半导体制造工艺_11刻蚀

合集下载

综述报告——刻蚀简介

综述报告——刻蚀简介

微加工技术——刻蚀简介自从半导体诞生以来,很大程度上改变了人类的生产和生活。

半导体除了在计算机领域应用之外,还广泛地应用于通信、网络、自动遥控及国防科技领域。

本文主要介绍半导体制造工艺中的刻蚀工艺。

随着半导体制造大规模集成电路技术的发展,图形加工线条越来越细,硅片尺寸越来越大,对刻蚀工艺的要求也越来高。

因此,学习了解刻蚀工艺十分必要。

本文将主要从刻蚀简介、刻蚀参数及现象、干法刻蚀和湿法刻蚀四个方面进行论述。

1、刻蚀简介1.1 刻蚀定义及目的刻蚀就是用化学的、物理的或同时使用化学和物理的方法,有选择地把没有被抗蚀剂掩蔽的那一部分薄膜层除去,从而在薄膜上得到和抗蚀剂膜上完全一致的图形。

刻蚀的基本目的,是在涂光刻胶(或有掩膜)的硅片上正确的复制出掩膜图形[1]。

刻蚀,通常是在光刻工艺之后进行。

通过刻蚀,在光刻工艺之后,将想要的图形留在硅片上。

从这一角度而言,刻蚀可以被称之为最终的和最主要的图形转移工艺步骤。

在通常的刻蚀过程中,有图形的光刻胶层〔或掩膜层)将不受到腐蚀源显著的侵蚀或刻蚀,可作为掩蔽膜,保护硅片上的部分特殊区域,而未被光刻胶保护的区域,则被选择性的刻蚀掉。

其工艺流程示意图如下。

1.2 刻蚀的分类从工艺上分类的话,在半导体制造中有两种基本的刻蚀工艺:干法刻蚀和湿法腐蚀。

干法刻蚀,是利用气态中产生的等离子体,通过经光刻而开出的掩蔽层窗口,与暴露于等离子体中的硅片行物理和化学反应,刻蚀掉硅片上暴露的表面材料的一种工艺技术法[1]。

该工艺技术的突出优点在于,是各向异性刻蚀(侧向腐蚀速度远远小于纵向腐蚀速度,侧向几乎不被腐蚀),因此可以获得极其精确的特征图形。

超大规模集成电路的发展,要求微细化加工工艺能够严格的控制加工尺寸,要求在硅片上完成极其精确的图形转移。

任何偏离工艺要求的图形或尺寸,都可能直接影响产品性能或品质,给生产带来无法弥补的损害。

由于干法刻蚀技术在图形转移上的突出表现,己成为亚微米尺寸下器件刻蚀的最主要工艺方法。

半导体八大工艺顺序

半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序,是指半导体制造过程中的八个主要工艺步骤。

这些工艺步骤包括晶圆清洗、光刻、沉积、刻蚀、扩散、离子注入、退火和包封。

下面将逐一介绍这些工艺步骤的顺序及其作用。

1. 晶圆清洗晶圆清洗是半导体制造过程中的第一步。

在这一步骤中,晶圆将被放入化学溶液中进行清洗,以去除表面的杂质和污染物。

这样可以确保后续工艺步骤的顺利进行,同时也可以提高器件的质量和性能。

2. 光刻光刻是半导体制造中的关键工艺步骤之一。

在这一步骤中,将使用光刻胶覆盖在晶圆表面上,并通过光刻机将图形投射到光刻胶上。

然后,利用化学溶液将未曝光的光刻胶去除,从而形成所需的图形。

3. 沉积沉积是指在晶圆表面上沉积一层薄膜的工艺步骤。

这一层薄膜可以用于改变晶圆表面的性质,增加其导电性或绝缘性。

常用的沉积方法包括化学气相沉积和物理气相沉积。

4. 刻蚀刻蚀是将多余的材料从晶圆表面去除的工艺步骤。

在这一步骤中,利用化学溶液或等离子刻蚀机将不需要的材料去除,从而形成所需的图形和结构。

5. 扩散扩散是将杂质或掺杂物diffused 到晶圆中的工艺步骤。

这一步骤可以改变晶圆的电学性质,并形成PN 结等器件结构。

常用的扩散方法包括固体扩散和液相扩散。

6. 离子注入离子注入是将离子注入到晶圆中的工艺步骤。

这可以改变晶圆的导电性和掺杂浓度,从而形成电子器件的结构。

离子注入通常在扩散之前进行。

7. 退火退火是将晶圆加热至一定温度并保持一段时间的工艺步骤。

这可以帮助晶圆中的杂质扩散和掺杂物活化,从而提高器件的性能和稳定性。

8. 包封包封是将晶圆封装在外部保护材料中的工艺步骤。

这可以保护晶圆不受外部环境的影响,同时也可以方便晶圆的安装和使用。

半导体制造过程中的八大工艺顺序是一个复杂而精密的过程。

每个工艺步骤都起着至关重要的作用,只有严格按照顺序进行,才能生产出高质量的半导体器件。

希望通过本文的介绍,读者对半导体制造过程有了更深入的了解。

半导体八大工艺顺序

半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序是指半导体器件制造过程中的八个主要工艺步骤。

这些工艺步骤的顺序严格按照一定的流程进行,确保半导体器件的质量和性能。

下面将逐一介绍这八大工艺顺序。

第一步是晶圆清洁工艺。

在半导体器件制造过程中,晶圆是最基本的材料。

晶圆清洁工艺旨在去除晶圆表面的杂质和污染物,确保后续工艺步骤的顺利进行。

第二步是光刻工艺。

光刻工艺是将图形模式转移到晶圆表面的关键步骤。

通过光刻工艺,可以在晶圆表面形成所需的图形结构,为后续工艺步骤提供准确的参考。

第三步是沉积工艺。

沉积工艺是将材料沉积到晶圆表面的过程,包括化学气相沉积、物理气相沉积和溅射等技术。

通过沉积工艺,可以在晶圆表面形成所需的材料结构。

第四步是刻蚀工艺。

刻蚀工艺是将多余的材料从晶圆表面去除的过程,以形成所需的图形结构。

刻蚀工艺通常使用化学刻蚀或物理刻蚀的方式进行。

第五步是离子注入工艺。

离子注入工艺是向晶圆表面注入掺杂物质的过程,以改变晶体的电学性质。

通过离子注入工艺,可以实现半导体器件的掺杂和调控。

第六步是热处理工艺。

热处理工艺是将晶圆置于高温环境中进行退火、烘烤或氧化等处理的过程。

通过热处理工艺,可以改善晶体的结晶质量和电学性能。

第七步是清洗工艺。

清洗工艺是在制造过程中对晶圆进行清洗和去除残留污染物的过程,以确保半导体器件的质量和可靠性。

第八步是封装测试工艺。

封装测试工艺是将完成的半导体器件封装成最终产品,并进行性能测试和质量检验的过程。

通过封装测试工艺,可以确保半导体器件符合规格要求,并具有稳定可靠的性能。

总的来说,半导体八大工艺顺序是半导体器件制造过程中的关键步骤,每个工艺步骤都至关重要,任何一环节的不慎都可能影响整个制造过程的质量和性能。

通过严格按照八大工艺顺序进行制造,可以确保半导体器件具有优良的性能和可靠性,从而满足现代电子产品对半导体器件的高要求。

集成电路工艺:刻蚀

集成电路工艺:刻蚀
集成电路工艺:刻蚀
1. 引 言
1.1刻蚀的概念
刻蚀:它是半导体制造工艺,微电子IC制造工 艺以及微纳制造工艺中的一种相当重要的步骤。 是与光刻相联系的图形化(pattern)处理的一 种主要工艺。所谓刻蚀,实际上狭义理解就是 光刻腐蚀,先通过光刻将光刻胶进行光刻曝光 处理,然后通过其它方式实现腐蚀处理掉所需 除去的部分。随着微制造工艺的发展;广义上 来讲,刻蚀成了通过溶液、反应离子其它机 械方式来剥离、去除材料的一种统称,成为微 加工制造的一种普适叫法。
4.2常用材料的湿法刻蚀
1.二氧化硅湿法刻蚀 采用氢氟酸溶液加以进行。因为二氧化硅可与室
温的氢氟酸溶液进行反应,但却不会蚀刻硅基材 及多晶硅。反应式如下:
SiO2 + 6HF= H2[SiF6] + 2H2O 由于氢氟酸对二氧化硅的蚀刻速率相当高,在制
程上很难控制,因此在实际应用上都是使用稀释 后的氢氟酸溶液,或是添加氟化铵(NH4F)作 为缓冲剂的混合液,来进行二氧化硅的蚀刻。
下层的Ti ➢ 金属铝的刻蚀步骤多,工艺复杂
4. 湿法刻蚀
4.1 湿法刻蚀的原理
湿法刻蚀是将被刻蚀材料浸泡在腐蚀液内进行腐蚀 的技术
这是各向同性的刻蚀方法,利用化学反应过程去除 待刻蚀区域的薄膜材料
湿法刻蚀,又称湿化学腐蚀法。半导体制造业一开 始,湿法腐蚀就与硅片制造联系在一起。现在湿法 腐蚀大部分被干法刻蚀代替,但在漂去氧化硅、除 去残留物、表层剥离以及大尺寸的图形腐蚀应用方 面起着重要作用。尤其适合将多晶硅、氧化物、氮 化物、金属与Ⅲ-Ⅴ族化合物等作整片的腐蚀。
干法刻蚀是各向异性刻蚀,用物理和化学方法, 能实现图形的精确转移,是集成电路刻蚀工艺的 主流技术。
各向同性刻蚀:侧向与纵向腐蚀速度相同 各向异性刻蚀:侧向腐蚀速度远远小于纵向腐蚀

半导体制造工艺刻蚀

半导体制造工艺刻蚀

半导体制造工艺刻蚀引言半导体制造工艺中的刻蚀是一项重要的工序。

在集成电路的制造过程中,刻蚀被广泛应用于制作电路各个层次的结构,包括电极、孔洞、互连线等。

刻蚀的目的是去除或改变材料表面的一部分,用于形成特定的结构,从而实现电路功能。

本文将介绍半导体制造工艺刻蚀的基本原理、常见的刻蚀方法以及一些刻蚀过程中的注意事项。

刻蚀的基本原理刻蚀是通过化学或物理方法将材料表面的一部分或全部去除,实现对材料的精确控制。

刻蚀的基本原理是在材料表面形成反应产物并将其移除。

化学刻蚀是利用化学反应溶解材料的表面。

通常使用的刻蚀液是一种含有特定化学成分的溶液,可以选择性地溶解掉被刻蚀材料的一部分。

化学刻蚀主要用于刻蚀金属材料,如铝、铜等。

物理刻蚀是通过物理方法去除材料表面的一部分。

物理刻蚀的常见方法有电子束刻蚀、离子束刻蚀和等离子体刻蚀等。

电子束刻蚀利用高速电子束的能量将材料表面的原子击碎并移除;离子束刻蚀则是利用离子束的能量将材料表面的原子击碎并移除;等离子体刻蚀则是通过在气体放电的等离子体中产生活跃化学物质,来溶解或腐蚀材料表面。

常见的刻蚀方法半导体制造过程中,常见的刻蚀方法包括湿法刻蚀和干法刻蚀。

湿法刻蚀湿法刻蚀是指使用刻蚀液对材料表面进行腐蚀或溶解的方法。

湿法刻蚀的优点是刻蚀速度快、刻蚀效果好;缺点是刻蚀过程中可能会产生有害气体,需要做好通风措施。

湿法刻蚀的常见方法有浸没刻蚀、喷雾刻蚀和旋转刻蚀等。

浸没刻蚀是将材料浸没在刻蚀液中,通过溶解蚀刻掉表面的材料。

喷雾刻蚀是将刻蚀液喷洒在材料表面,通过飞溅和冲击的方式刻蚀掉材料。

旋转刻蚀是将刻蚀液注入到旋转的容器中,利用旋转力使刻蚀液喷洒到材料表面,实现刻蚀作用。

干法刻蚀干法刻蚀是指利用气体等离子体或物理方法对材料表面进行刻蚀的方法。

干法刻蚀的优点是刻蚀过程中不产生液体,可以避免污染问题;缺点是刻蚀速度较慢。

干法刻蚀的常见方法有等离子体刻蚀、离子束刻蚀和电子束刻蚀等。

等离子体刻蚀是通过在气体放电的等离子体中产生活跃化学物质,来溶解或腐蚀材料表面。

刻蚀 沉积 光刻

刻蚀 沉积 光刻

刻蚀沉积光刻
刻蚀、沉积和光刻是半导体制造中非常重要的工艺步骤。

刻蚀是指在制造过程中去除材料的一种方式,通过化学或物理手段将不需要的材料削减。

沉积则是指在半导体表面上沉积一层薄膜,以改变半导体的性质或用于制造器件。

而光刻则是制造电路元件的关键工艺,它利用光学照射和化学反应来定义微细结构。

在刻蚀过程中,常用的技术包括干法刻蚀和湿法刻蚀。

干法刻蚀通常使用化学气相沉积的气体,如氟化物、氯化物等,通过离子轰击将这些气体转化成等离子体,再将其注入刻蚀室中与半导体表面反应。

而湿法刻蚀则是通过在溶液中浸泡半导体,利用化学反应将所需的材料去除。

沉积过程中,常用的技术包括物理蒸镀、化学气相沉积和原子层沉积等。

物理蒸镀是利用蒸发的金属或化合物形成薄膜,这种方法可以制造出非常均匀的膜。

化学气相沉积是将气体注入反应室中,通过化学反应在半导体表面上形成薄膜。

原子层沉积则是将气体分子一个个地注入反应室中,以形成非常薄且均匀的膜。

光刻技术是制造电路元件中最为关键的步骤之一。

该技术利用掩膜板在半导体表面上形成微细结构。

掩膜板通常包括金属或玻璃等材料,通过控制光的反射和透射来定义微细结构。

在制造过程中,先将掩膜板放置在半导体表面上,再使用紫外线和化学反应将掩膜板上不需要的区域去除,留下所需的结构。

光刻技术的精度非常高,可以制造出微米级甚至纳米级的电路元件。

综上所述,刻蚀、沉积和光刻技术是半导体制造中非常重要的工艺步骤。

这些技术的不断发展和改进,使得半导体制造变得更加精确和高效。

半导体制造工艺刻蚀

半导体制造工艺刻蚀

半导体制造工艺刻蚀简介半导体制造工艺刻蚀是一种重要的半导体加工工艺,用于在半导体材料表面上制造出所需的结构和形状。

它通过使用化学溶液(湿刻蚀)或者物理干涉(干刻蚀)的方法,将半导体材料上的一部分材料予以去除,从而达到所需要的目的。

本文将介绍半导体制造工艺中的刻蚀过程、刻蚀方法以及常用的刻蚀设备。

刻蚀过程刻蚀是在半导体加工的各个阶段都会出现的过程,它的主要目的是在半导体材料上制造出所需的结构和形状。

刻蚀过程可分为湿刻蚀和干刻蚀两种主要方式。

湿刻蚀湿刻蚀是通过将半导体材料浸泡在特定的化学溶液中,利用化学反应将材料表面的一部分溶解掉的方法。

湿刻蚀的优点是刻蚀速度快,且刻蚀的方向性较好。

常用的湿刻蚀液有氢氟酸(HF)、氢氧化钠(NaOH)等。

干刻蚀干刻蚀是通过使用高能粒子束或者等离子体将半导体材料表面的一部分物质物理去除的方法。

干刻蚀可以分为离子束刻蚀(IBE)、反应离子束刻蚀(RIBE)、电子束刻蚀等。

与湿刻蚀相比,干刻蚀不需要使用化学溶液,刻蚀速度可调控,同时可以实现更高的精度和较好的控制。

刻蚀方法根据刻蚀的目的和要求,半导体制造过程中可用到多种刻蚀方法。

正式刻蚀正式刻蚀是通过在光刻胶层上涂覆光刻胶,利用光刻胶层的光学反应性将图案转移到光刻胶层上,再通过刻蚀工艺将光刻胶层中不需要的部分去除,形成所需的图形。

常用的正式刻蚀技术有湿法刻蚀和干法刻蚀。

刻蚀深度和形状受光刻胶特性、刻蚀时间和刻蚀条件等影响。

选择性刻蚀选择性刻蚀是通过针对不同材料的耐蚀性差异,选择合适的化学溶液或者物理干涉方式刻蚀特定的材料。

利用选择性刻蚀,可以在半导体制造过程中实现特定材料的去除或者保留,从而形成所需的结构。

深刻蚀深刻蚀是通过较长时间的刻蚀过程,将半导体材料的一部分刻蚀掉,形成较深的结构。

深刻蚀一般需要使用干刻蚀技术,并且需要较长的刻蚀时间和更高的功率,以确保刻蚀的深度和准确性。

刻蚀设备半导体刻蚀设备是用于实施刻蚀工艺的专用设备。

半导体制程培训CMP和蚀刻

半导体制程培训CMP和蚀刻
Your site here
LOGO
半导体制造工艺流程
干法刻蚀
优点:各向异性好,选择比高,可控性、灵活性、重复性好, 细线条操作安全,易实现自动化,无化学废液,处理过程未引 入污染,洁净度高。
缺点:成本高,设备复杂。
干法刻蚀方式:①溅射与离子束铣蚀 ②等离子刻蚀(Plasma Etching) ③③高压等离子刻蚀 ④高密度等离子体(HDP)刻蚀 ⑤反应离子刻蚀(RIE)
Your site here
LOGO
半导体制造工艺流程
单层金属IC的表面起伏剖面
顶层
氮化硅
Poly
n+
金属化前氧化层 侧墙氧化层 栅氧化层
垫氧 ILD
n+
场氧化层
氧化硅
Metal
氧化硅 Poly Metal
p+
p+
pห้องสมุดไป่ตู้ 外延层
n-阱 Metal
p+ 硅衬底
Your site here
LOGO
半导体制造工艺流程
Your site here
LOGO
半导体制造工艺流程
应用
化学机械抛光主要用于以下几个方面: ①深槽填充的平面化
②接触孔和过孔中的金属接头的平面化
③生产中间步骤中氧化层和金属间电介层的平面化
Your site here
LOGO
半导体制造工艺流程
CMP技术的优点:
1.能获得全局平坦化; 2.各种各样的硅片表面能被平坦化; 3.在同一次抛光过程中对平坦化多层材料有用; 4.允许制造中采用更严格的设计规则并采用更多的互连层; 5.提供制作金属图形的一种方法。 6. 由于减小了表面起伏,从而能改善金属台阶覆盖; 7.能提高亚0.5微米器件和电路的可靠性、速度和成品率; 8.CMP是一种减薄表层材料的工艺并能去除表面缺陷; 9.不使用在干法刻蚀工艺中常用的危险气体。

半导体器件工艺学之刻蚀

半导体器件工艺学之刻蚀

下游式刻蚀系统
离子束铣( Ion Milling) 是近年来发展较快的一种离 子剥离技术。该技术主要利用携带能量的离子轰 击靶材料所产生的物理溅射刻蚀效应
离子刻蚀速率表示如下: dh( H) / dt = R( H) / cos(H) = R( H) [ 1 + tan2( H) ]1/2
当离子束入射的角度较大时, 材料表面反射的离子束也增 多。因此, 随着角度H的增大 , 越来越少的离子渗入到材 料的有效表面。为保证离子 的有效渗入, 定义临界角Hc 。 离子束的溅射场与靶材料的 原子数Z 有关, 材料的原子数 Z 越高, 刻蚀速率越高; 反之 则越低。
本产品通过物理与化学相结合的方法,对很细的线条(亚微米以下)进行刻 蚀以形成精细的图形。 主要用于微电子、光电子、通讯、微机械、新材料、能源等领域的器件 研发和制造。
深层反应离子刻蚀(DRIE)
系统己经足以刻蚀深宽比超过50 的深槽硅结构,对于光阻的刻蚀 选择比己超过100:1,刻蚀深度均 匀度也可以控制在±3%以内。
中微发布Primo D-RIE刻蚀设备,面向22 纳米及以下工艺

中微半导体设备(上海)有限公司(以下简称“ 中微”)日前发布面向22纳米及以下芯片生产 的第二代300毫米甚高频去耦合反应离子刻 蚀设备--Primo AD-RIE。 2011年7月

Primo AD-RIE在促进中微第一代刻蚀设备技术创 新的同时,又大大扩大了其自身的加工领域。 该设备的主要部分是一组创新的少量反应台反应 器的簇架构,可以灵活地装置多达三个双反应台 反应器,以达到最佳芯片加工输出量。每个反应 器都可以实现单芯片或双芯片加工。独特的反应 器腔体设计融合了中微专有的等离子体聚焦和喷 淋头技术,确保了芯片加工的质量。Primo ADRIE的一些基本特征使其更具备28纳米以下关键刻 蚀加工的能力

半导体工艺原理--刻蚀工艺

半导体工艺原理--刻蚀工艺

注释
对硅有选择性,对硅腐蚀速率很慢,腐蚀速率依赖于 膜的密度,掺杂等因素
是纯HF腐蚀速率的1/20,腐蚀速率依赖于膜的密度, 掺杂等因素,不像纯HF那样使胶剥离
Si3N4
HF(49%) HPO:HO(沸点:130-150℃)
Al
H3PO4:H2O:HNO3:CH3COOH(16:2:1:
1)
多晶硅 单晶硅
2021/3/14
34
其刻蚀分为两步,首先是要除去未被光刻胶保护 的硅化金属,可以采用CF4、SF6、Cl2、HCl2等都 可以用来作为硅化金属的RIE的反应气体。
对多晶硅的刻蚀采用氟化物将导致等方向性的刻 蚀,而Polycide 的刻蚀必须采用各向异性,因此采 用氯化物较好,有 Si, HCL2, SiCl4等。
2 A l 6 H 3 P O 4 2 A l( H 2 P O 4 ) 3 3 H 2
高锰酸钾腐蚀液的配方为:
K M n O 4 :N a O H :H 2 O 6 g :1 0 g :9 0 m l
高锰酸钾与铝的反应式
N a O H
K M n O 4A l K A lO 2M n O 2
22
湿法刻蚀剖面
2021/3/14
23
SiO2 的腐蚀
SiO24HFSiF42H2O SiF42HFH2(SiF6)
氟化铵在SiO2 腐蚀液中起缓冲剂的作用。这种加有氟化铵 的氢氟酸溶液,习惯上称为HF缓冲液。 常用的配方为:
HF:NH4F:H2O = 3ml:6g:10ml
2021/3/14
24
HNO3:H2O:HF(CH3COOH)(50:20:1)
HNO3:H2O:HF(CH3COOH)(50:20:1) KOH:HO:IPA(23wt%KOH,13wt%IP

半导体刻蚀 去胶工艺流程

半导体刻蚀 去胶工艺流程

半导体刻蚀去胶工艺流程
半导体刻蚀去胶工艺流程是半导体制造过程中的重要环节之一。

半导体器件的制造通常需要在硅片表面进行图案化处理,而去除胶
层是其中的关键步骤之一。

下面将介绍半导体刻蚀去胶工艺流程的
一般步骤。

1. 初始准备,首先,需要准备一块待处理的硅片。

在进行刻蚀
去胶工艺之前,通常需要对硅片表面进行清洁处理,以确保去胶工
艺的顺利进行。

2. 胶层涂覆,在准备好的硅片上涂覆一层胶层。

这一步骤通常
使用旋涂机或者其他涂覆设备进行,以确保胶层的均匀覆盖。

3. 曝光和显影,接下来,将经过涂覆的硅片放置在曝光机中,
使用光刻胶进行曝光,形成所需的图案。

然后进行显影处理,去除
暴露在光下的胶层部分,留下所需的图案。

4. 刻蚀去胶,将经过曝光和显影处理的硅片放入刻蚀机中,使
用化学溶液或者等离子刻蚀技术,将未被光刻胶保护的区域进行刻蚀,去除胶层。

5. 清洗和检查,最后,对刻蚀去胶后的硅片进行清洗,去除残留的胶层和刻蚀产物。

然后进行表面检查,确保刻蚀去胶工艺的质量和准确度。

总的来说,半导体刻蚀去胶工艺流程是半导体制造中的重要步骤之一,它决定了后续工艺步骤的顺利进行和器件质量的好坏。

因此,精确控制每一个步骤,确保工艺流程的稳定性和可靠性,对于半导体器件制造具有重要意义。

半导体主要生产工艺

半导体主要生产工艺

半导体主要生产工艺
半导体主要生产工艺包括:
晶圆制备:晶圆是半导体制造的基础,其质量直接影响到后续工艺的进行和最终产品的性能。

薄膜沉积:薄膜沉积技术是用于在半导体材料表面沉积薄膜的过程。

刻蚀与去胶:刻蚀是将半导体材料表面加工成所需结构的关键工艺。

离子注入:离子注入是将离子注入半导体材料中的关键工艺。

退火与回流:退火与回流是使半导体材料内部的原子或分子的运动速度减缓,使偏离平衡位置的原子或分子回到平衡位置的工艺。

金属化与互连:金属化与互连是利用金属材料制作导电线路,实现半导体器件间的电气连接的过程。

测试与封装:测试与封装是确保半导体器件的质量和可靠性的必要环节。

半导体的工艺的四个重要阶段是:
原料制作阶段:为制造半导体器件提供必要的原料。

单晶生长和晶圆的制造阶段:为制造半导体器件提供必要的晶圆。

集成电路晶圆的生产阶段:在制造好的晶圆上,通过一系列的工艺流程制造出集成电路。

集成电路的封装阶段:将制造好的集成电路封装起来,便于安装和使用。

半导体材料有以下种类:
元素半导体:在元素周期表的ⅢA族至IVA族分布着11种具有半导性的元素,其中C表示金刚石。

无机化合物半导体:分二元系、三元系、四元系等。

有机化合物半导体:是指以碳为主体的有机分子化合物。

非晶态与液态半导体。

半导体前端工艺之刻蚀工艺

半导体前端工艺之刻蚀工艺

半导体前端工艺之刻蚀工艺目录前言 (1)1 .光“堆叠”可不行 (2)2 .刻蚀工艺的特性 (3)3 .工艺流程 (4)3.1.概述 (4)3.2.刻蚀工艺的特性 (4)3.3.刻蚀偏差 (6)3.4.刻蚀材料 (6)1.5, 刻蚀形状 (6)4 .刻蚀的种类 (7)4. 1.湿刻蚀(WetEtChing)与干刻蚀(DryEtChing) (7)5. 2.按去除材料的方法划分 (8)5 .刻蚀气体与附加气体 (11)6 .刻蚀工艺中的等离子体 (13)6.1.生成机理 (13)1.2. 离子体电势 (14)7 .反应离子刻蚀RIE (14)7. 1.结构 (14)8. 2.刻蚀机理 (14)9. 3.优缺点 (15)8 .电感耦合等离子体刻蚀ICP (15)8. 1.刻蚀机理 (15)9. 2.结构 (16)10. 3.优势 (16)9 .侧壁保护 (17)9. 1.各向异性参数 (17)10. .方法 (17)10 .结论:提高密度的另一个抓手 (17)前言在半导体制程工艺中,有很多不同名称的用于移除多余材料的工艺,如“清洗”、“刻蚀”等。

如果说“清洗”工艺是把整张晶圆上多余的不纯物去除掉,“刻蚀”工艺则是在光刻胶的帮助下有选择性地移除不需要的材料,从而创建所需的微细图案。

半导体“刻蚀”工艺所采用的气体和设备,在其他类似工艺中也很常见。

1.光“堆叠”可不行在半导体前端工艺第三篇中,我们了解了如何制作“饼干模具”。

本期,我们就来讲讲如何采用这个“饼干模具”印出我们想要的“饼干”。

这一步骤的重点,在于如何移除不需要的材料,即“亥IJ蚀(EtChing)工艺”。

饼干剖面图普力胱刻胶采用特殊溶液移除去除挖出的饼干屑添加巧克力糖浆清理多余的巧克力糖浆不受光刻胶保护的部分图1移除饼干中间部分,再倒入巧克力糖浆让我们再来回想一下上一篇内容中制作饼干的过程。

如果想在“幸福之翼”造型饼干中加一层巧克力夹心,要怎么做呢?最简单的方法就是把饼干中间部分挖出来,再倒入巧克力糖浆。

半导体图案化工艺流程之:刻蚀

半导体图案化工艺流程之:刻蚀

半导体图案化工艺流程之:刻蚀图案化工艺包括曝光(Exposure)、显影(Develope)、刻蚀(Etching)和离子注入等流程。

其中,刻蚀工艺是光刻(Photo)工艺的下一步,用于去除光刻胶(Photo Resist,PR)未覆盖的底部区域,仅留下所需的图案。

这一工艺流程旨在将掩模(Mask)图案固定到涂有光刻胶的晶圆上(曝光→显影)并将光刻胶图案转印回光刻胶下方膜层。

随着电路的关键尺寸(Critical Dimension, CD)小型化(2D视角),刻蚀工艺从湿法刻蚀转为干法刻蚀,因此所需的设备和工艺更加复杂。

由于积极采用3D单元堆叠方法,刻蚀工艺的核心性能指数出现波动,从而刻蚀工艺与光刻工艺成为半导体制造的重要工艺流程之一。

一、沉积和刻蚀技术的发展趋势在晶圆上形成“层(Layer)”的过程称为沉积(化学气相沉积(CVD)、原子层沉积(ALD)和物理气相沉积(PVD)),在所形成的“层”上绘制电路图案的过程称为曝光。

刻蚀是沉积和曝光工艺之后在晶圆上根据图案刻化的过程。

光刻工艺的作用类似于画一张草图,真正使晶圆发生明显变化的是沉积和刻蚀工艺。

自从半导体出现以来,刻蚀和沉积技术都有了显著发展。

而沉积技术最引人注目的创新是从沟槽法(Trench)转向堆叠法(Stack),这与20世纪90年代初装置容量从1兆位(Mb)DRAM发展成4兆位(Mb)DRAM相契合。

刻蚀技术的一个关键节点是在2010年代初,当时3D NAND闪存单元堆叠层数超过了24层。

随着堆叠层数增加到128层、256层和512层,刻蚀工艺已成为技术难度最大的工艺之一。

二、刻蚀方法的变化在2D(平面结构)半导体小型化和3D(空间结构)半导体堆叠技术的发展过程中,刻蚀工艺也在不断发展变化。

在20世纪70年代,2D半导体为主流,电路关键尺寸(CD)从100微米(㎛)迅速下降到10微米(㎛),甚至更低。

在此期间,半导体制造流程中的大部分重点工艺技术已经成熟,同时刻蚀技术已经从湿法刻蚀过渡到干法刻蚀。

半导体刻蚀工艺简介

半导体刻蚀工艺简介

半导体刻蚀⼯艺简介此保护膜可保护多晶硅的侧壁,进⽽形成⾮等向性刻蚀。

使⽤Cl2等离⼦体对多晶硅的刻蚀速率⽐使⽤F原⼦团慢很多,为兼顾刻蚀速率与选择⽐,有⼈使⽤SF6⽓体中添加SiCl4或CHCl3。

SF6的⽐例越⾼,刻蚀速率越快;⽽SiCl4或CHCl3的⽐例越⾼,多晶硅/SiO2的刻蚀选择⽐越⾼,刻蚀越趋向⾮等向性刻蚀。

除了Cl和F的⽓体外,溴化氢(HBr)也是⼀种常⽤的⽓体,因为在⼩于0.5µm的制程中,栅极氧化层的厚度将⼩于10nm,⽤HBr等离⼦体时多晶硅/SiO2的刻蚀选择⽐⾼于以Cl为主的等离⼦体。

4.⾦属的⼲法刻蚀⾦属刻蚀主要是互连线及多层⾦属布线的刻蚀,⾦属刻蚀有以下⼏个要求:⾼刻蚀速率(⼤于1000nm/min);⾼选择⽐,对掩蔽层⼤于4:1,对层间介质⼤于20:1;⾼的刻蚀均匀性;关键尺⼨控制好;⽆等离⼦体损伤:残留污染物少;不会腐蚀⾦属。

①铝的刻蚀。

铝是半导体制备中最主要的导线材料,具有电阻低、易于淀积和刻蚀等优点。

铝刻蚀通常采⽤加⼊卤化物的氯基⽓体,最常⽤的是BCl3。

因为铝在常温下表⾯极易氧化⽣成氧化铝,氧化铝阻碍了刻蚀的正常进⾏,⽽BCl3可将⾃然氧化层还原、保证刻蚀的进⾏,⽽且BCl3还容易与氧⽓和⽔反应,可吸收反应腔内的⽔汽和氧⽓,从⽽降低氧化铝的⽣成速率。

1.4质量评价⼀、⼲法刻蚀的终点监测近⼏年发展起来的⼲法刻蚀⼯艺,为了提⾼刻蚀精度,深⼊研究刻蚀机理,实现刻蚀设备的⾃动化,需要解决⼯艺过程的监控问题,特别是精确控制刻蚀终点。

因为⼲法刻蚀的选择性不如湿法,终点监控不当极易造成过腐蚀,甚⾄破坏下层图形。

早期的监控⽅法是计时法。

假设被刻蚀材料的膜厚已知,先通过实验确定刻蚀速率,然后在⼯艺过程中,由计时确定终点。

但由于影响刻蚀速率的因素太多(如压⼒、温度、流量、⽓体配⽐等),刻蚀速率难于重复(如前所述,对铝的等离⼦体刻蚀更是如此),不能满⾜⼯艺要求。

表1-1⼏种等离⼦体刻蚀终点检测⽅法⼆、⼲法刻蚀的质量检测刻蚀⼯艺的最后⼀步是进⾏检查以确保刻蚀的质量,通常都是⽤⾃动检测系统进⾏的。

半导体材料制备工艺中的刻蚀原理

半导体材料制备工艺中的刻蚀原理

半导体材料制备工艺中的刻蚀原理半导体制造是现代电子工业中的重要分支之一,而半导体制造过程中最关键的一步就是刻蚀。

刻蚀是指将半导体材料表面的一部分物质除去的加工技术,其目的是在半导体材料的表面形成特定形状的结构,并精确地控制其尺寸和形状,以实现半导体元件的制造。

本文将重点介绍半导体材料制备工艺中的刻蚀原理。

一、刻蚀的分类刻蚀可分为物理刻蚀和化学刻蚀两种。

物理刻蚀是利用物理作用去除半导体表层物质的过程,如金属离子聚焦束刻蚀、反应离子束刻蚀、等离子体刻蚀等;而化学刻蚀则是利用化学反应去除半导体表层物质的过程,如湿法刻蚀、干法刻蚀等。

其中湿法刻蚀是半导体制造的基础工艺之一,而干法刻蚀则被广泛应用于制造高密度的、微观结构复杂的半导体材料。

二、湿法刻蚀原理湿法刻蚀是一种化学刻蚀方法,通俗来说就是利用溶液中的化学成分和外界的刺激物质对半导体表面进行刻蚀。

常用的湿法刻蚀方法有自催化刻蚀法、掩膜刻蚀法、电化学刻蚀法等。

自催化刻蚀法是将半导体材料浸泡在含有化学成分的溶液中,并在溶液中加入一定量的电解质,每一微观结构之间的电势差越大,对应的物质离子在反应中的速度就越快。

在该法中,当半导体表层的一部分被刻蚀后,其剩余部分的电势差就会改变,因而这部分表层会对后续的刻蚀产生加速作用,容易导致过刻蚀。

这种自我加速的刻蚀过程,就是自催化刻蚀法。

掩膜刻蚀法则是将某些部位的半导体表面涂上掩膜,然后将未被掩膜覆盖的部分进行刻蚀,从而在半导体表面形成特定的结构。

掩模的选择很重要,因为掩模必须比半导体材料更耐刻蚀,而同时却不能对待刻蚀的半导体材料产生伤害。

通常,二氧化硅是最常用的掩膜材料,而在某些特殊情况下,可以选择金属、氮化硅、氧化铝等。

电化学刻蚀法则是利用电化学反应法将选定的半导体材料表面进行刻蚀。

在电化学刻蚀过程中产生的刻蚀速度与带电离子的浓度成正比,因而可以根据需要精确地控制刻蚀速度和深度。

电化学刻蚀是微电子工业中最常用的刻蚀方法之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
© 2004
干法刻蚀
化学刻蚀(各项同性,选择性好) ——等离子体激活的化学反应(等离子体刻蚀)
物理刻蚀(各向异性,选择性差) ——高能离子的轰击 (溅射刻蚀)
离子增强刻蚀(各向异性,选择性较好) ——反应离子刻蚀
13
© 2004
化学刻蚀
14
物理刻蚀
© 2004
离子增强刻蚀-Ion Enhanced etching
2
单位时间刻蚀的薄膜厚度。对产 率有较大影响 一个硅片或多个硅片或多批硅片 上刻蚀速率的变化 不同材料之间的刻蚀速率比
刻蚀的方向性 A=0, 各项同性;A=1, 各项异性 横向单边的过腐蚀量
© 2004
方向性:
过腐蚀(钻蚀):
A=0
0<A<1
A=1
假定S=时
A

1
b d
U Uniformity/non-uniformity 均匀性/非均匀性
关系为:
20
© 2004
反射系数(任意单位)
产物所引起的发射信号在刻蚀终点开始上升或下降。
终点控制
干法刻蚀必须配备一个用来探测刻蚀工艺结束点的监视器,即终点探 测系统。激光干涉度量法用来持续控制晶片表面的刻蚀速率与终止点。 在刻蚀过程中,从晶片表面反射的激光会来回振荡,这个振荡的发生是 因为刻蚀层界面的上界面与下界面的反射光的相位干涉。因此这一层材 料必须透光或半透光才能观测到振荡现象。振荡周期与薄膜厚度的变化
大多数的等离子体工艺中发出的射线范围在红外光到紫外光之间,一 个简单的缝隙方法是利用光学发射光谱仪(OES)来测量这些发射光谱 的强度与波长的关系。利用观测到的光谱波峰与已知的发射光谱比较, 通过可以决定出中性或离子物质的存在。物质相对的密度,也可以通过 观察等离子体参数改变时光强度的改变而得到。这些由主要刻蚀剂或副
© 2004
典型的RF等离子刻蚀系统和PECVD或溅射系统类似
16
© 2004
等离子刻蚀基本原理
等离子体 等离子体(Plasma)的含义
包含足够多的正负电荷数目近于相等的带电粒子的物
质聚集状态。
固态
液态
气态
等离子体
由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样 物质就变成由自由运动并相互作用的正离子和电子组成的混合物(蜡烛的火 焰就处于这种状态)。我们把物质的这种存在状态称为物质的第四态,即等 离子体(plasma)。因为电离过程中正离子和电子总是成对出现,所以等离
5
© 2004
湿法刻蚀
反应产物必须 溶于水或是气

6
© 2004
例1:SiO2采用HF腐蚀
实 BOE:buffered oxide etching
际 用
或BHF: buffered HF
例2:Si采用HNO3和HF腐蚀(HNA)
例3:Si3N4采用热磷酸腐蚀
7
加入NH4F缓冲液:弥补F和 降低对胶的刻蚀
HNA各向同性腐蚀
自终止
10
© 2004
利用Si的各向异性湿法腐蚀制作的MEMS (MicroElectroMechanical Systems)结构
11
© 2004
湿法腐蚀的缺点
在大规模集成电路制造中,湿法腐蚀正被干法刻蚀 所替代: (1)湿法腐蚀是各向同性,干法可以是各向异性 (2)干法腐蚀能达到高的分辨率,湿法腐蚀较差 (3)湿法腐蚀需大量的腐蚀性化学试剂,对人体 和环境有害 (4)湿法腐蚀需大量的化学试剂去冲洗腐蚀剂剩 余物,不经济
各 向 同 性
© 2004
例4:Si采用KOH腐蚀 Si + 2OH- + 4H2O Si(OH)2++ + 2H2 + 4OH-
各向异性
硅湿法腐蚀由于晶向而产生的各向异性腐蚀
8
© 2004
原子密度:<111> > <110> > <100>
腐蚀速度:R(100) 100 R(111)
9
© 2004
R high Rlow R high Rlow
Rhigh: 最大刻蚀速率 Rlow: 最小刻蚀速率
3
© 2004
刻蚀要求:
1. 得到想要的形状(斜面还是垂直图形)
2. 过腐蚀最小(一般要求过腐蚀10%,以保证整片刻蚀完全)
3. 选择性好
4. 均匀性和重复性好
5. 表面损伤小两类刻蚀方法:
6. 清洁、经济、安全
湿法刻蚀——化学溶液中进行反应腐 蚀,选择性好
干法刻蚀——气相化学腐蚀(选择性 好)或物理腐蚀(方向性好),或二者
兼而有之
4
© 2004
刻蚀过程包括三个步骤:
– 反应物质量输运(Mass transport)到要被刻蚀的表面 – 在反应物和要被刻蚀的膜表面之间的反应 – 反应产物从表面向外扩散的过程
基本刻蚀方式为:
物理方式:溅射刻蚀,正离子高速轰击表面;
化学方式:等离子体产生的中性反应物与物质表面相互作用产生挥发性产物。
化学方式有高腐蚀速率、高的选择比与低的离子轰击导致的缺陷,但有各向
同性的刻蚀轮廓。物理方式可以产生各向同性的轮廓,但伴随低的选择比与
18
© 2004
19
© 2004
等离子体探测
无离子,XeF2对Si不刻蚀 纯Ar离子,对Si不刻蚀
Ar离子和XeF2相互作用,刻蚀 速率很快
等离子体刻蚀的化学和物理过程并不是 两个相互独立的过程,而且相互有增强 作用
15
物理过程(如离子轰 击造成的断键/晶格 损伤、辅助挥发性反 应产物的生成、表面 抑制物的去除等)将 有助于表面化学过程 /化学反应的进行
图形转移=光刻+刻蚀
两大率
S r1 r2
掩膜或下层材料 的刻蚀速率
方向性:各向同性/ 各向异性
A 1 rlat rvert
横向
纵向刻 蚀速率
1
刻蚀 速率
图形转移过程演示
© 2004
刻蚀的性能参数
刻蚀速率R (etch rate) 刻蚀均匀性 (etch uniformity) 选择性S (Selectivity) 各项异性度A (Anisotropy) 掩膜层下刻蚀 (Undercut)
子体中正离子和电子的总数大致相等,总体来看为准电中性。
17
© 2004
刻蚀机制、等离子体探测与终点的控制
刻蚀机制
刻蚀工艺包括5个步骤: 1、刻蚀过程开始与等离子体刻蚀反应物的产生; 2、反应物通过扩散的方式穿过滞留气体层到达表面;
3、反应物被表面吸收; 4、通过化学反应产生挥发性化合物; 5、化合物离开表面回到等离子体气流中,接着被抽气泵抽出。
相关文档
最新文档