乘 员乘坐的舒适性。
在现代中、高档汽车上很少采用普 通的减振器,转而采用电控半主动悬 架或电控主动悬架,以提高汽车的综 合性能。
1. 电控半主动悬架的结构和工作原理
大部分半主动悬架采用了手动控 制方式,由驾驶员根据路面状况和汽 车的行驶条件,手动控制相关的动作, 对减振器的阻尼力进行变换。
如果当减振器的阻尼力被调整为 “硬” 时,还可增强汽车在转弯或在 不平道路上行驶时抗侧倾的能力,提 高汽车操纵的稳定性。
1)横向稳定驱动器
驱动器的外形及驱动杆的位置
驱动器的结构 1—直流电动机;2—蜗轮;3—小行星轮;4—齿圈;5—托架; 6—限位开关;7—太阳轮;8—变速传动轴;9—蜗杆
直流电动机 1—驱动杆;2—从动杆;3—变速传感器;4—蜗杆;5—小行 星轮;6—齿圈;7—太阳轮;8—托架;9—限位开关(SW2); 10—限位开关(SW1);11—直流电动机;12—蜗杆;13—弹簧
电子控制悬架系统
一般原理:
.
(二)传感器的结构与工作原理 1、转向盘转角传感器
作用:检测转向盘中间位置、转动方向、转动角度和 转动速度。
ECU根据车速传感器和转角传感器信号,判断转向时侧 向力的大小和方向,以控制车身侧倾。 例:丰田TEMS的光电式转角传感器
.
.
4、节气门位置传感器 作用:判断汽车是否进行急加速。 5、车速传感器
汽车车身的侧倾程度取决于车身和转向半径。 常用的车身传感器有:舌簧开关式、磁阻元件式、磁脉冲
式、光电式。 6、模式选择开关
作用:决定减振器阻尼力大小 四种运行模式:自动 标准;自动 运动;
手动 标准;手动 运动
.
.
(三)悬架ECU
3)弹簧刚度控制 与减振器控制一致
注:有些车具有上述1个或2个. 功能,有些具有3个功能。
电子悬架系统的种类
1)按传力介质不同分 气压式和油压式
2)按控制理论不同分 半主动式—有级半主动式(阻尼力有级可调) 无级半主动式(阻尼力连续可调) 主动式—全主动式(频带宽大于15Hz) 慢全主动式(频带宽3~6Hz)
.
三 电典型汽车电子控制悬架系统
.
丰田电子悬架系统原理
.
丰田电子悬架系统控制功能
.
.
(四)执行机构的结构与工作原理
1、阻尼控制执行机构 1)可调阻尼减振器
组成:缸筒、活塞、活塞控制杆、回转阀等
ECU通过控制杆控制回转阀相对活塞杆转动,使油孔通断,改变流 通面积,调节减振器阻尼力。
A、C孔相通 为软; B孔与活塞杆 上油孔相通为 中; A、B、C孔均 不通为硬。
.
2)直流电动机式执行器 作用:由ECU 控制控制杆的 旋转,改变减 振器的阻尼力。
电控空气悬架工作原理
电控空气悬架工作原理电控空气悬架是一种先进的汽车悬架系统,具有智能、自适应和自动调节的特点。
它通过电子控制单元及其周边传感器,实现了对车身高度的控制和调节,从而提升了汽车的行驶稳定性、安全性和乘坐舒适性。
下面将介绍电控空气悬架的工作原理,主要分为以下几个方面:一、空气弹簧电控空气悬架采用的是空气弹簧,其工作原理是在车身和车轴之间装置充气囊,通过充气和放气来调节车身高度。
当车辆行驶在不同的路况上时,通过传感器采集到车身高度的数据,电子控制单元根据这些数据来控制空气压缩机和电磁阀,从而实现对充气囊的充气和放气控制。
二、电磁阀电磁阀是电控空气悬架的核心部件,它在车身高度发生变化时,通过电子控制单元的信号控制固定时间内开启和关闭,使气囊内的气体进出达到最佳高度,从而调节车身高度的目的。
电磁阀的开启和关闭的快慢也会影响高度的调整效果。
通常情况下,当车速较慢时,开启和关闭时间会更长,而当车速较快时,电磁阀的开启和关闭时间会缩短,以确保高度调节的准确性和稳定性。
三、传感器传感器是电控空气悬架的另一个关键部件,它能够实时感知车身的高度和状态,并将这些信息传递给电子控制单元进行处理和控制。
传感器的种类较多,例如悬架传感器、车身角度传感器、加速度传感器、转向角度传感器等。
这些传感器的精度、灵敏度、抗干扰能力都非常重要,它们的设计和制作必须考虑到电磁干扰、温度变化、振动等诸多因素的影响。
四、电子控制单元电子控制单元是电控空气悬架的大脑,它能够实时地吸收传感器的数据,并根据这些数据来实现高度调节、防倾力控制、防抱死制动等功能。
在实际应用过程中,电子控制单元还可以通过网络连接和其他控制单元进行通信交互,从而实现更加智能和自动化的控制。
总的来说,电控空气悬架可以通过空气弹簧、电磁阀、传感器和电子控制单元等多个部件的协作,实现对车身高度的智能控制和调节,从而提升汽车的整体性能和驾乘体验。
随着汽车科技的不断进步,电控空气悬架将会有更广泛的应用,成为汽车悬架系统的主流。
第二章第六节电控悬架
(5)故障码的读取
①打开点火开关,用跨接线将检查插接器或
TDLC的Tc与E1端子连接。
第二页,共38页。
第三页,共38页。
电控空气悬架工作原理:
第四页,共38页。
电控空气悬架的控制系统根据汽车行驶状况,由模式选择(LRC)开 关、车速传感器、转向传感器、制动灯开关等部件获得的信息传递给悬架
ECU,ECU经过计算并与设定值进行比较后发出控制信号使执行器工作,带动
减振器的阻尼调节杆和回转阀转动来调节减振器阻尼力的大小,同时也带动空 气弹簧气压缸的气阀控制杆旋转,从而改变悬架弹簧的刚度。 对车身高度的控
第十九页,共38页。
(4)跨接导线法 有的汽车需用跨接导线将高度控制连接器和发动机舱的检查插接器的诊断输入 端子和搭铁端子进行跨接,即可进入故障自诊断状态,读取故障代码。如丰田系 列汽车的电控悬架就采用这种方法。 (5)控制面板法 有些汽车上控制板面上的相关控制开关,可兼做故障自诊断开关,一般是将空调 控制板面上的“WARM(加温)”和“OFF(关闭)”两个按键同时按下一段时 间,即可使电控悬架进入故障自诊断状态。如林肯大陆和凯迪拉克汽车就采用这 种方法。 (6)专用诊断仪法 各种汽车电控悬架系统均配备专用故障诊断仪(解码器),将该仪器与电控悬架系 统故障检查插接器相连接,便可以直接进入故障自诊断状态,并在诊断仪上读取 故障码。
管与大气之间,控制压缩空气与大气的通断。
第十五页,共38页。
丰田凌志LS400中的1号高度控制阀用于前悬架的控制,它有2个 高度控制阀分别控制前桥的左、右空气弹簧。2号高度控制阀用 于后悬架的控制,它与1号高度控制阀不同的是2个高度控制阀不是 单独工作。为了防止空气管路中产生不正常压力,2号高度控制阀
车辆电控悬架的结构、原理讲解以及故障诊断与排除介绍
– 等压缩机工作一会后,检查溢流阀是否放气; – 如果不放气说明溢流阀堵塞、压缩机故障或有漏气的部位。 – 检查结束后。将点火开关OFF,清除故障码。
3. 漏气检查
– 将高度控制开关置于High位置; – 发动机熄火; – 在管子的接头处涂抹肥皂水。
以丰田车系为例进行介绍。 (一)初步检查(功能检查) 1. 汽车高度调整功能的检查
– 检查轮胎气压是否正常(前后分别为2.3和2.5kg/cm2) – 检查汽车高度(下横臂安装螺栓中心到地面的距离) – 将高度控制开关由Norm转换到High,车身高度应升高10~
30mm,所需时间为21~40s。
2. 溢流阀检查
以提高汽车的通过性;车速在90km/h以上,降低车身高度, 以满足汽车行驶的稳定性。 点火开关OFF控制:驻车时,当点火开关关闭后,降低车 身高度,便于乘客的乘降。 自动高度控制:当乘客和载质量变化时,保持车身高度恒 定。
(二)电控悬架的组成、结构和原理
1. 组成
1-1号高度控制继电器 2-车身高度传感器 3-前悬架控制执行器 4-制动灯开关 5-转向传感器 6-高度控制开关 7-LRC开关 8-后车身位移传感器 9-2号离度控制阀和溢流阀 10-高度控制ON/OFF开关 11-高度控制连接器 12-后悬架控制执行器 13-2号高度控制继电器 14-悬架电脑 15-门控灯开关 16-主节气门位置传感器 17-1号高度控制阀 18-高度控制压缩机 19-干燥器和排气阀 21-IC调节器
阻尼力,以抑制车身的侧倾。 制动时点头控制:紧急制动时,提高弹簧刚度和减振
器阻尼力,以抑制车身的点头。 加速时后坐控制:急加速时,提高弹簧刚度和减振器
电控悬架工作原理
电控悬架工作原理
电控悬架工作原理是基于电控系统对车辆悬架的控制进行调节,从而实现对车身高度和硬度的调控,以提供更好的行车舒适性和操控性能。
它主要由以下几个方面的工作组成。
首先,电控悬架利用传感器检测车辆的姿态状态和路况信息。
传感器可以感知车身的加速度、倾斜角度、轮胎与地面之间的接触力等参数,并将这些数据传输给控制单元。
其次,控制单元根据传感器的数据分析车辆的实际情况,并结合预先设定的控制算法,确定最佳的悬架工作状态。
控制算法包括车辆的悬挂高度控制、悬挂刚度控制和悬挂阻尼控制等内容,通过对电控系统的输出信号进行调控,实现车身高度和硬度的精确调节。
然后,电控系统通过电磁阀或伺服电机控制悬架的工作。
基于控制单元的指令,电磁阀或伺服电机会调节悬架的气压、液压或弹簧的硬度,从而改变车身的高度和硬度。
这种调节能够适应不同的路况和驾驶需求,提供更好的行车体验。
最后,电控悬架还提供了一些额外的功能,如主动减振、主动悬挂和主动安全控制等。
主动减振功能可以根据路况和车速调节悬架的阻尼,减少车身的颠簸感。
主动悬挂功能可以根据驾驶员的需求自动调节悬挂高度,提高车辆的通过性。
主动安全控制功能可以通过调节悬架的工作状态,改变车身的姿态,提高车辆的稳定性和操控性能。
综上所述,电控悬架通过传感器的监测、控制单元的分析和控制、悬架的调节等步骤,实现对车身高度和硬度的精确调节,提供更好的行车舒适性和操控性能。
电子控制悬架系统(汽车电子控制技术)文档阅读、
车速信号是汽车悬架系统的常用控制信号,汽车车身的 侧倾程度取决于车速的高低和汽车转向半径的大小。车速传 感器的作用是检测汽车速度,并将信号传递给ECU,用于对 悬架的阻尼、弹簧刚度和车身高度的控制。常用的车速传感 器主要有舌簧开关式,电磁感应式,光电式等。 5. 节气门位置传感器
节气门位置传感器用来检测节气门的开度及开度变化, 为悬架ECU提供起步、加速等信号,以便根据车辆状态进行 悬架控制。节气门位置信号可以与汽车上用于发动机控制的 节气门位置信号共享。常用的节气门位置传感器有线性可变 电阻式、触点与可变电阻组合式。
光电耦合元件(4组)控制电路图
车身高度与光电耦合元件输出信号(4组)关系
2.加速度传感器
在车轮打滑时,无法以转向角和汽车车速正确判断车 身侧向力的大小,此时利用加速度传感器可以直接准确地 测量出汽车的纵向加速度以及汽车转向时因离心力而产生 的横向加速度,并将信号输送给ECU,使ECU能够调节悬架 系统的阻尼力大小及悬架弹性元件刚度的大小,以维持车 身的最佳姿势。
②弹簧刚度调节功能。该功能是利用控制弹簧刚度(弹性 系数)的方法控制车辆在各种不同状况时的姿势,提高车辆的 操纵稳定性。
电控悬架的功能、类型、原理
精选课件
2
其基本功能有: 1、车高调整 2、减振器阻尼力控制 3、弹簧刚度控制
精选课件
3
二、电子控制悬架系统的类型
按传力介质的不同可分为:
气压式和油压式两种。
按控制理论的不同可分为:
主式和半主动式两种。
1. 主动悬架 根据载荷、车速、路面等条件的变化,自动调节弹 簧刚度、减振器阻尼、车身高度。按弹簧的种类又 可分为空气弹簧主动悬架和油气弹簧主动悬架。
3-前悬架控制执行器 4-制动灯开关 5-转向传感器 6-高度控制开关 7-LRC开关
8-后车身位移传感器 9-2号离度控制阀和溢
流阀
10-高度控制ON/OFF开 关
11-高度控制连接器 12-后悬架控制执行器 13-2号高度控制继电器
14-悬架电脑 15-门控灯开关 16-主节气门位置传感器 17-1号高度控制阀 18-高度控制压缩机 19-干燥器和排气阀
21-IC调节器
精选课件
6
四、 传感器的结构与工作原理
1、车速传感器 汽车车身的侧倾程度取决与汽车的车速和
转向半径的大小。通过对车速的检测来调 节电控悬架的阻尼力,从而改善汽车行驶 的安全。
类型:舌簧开关式车速传感器、阻尼元件 式车速传感器、磁脉冲式车速传感器和光 电式车速传感器。
精选课件
7
2. 半主动悬架 悬架系统中只有弹簧刚度或减振器阻尼之一可以调 节。
精选课件
4
21.1 电控悬架概述
三、组成 电控悬架由传感器、开关、电子控制单元和执行器三 部分组成。
车身加速度传感器 车身高度传感器 车速传感器
方向盘转角传感器 节气门位置传感器
车门传感器
E
电磁阀
C
简述电控悬架的作用和工作原理
简述电控悬架的作用和工作原理电控悬架是一种通过电子控制系统来调节车辆悬架系统的特性和性能的技术,其作用是提高车辆的悬挂性能,提供更舒适、更稳定的悬挂效果,并根据驾驶条件和需求调整悬挂系统的硬度和高度。
电控悬架的工作原理是通过电子控制单元(ECU)监控和控制车辆的悬挂系统。
悬挂系统通常由减震器、弹簧、悬挂臂和传感器等组成。
传感器负责感知车辆的运动状态,如车速、加速度、车身倾斜角度等,并将这些数据传输给ECU。
ECU根据传感器提供的数据,实时分析车辆的运动状态,并根据预先设定的悬挂系统特性和驾驶模式,控制电磁阀或伺服马达来调整悬挂系统的特性和性能。
具体来说,电控悬架的工作原理主要包括以下几个方面:1.悬挂系统特性调节:根据传感器获取的车辆运动状态数据,ECU可以根据预设的悬挂系统特性曲线,并结合当前驾驶的模式,通过调节电磁阀或马达的工作状态,实时改变悬挂系统的硬度。
当车辆行驶在柔软的悬挂特性下时,可以提供更好的舒适性;而当车辆行驶在硬挺的悬挂特性下时,可以提供更好的车身控制性能,增强悬挂系统的稳定性。
2.自适应悬挂:电控悬架可以根据不同的驾驶条件和路况自动调整悬挂系统的参数。
例如,当车辆行驶在颠簸的路面上时,ECU可以根据传感器感知到的车辆振动频率和振幅,调整悬挂系统的阻尼力大小,以减少车辆的颠簸感和抖动。
当车辆行驶在高速公路上时,ECU可以将悬挂系统调整为硬挺的状态,以提供更好的车辆稳定性和操控性能。
3.高度调节:电控悬架可以实现车辆的高度调整。
通常情况下,车辆在高速行驶时会降低离地高度以减少风阻,而在过速带或崎岖路面上行驶时会提高离地高度以保护底盘。
ECU可以根据传感器获取的数据,在保证安全的前提下,通过调节悬挂系统的高度管理模块,实时控制车辆的高度。
4.悬挂系统协调:电控悬架还可根据车辆的驾驶模式和动力系统的工作状态来协调悬挂系统和其他车辆控制系统之间的工作。
例如,在车辆紧急制动时,ECU可以通过传感器感知到的车辆的加速度和倾斜角度,及时调整悬挂系统的特性,提高制动的稳定性和安全性。
《汽车底盘控制系统》第4章 电控悬架
②空气弹簧压力较大时的伸长过程。 由于控制压力(空气弹簧压力)及液 体流过PDC-阀的阻力增大。大部分液 体(取决于控制压力)必须流过活塞 阀,因而减振力(阻尼力)也将增大。
③空气弹簧压力较小时的压缩过程。 活塞被向下压,阻尼力由底阀和液体流过该阀的阻力所决定。活 塞杆压出的机油一部分经底阀流入储油腔,另一部分机油经工作 腔1内的孔流向PDC-阀。由于控制压力(空气弹簧压力)及液体 流过PDC-阀的阻力变小,因而减振力(阻尼力)也将减小。
第4章 汽车电控悬架
4.1电控悬架系统基本认识
调节车身高度
1.电控悬架的功能
提高车辆的行驶平顺性和操纵稳定性
提高车辆轮胎与地面的附着力
2.电控悬架系统调节内容
车身高度调整 减振器阻尼力控制 弹簧刚度调整
3.电控悬架的分类
(1)按有源和无源,有被动悬架、半主动悬架和主动悬架
按悬架的工作原理不同,从控制力的角度来看,悬架可分为被动悬架(Passive Suspention )、 半主动悬架(Semi-active Suspension)及主动悬架(Active Suspension)。
4.5.3奔驰S320 W220底盘轿车电控悬架系统
1.系统构成
2.系统功能
奔驰S320轿车空气悬挂系统由装有压缩空气的空气弹簧和阻尼可调的减振器两部分组成,以空气包取代 传统的螺旋弹簧,以阻尼分级可调的减振器取代传统减振器。系统主要根据车辆行驶条件及路面状态, 对减振器的阻尼度进行调节,悬挂系统4个空气弹簧采用相同的刚度,减振器的阻尼调整则独立运作。 车身高度控制分3种模式;正常车高模式;车身升高模式;车身降低模式。前轴两个空气弹簧单独控制, 后轴两个空气弹簧同时控制。 减振器工作模式分为4种:柔软舒适模式,即“软压缩软回弹”模式;减振器硬压缩、软回弹模式;减 振器软压缩、硬回弹模式;极端运行模式,即“硬压缩硬回弹”模式。该悬挂系统能够在前3种模式间 自动切换,以便在不同行驶环境下获得最适合的减振效果。极端运行模式在系统出现故障时运行,此时 减振器处于“硬压缩硬回弹”模式。
电子行业电子控制悬架系统
电子行业电子控制悬架系统引言在电子行业中,电子控制悬架系统(Electronic Control Suspension System)已经成为一个非常重要的技术。
随着汽车电子化的发展,悬架系统的电子控制能力逐渐得到提升,进一步提高了汽车的操控性能和乘坐舒适度。
本文将介绍电子控制悬架系统的原理、功能以及在电子行业中的应用。
电子控制悬架系统的原理电子控制悬架系统主要由传感器、控制单元和执行器组成。
传感器负责感知车身各种状态参数,如悬架行程、车速、加速度等;控制单元根据传感器的反馈信号,进行数据处理和控制策略的制定;执行器根据控制单元的指令,调节悬架系统的工作状态,以实现车身的平稳和操控性能的提升。
电子控制悬架系统采用了先进的电子控制技术和实时反馈控制方法,能够根据不同的驾驶环境和道路状态,自动调节悬架的刚度和行程,实现较好的悬挂效果。
通过悬架的主动调节,车身可以保持平稳的姿态,减少颠簸、侧倾和横摆等不良驾驶状态对车辆行驶的影响。
电子控制悬架系统的功能电子控制悬架系统具有以下几个重要的功能:主动悬架调节电子控制悬架系统可以根据驾驶环境和车速的变化,自动调节悬架的刚度和行程,使车身保持平稳的姿态。
车身的平稳可以提高驾驶的舒适性和稳定性,同时也可以减少对车辆其他部件的磨损和损坏。
动态悬架控制电子控制悬架系统可以根据车辆的动态状态,动态调整悬架的工作参数,以实现最佳的悬挂效果。
例如在高速行驶时,可以增加悬架的刚度,提高车身的稳定性;而在低速行驶或通过减速带时,可以减小悬架的刚度,提高车身的舒适性。
高度调节控制电子控制悬架系统还可以根据实际需要,对车身的高度进行调节。
这样,驾驶员可以根据不同的道路条件和驾驶需求,自由调节车身的高度,以适应不同的行驶环境。
自适应调节电子控制悬架系统可以根据驾驶员的驾驶习惯和偏好,自适应地调节悬架的参数。
通过学习驾驶员的驾驶行为和反馈信息,系统可以逐渐了解驾驶员的习惯,从而提供个性化的悬架调节策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选课件
12
精选课件
13
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!ຫໍສະໝຸດ §2-3 电子控制悬架系统
什么是电控悬架 简称EMS(Electronic Modulated
Suspension)。
优点:它能使悬架随不同的路况和行驶 状态作出不同的反应。既能使汽车的乘 坐舒适性达到令人满意的状态,又能使 汽车的操纵稳定性达到最佳状态。
精选课件
1
一、电子控制悬架系统的功能
在不同的使用条件下,通过控制调节悬架 的刚度和阻尼力,使汽车的悬架特性与道 路状况和行驶状况相适应,从而保证汽车 行驶的平顺性和操纵的稳定性要求都能得 到满足。
精选课件
2
其基本功能有: 1、车高调整 2、减振器阻尼力控制 3、弹簧刚度控制
精选课件
3
二、电子控制悬架系统的类型
按传力介质的不同可分为:
气压式和油压式两种。
按控制理论的不同可分为:
主动式和半主动式两种。
1. 主动悬架 根据载荷、车速、路面等条件的变化,自动调节弹 簧刚度、减振器阻尼、车身高度。按弹簧的种类又 可分为空气弹簧主动悬架和油气弹簧主动悬架。
3-前悬架控制执行器 4-制动灯开关 5-转向传感器 6-高度控制开关 7-LRC开关
8-后车身位移传感器 9-2号离度控制阀和溢
流阀
10-高度控制ON/OFF开 关
11-高度控制连接器 12-后悬架控制执行器 13-2号高度控制继电器
14-悬架电脑 15-门控灯开关 16-主节气门位置传感器 17-1号高度控制阀 18-高度控制压缩机 19-干燥器和排气阀
2. 半主动悬架 悬架系统中只有弹簧刚度或减振器阻尼之一可以调 节。
精选课件
4
21.1 电控悬架概述
三、组成 电控悬架由传感器、开关、电子控制单元和执行器三 部分组成。
车身加速度传感器 车身高度传感器 车速传感器
方向盘转角传感器 节气门位置传感器
车门传感器
E
电磁阀
C
步进电机
U
气泵电机
精选课件
5
1-1号高度控制继电器 2-车身高度传感器
2、转向盘转角传感器
用于检测转向盘是否位于中间位置及转 向盘可能的偏转方向、偏转角度和偏转 速度。
光电式转角传感器的结构与原理
精选课件
8
精选课件
9
精选课件
10
3、车身高度传感器
精选课件
11
4、模式选择开关
驾驶员根据汽车的行驶状况和路面情况选择 悬架的运行模式,从而决定减振器阻尼力的 大小。
21-IC调节器
精选课件
6
四、 传感器的结构与工作原理
1、车速传感器 汽车车身的侧倾程度取决与汽车的车速和
转向半径的大小。通过对车速的检测来调 节电控悬架的阻尼力,从而改善汽车行驶 的安全。
类型:舌簧开关式车速传感器、阻尼元件 式车速传感器、磁脉冲式车速传感器和光 电式车速传感器。
精选课件
7