车载逆变电源文献综述
150W车载逆变电源设计剖解
150W车载逆变电源设计摘要车载逆变电源是安装于汽车上的一款小型化,安全化的逆变电源,能实现将车上蓄电池发出的12V直流电转换为220V交流电的功能。
方便驾驶者对其他电子设备的充电及应用。
随着经济的发展,汽车的数量也随之上涨,同时车辆上的配套设施的需求量也大大提升。
该文章的主要目的就是希望能设计出一款能实现上述功能的电源转换器,即车载逆变电源。
在该电源电路设计中,我们选用两级转换电路实现。
即先通过将直流电变换为直流电,再将转换后的直流电逆变为交流电,分别采用了推挽正激电路和全桥逆变电路。
与此同时,我们采用了正弦脉宽调制技术,提高了电源的效率,并设计了一些保护电路来使之在使用过程中达到安全可靠。
关键词:逆变电源,推挽正激电路, 全桥逆变电路,正弦脉宽调制技术150W car power inverter designABSTRACTAutomotive power inverter is mounted on a small car, safety of the inverter, to achieve 12V DC car battery conversion issue for 220V AC function. The convenience of motorists charged and application of other electronic devices. With economic development, the number of cars has also risen, while the demand for facilities on the vehicle is also greatly enhanced.The main purpose of this article is to hope to be able to design a power conversion functions described above, namely automotive power inverter.In this power supply circuit design, we use two conversion circuits. That is, first by the direct current is converted into direct current, DC inverter and then converted to alternating current, respectively, with a push-pull forward converter and full-bridge inverter circuit. At the same time, we have adopted a sinusoidal pulse width modulation technology to improve the efficiency of the power, and designed a number of protection circuits to make it in the course to achieve safe and reliable.KEY WORDS: Power Inverter, Push Forward Circuit, Full Bridge Inverter Circuit, Sinusoidal Pulse Width Modulation目录前言 (1)第1章设计的总体目标 (3)1.1设计的要求与指标 (3)1.1.1设计简介 (3)1.1.2设计的性能指标 (3)1.2 电源方案选定 (3)1.2.1 电源结构方案选定 (3)1.2.2 直流转直流变换电路方案选定 (5)1.2.3直流转交流变换电路方案选定 (8)1.3 系统方案选定 (8)第2章主电路的设计 (10)2.1 DC-DC 变换电路 (10)2.1.1运行原理 (10)2.1.2 设计参数 (12)2.1.3 原理图 (15)2.2 DC-AC 变换电路 (16)2.2.1 运行原理 (16)2.2.2 设计参数 (17)2.2.3 原理图 (18)第3章控制电路与保护电路的设计 (19)3.1 SG3525 外围电路及其应用 (19)3.1.1 SG3525 芯片介绍 (19)3.1.2 SG3525 芯片外围电路 (20)3.2 STM8S 芯片介绍及其外围电路 (21)3.2.1 STM8S 芯片介绍 (21)3.2.2 STM8S 芯片外围电路 (23)3.3 基于STM8S 芯片的保护电路设计 (23)3.3.1 STM8S 外围电路引脚功能 (23)3.3.2 STM8S 主要功能介绍 (24)3.3.3 过压欠压保护电路设计 (26)3.3.4 PWM 发波电路设计 (27)3.3.5 SPWM 波原理 (27)第4章电路仿真 (31)4.1 DC-DC 电路仿真 (31)4.2 DC-AC 电路仿真 (31)结论 (32)谢辞 (33)参考文献 (34)附录 (35)外文资料翻译 (44)前言随着经济的高速发展,我们已经进入了一个新的时代--移动互联网时代。
基于SG3525控制的车载逆变电源设计与实现
基于SG3525控制的车载逆变电源设计与实现
引言
随着电子信息产业高速发展,逆变电源被广泛应用于很多领域,一个可靠、优质的逆变电源可以保证系统可靠安全运行,所以,逆变电源是一个重要的
研究领域。
方波逆变是一种较简单的变换方式,它适用于各种整流负载,不
仅技术要求低,而且设计电路比较简单。
本文依据方波逆变电源的基本原理,模块化设计了逆变电源的实现电路,包括基于SG3525控制的高频PWM主
电路、全桥逆变电路、必要的保护电路和相关驱动电路,并给出实验结果及
分析。
1、原理与设计
1.1、逆变电源基本原理
逆变电源采用典型的两级变换:第1级是DC/DC升压变换器,第2级是DC/AC逆变器。
DC/DC升压变换由SG3525芯片产生的PWM波将12V直流逆变为高频方波,经高频变压器升压后,变压器副边可获得峰值为155V的
高频方波,再经过全波整流获得一个稳定的310V直流电压;DC/AC变换以
方波逆变方式,将稳定的直流电压逆变成310V的工频方波电压,该电压有
效值约为220V,频率为50Hz,可驱动负载[1]。
为保证系统正常运行,需。
车载逆变电源设计文献综述
《车载逆变电源设计》文献综述车载逆变电源是将汽车发动机或汽车电瓶上的直流电转换为交流电,供一般电器产品使用,是一种较方便的车用电源转换设备。
它是常用的车用汽车电子用品,通过它可以在汽车上使用平时我们用市电才能工作的电器。
比如电视机、笔记本电脑、电钻、医疗急救仪器、军用车载设备等,可应用于各个行业领域。
以正弦波输出的车载逆变电源可提供不间断的高质量交流电,可适应任何领域,但其技术要求高,电路结构比较复杂。
一、研究意义笔者认为,研究车载逆变电源有以下意义:第一,研究车载逆变电源可以广泛用于日常生活、计算机、邮电通信、电力系统和航空航天等领域,它的开发和应用在我们的生活中起着至关重要的作用。
第二,中国进入WTO之后,国内市场私人交通工具越来越多,所以车载逆变器电源作为在移动中使用的直流变交流的转换器,给人们的生活带来很多的方便,是一种常备的车用汽车电子装备用品。
第三,车载逆变器是一种能够将12V直流电转换为市电相同的220V交流电,供一般电器使用,是一种很方便的车用电源转换器,它在国内外很受欢迎。
第四,正弦波车载逆变电源的发展和应用在节约能源及环境保护方面都具有深远的意义。
二、资料来源和范围(一)图书馆馆藏图书在图书馆馆藏图书M类中搜索到以下相关资料:王兆安,黄俊主编《电力电子技术》;金海明主编《电力电子技术》;邓嘉主编《机电工程》;曹保国主编《电气自动化》等书籍。
(二)期刊数据库检索主要利用CNKI数据库(china national knowledge infrastructure)。
数据库访问地址为:。
在使用上述数据库搜索的过程中,笔者选择中国学术期刊数据库,在“摘要”字段中,以“车载逆变电源”为关键词进行检索,文章结果显示有71篇相关论文,对笔者有直接参考价值的有:袁义生著《一种高效逆变电源及绿色工作模式的研究》、曹保国著《小功率车载逆变电源的设计》、朱保华著《对车载逆变电源技术的研究》、陆原著《基于工频变压器的独立逆变电源设计》、康冰著《高性能全数字化车载逆变电源》、丁成伟著《一种实用的车载逆变器的设计》、邓嘉著《基于PIC单片机车载逆变电源逆变器的研究》、黄靖著《基于PIC单片机的纯正弦车载逆变电源设计》、李政著《一种低成本的车载逆变电源》、孟庆云著《一种简单实用的车载正弦波逆变电源》。
车载逆变电源设计 论文
郑州工业安全职业学院毕业论文(设计)题目:车载逆变电源设计姓名孟小鹏系别信息工程系专业电气技术班级 08电气指导教师左明鑫2011年05 月04 日目录前言 (4)第一章车载电源具体电路设计 (6)1.1 车载电源的主电路设计 (6)1.2 DC/DC转换的设计 (7)1.3 DC/AC变换的设计 (9)第二章控制电路的设计 (11)2.1 驱动电路设计 (11)2.1.1 IGBT驱动电路要求 (11)2.1.2 EXB841芯片 (11)2.2 PWM控制器的设计 (12)2.3 PWM 信号的产生 (17)第三章保护电路的设计 (18)3.1 过流保护 (18)3.2 蓄电池的欠压保护 (18)3.3过热保护 (19)3.4 LED显示与报警蜂鸣 (20)第四章调试与运行结果 (21)第五章设计心得 (22)第六章致谢 (23)参考文献 (24)附录1 车载电源电路图 (26)附录2 元件参数 (27)摘要载逆变电源是可以把汽蓄电池12V直流电转变为大多数电器所需要的220V交流电,本次设计是将12V直流电源通过两个IGBT的导通和关断将输入的直流电压转变成脉宽调制交流电压,也就是把12V直流通过TL494PWM控制器变为12V脉冲输出接着利高频变压器把交流电压升高为360V左右。
再用全波整流交流电压转换成直流高压电压320V,再利用开关管组成的全桥变换器把高压直流320V的逆变所需交流电220V,方波电压最后再经过LC 工频滤波得到有效值为220V/50HZ的交流电供负载使用。
其中设计了对开关管的驱动电路,本次设计采用富士集团的EXB系类驱动IGBT的工作,通过控制IGBT等的通断时间来实现本次的设计DC/DC升压,DC/AC的逆变。
该设计应用开关电源电路技术有关知识,涉及到模拟集成电路。
电源集成电路充分应用了TL494/SG3525的固定频率脉冲宽度调制电路。
因此本次的模块设计主要包括DC\DC高频升压逆变转换模块、整流滤波AC/DC逆变桥模块、欠压保护、过流保护、过热保护等部分组成。
车载逆变电源
目录第一章绪论 (1)1.1什么是开关电源 (3)1.2 开关电源的分类及结构形式 (4)1.3开关电源的发展 (5)1.4 逆变电源技术的发展概况 (6)1.4.1 逆变电源技术 (6)1.4.2 逆变电源技术的发展概况 (7)1.4.3 逆变电源的发展趋势 (9)第二章主电路的研究与选择 (10)2.1开关电源的设计步骤 (10)2.2 设计指标及要求 (11)2.3总体方案设计 (12)2.3.1 方案比较 (12)2.3.2 方案论证 (13)2.3.3方案选择 (14)2.4 逆变器主电路的基本形式 (14)2.4.1单端反激式变换电路 (15)2.4.2 单端正激式变换电路 (15)2.4.3 推挽式变换电路 (16)2.4.4 半桥逆变式主电路 (16)2.4.5 全桥逆变功率转换电路 (17)2.5 基本DC/DC变换器主电路拓扑 (17)2.5.1 隔离型单端正激变换器 (18)2.5.2 隔离型半桥逆变器 (19)2.5.3 隔离型全桥变换器 (20)2.6 驱动电路 (21)第三章脉宽调制技术PWM (21)3.1 PWM控制的基本原理 (21)3.2 PWM逆变电路 (23)第四章单元模块设计 (25)4.1 车载逆变电源直流/直流(DC/DC)变换电路的设计 (26)4.1.1直流/直流变换主电路 (26)4.1.2 直流/直流变换控制及保护电路 (27)4.2 逆变电源直流/交流变换电路的设计 (30)4.2.1 直流/交流变换主电路 (30)4.2.2 直流/交流变换控制及保护电路 (31)4.3 电路参数的计算及元器件的选择 (33)4.3.1 直流/直流变换电路中元器件参数的计算 (33)4.3.2 直流/交流变换电路中的参数计算 (37)4.4 特殊器件的介绍 (38)4.4.1 脉宽调制芯片SG3524 (38)4.4.2 MIC4424 (39)4.4.3 光电耦合器 (40)4.5 各单元模块的联接 (41)4.6 辅助电源设计 (41)第五章系统调试 (41)5.1 控制电路调试 (42)5.1.1 基本调试 (42)5.1.2 控制电路的调试 (42)5.2 系统开环调试 (42)5.3 系统闭环调试 (42)第六章结论及展望 (43)6.1 结论 (43)6.2 展望 (43)参考文献 (44)附录....................................................... 错误!未定义书签。
车载逆变电源的设计及仿真毕业设计
目前市场上常见的车载逆变器按功率等级大致可以分为75W、100W、150W、300W、500W、800W、1000W、1500W、2000W、2500W等规格。车载逆变器的输入为汽车点烟器或蓄电池,一般汽车点烟器10A左右的电流,故点烟器输出的功率约为150W。对于功率等级小于150W的车载逆变器可以直接由点烟器供电,大于150W功率等级时需直接从车载蓄电池供电,否则会因过流烧毁汽车配件及保险丝。随着车上使用的电器种类增多,对车载逆变器的容量提出了更高的要求,小功率150W及以下规格的车载逆变器已经不能满足人们需求,中大功率的车载逆变器是今后的发展趋势。车载逆变器所带的负载通常为以下几类:第一类:整流性负载,如笔记本电脑、各种充电器、组合式音响、数码相机、打印机、游戏机、影碟机、移动DVD;第二类:电阻性负载,如小型电热器具,电热杯等;第三类:感性负载,车载冰箱、照明灯、电转等电动机型的电器。车载逆变器按输出电压波形主要可以分为两种:方波和正弦波。方波逆变结构简单,控制方便,但方波逆变输出电压谐波含量高,同时带负载能力较差且对使用电器寿命影响较大。随着负载增大,方波中包含的三次谐波分量使负载电流容性分量增加,严重时会损耗逆变器输出滤波电容。最初采用简易的多谐振荡器制作的车载方波逆变器,输出功率小,带负载能力差,已逐步被市场淘汰。近年来提出了准正弦波逆变(即修正正弦波),可以带电阻和整流桥负载,满足了日常大部分电子产品的要求,效率较高,最高效率约为90%,价格适中,是当前市场的主流产品。但是准正弦波其本质是带死区时间的方波,仍然不能满足车载冰箱、日光灯、电风等感性负载的要求。一些精密的设备和感性负载类的电器必须要正弦波供电才能工作,否则,轻则电器设备不能正常工作,重则造成损坏用电设备或大大缩短车载逆变器的寿命。正弦波逆变,弥补了方波逆变的不足,适合任何类型的负载,但是控制相对复杂,效率较低,因此高效率正弦波车载逆变器日益成为一种需求。[2]综上所述,作为车载电源转换器,针对其特定的应用场合,必须具有满足以下几个方面的要求:
车载逆变电源设计
关键词 : 车载逆变器 ; 脉 冲调宽 ; 正弦波; T L 4 9 4 ; S G3 5 2 5 A
3 , Q1 和Q 2的基极分别接 T I A9 4的两个内置 晶体管 的发射极 。 中心 车载逆变 电源按输 出来分主要分两类 , 一类是修正正弦波逆变 器件变压器变压器 T 1 , 实现电压 由 1 2 V脉冲电压 转变为 3 2 0 V脉冲 器 和纯方波逆变器 , 另 一类是正 弦波逆变器。正弦波逆变器提供高 电压 。 此脉 冲电压经过整流滤波 电路变成 3 2 0 V高压直流 电压 。 变压 质量 的交流 电, 能够带动任何种类 的负载 , 但技术要求 和成本均 高。 器 T 1 的工作频率选为 5 0 K Hz 左右 。电路正常时 ,T I A9 4的两个 内 准正弦波逆变器可 以满足我们 大部分的用电需求 , 效率 高 , 噪音小 , 置晶体管交替导通 ,导致 图中晶体管 Q 1 、 Q 2的基 极也 因此而交替 导通 , Q 3和 Q 4也交替 导通 , 这 样使变压器工作在 推挽 状态 , Q 3和 售价适 中, 因而成 为市场 中的主流产品。 2 主 要 元件 及 外 围 电路 Q 4以频 率为 5 0 K H z 交替导通 , 使变压器的初级输入端有 5 0 K H z的 2 . 1 T L 4 9 4外 围电路 交流电。当 Q1 导通时 , 场效 应管 Q 3因为栅 极无 正偏压而截止 , 而 2 截止 , 导致场效应管 Q 4栅极有正偏压而导通 。当 Q1 导通 5 0 H Z脉 冲产生芯片 T I A9 4外围电路 如 1图所示 :1 5 脚 为芯片 此时 Q T I A9 4的反相输入端 , 1 6为同相输入端 , 电路正常情况下 l 5 脚 电压 时 , Q 2截止 , 场效应 管 Q 3因为栅极无 正偏 压而截止 , 而此时 Q 2截 应略高于 1 6脚 电压才能保证误差比较 器 I I 的输出为低 电平 ,才 能 止 , 导致场效应管 Q 4栅极有正偏压而导通。 且 交替 导通 时其峰值 电 2 V,即产生 了 1 2 V  ̄0 K H z 的交 流电。极性 电容 c 3滤去 1 2 V 使芯片 内两个三极管正常工作 。 因为芯片 内置 5 V基准 电压源 , 负载 压 为 1 能力为 1 0 mA 。所以 1 5脚 电压 应 高 于 5 V。过 热保 护 的 R 4 2为 直 流 中的交 流 成分 ,降 低输 入 干扰 [ 1 4 ] 。滤 波 电容 c 1可 取 为 2 0 0 u F 。整流滤波电路由四只整流二极管和一个滤波电容 组成 。四 2 0 0 l - I ,则 1 5 脚 的电压为 6 . 2 2 V大于 1 6 脚 电压 。1 4 脚输 出基准 电 2 3 一D 6接成 电桥 的形式 , 称单 相桥式整 流电路。在 压, 因为推挽 电路 为双 端输 出, 故将输 出控 制端 1 3脚与 1 4脚连在 只整 流二极管 D 起。 1 2 脚为 电源端 , 接外部 1 2 V电压 。 8 、 1 1 脚末级三极管集 电极 , 桥式整流 电路 中, 电容 c 4滤去了电路 中的交流成分 , 此处滤波取值 0 u F 。 此处亦接外接 电源 。9 、 1 0引脚用于输 出 5 0 K的脉 冲控制开关管。7 为 1 脚 为接地端 , 5 、 6 脚外接震荡 电阻和 电容用于控制输出脉冲频率 。4 脚 为死 区控制端其上加 0 — 3 . 3 V电压时 , 可使 截止时间从 2 %线性变 化到 1 0 0 %, 本设计中用于实现输入 的过压保护和欠压保护 。
基于单片机单相车载逆变电源设计
基于单片机单相车载逆变电源设计Abstract:The design of a single-phase car-mounted inverter power supply based on a single-chip microcomputer is presented in this paper. The article analyzes the system requirements and design principle of the inverter power supply in detail. The system adopts a single-chip microcomputer as the core controller, and a power MOS tube as the switching device. By adjusting the pulse width modulation signal of the single-chip microcomputer, the DC voltage output by the car battery is converted into a stable AC voltage.Keywords:Single-phase inverter power supply; single-chip microcomputer; pulse width modulation; car-mounted applicationIntroduction:With the rapid development of automobile technology, more and more car electronics have been developed, which need AC power supply. However, the power supply of the onboard equipment is mainly provided by the car battery, which only provides DC voltage output. In order to meet the AC power supply needs of onboard equipment, an inverter power supply is required. Moreover, with the miniaturization of the car body, it is increasingly difficult to add a large-capacity generator to provide the required AC power supply. Therefore, it is necessary to design a small and efficient inverter power supply that can be easily installed in a car.The principle of an inverter power supply is to convert DC voltage into AC voltage. The conversion process needs touse a switching device to switch the DC voltage, and then use a filter circuit to filter the switching signal to obtain the stable output voltage. The conversion process requiresprecise control, and the single-chip microcomputer is anideal control device in the process of converting DC voltage into AC voltage. The pulse width modulation (PWM) technology of the single-chip microcomputer can effectively control the output voltage.Design and Implementation:The system block diagram of the inverter power supply based on the single-chip microcomputer is shown in Figure 1, including four parts: power supply unit, control unit, drive unit and switching unit.Power supply unit: This unit converts the input DC voltage (car battery) into a stable DC voltage for thecontrol unit and the drive unit. The DC voltage is filteredby a filter capacitor to remove the AC component and obtain a DC voltage.Control unit: This unit consists of a single-chip microcomputer, which is used to control the switching unit by generating a PWM signal. The single-chip microcomputer also provides feedback control of the inverter output voltage, which ensures the stable operation of the inverter power supply.Drive unit: This unit is composed of a driver circuit and an isolation transformer. The driver circuit is used to provide PWM signals to the switching unit. The isolation transformer is used to isolate the drive circuit and the switching circuit to ensure the safety of the system.Switching unit: This unit is composed of power MOS tubes,which is used to switch the DC voltage to obtain a stable AC voltage.The switching unit of the system is shown in Figure 2.It uses two power MOS tubes as switching devices, which convert the DC voltage input into a square wave signal. The square wave signal is filtered by the output transformer and then output as an AC voltage.Conclusions:In this paper, a single-phase car-mounted inverter power supply based on a single-chip microcomputer is designed. Through the analysis of the system requirements and design principle, the system adopts a single-chip microcomputer as the core controller, and uses power MOS tubes as the switching device to convert the DC voltage output by the car battery into a stable AC voltage. The control of the inverter power supply is realized by adjusting the PWM signal using the single-chip microcomputer. The experimental results show that the designed system has stable output performance and is suitable for car-mounted applications.。
毕业设计12V220V车载逆变电源的设计
针对传统车载逆变电源存在的缺点, 提出基于ATmega16单片机的数字式车载逆变电源的系统设计方案。
该方案以单片机作为正弦脉冲宽度调制(SPWM)的控制器,采用了占空比可调的正弦波脉宽调制波(SPWM) 技术控制定电力MOSFET 的导通与关断,并通过输出电压反馈的闭环软件控制结构,来提供稳压、欠压保护等功能,把汽车蓄电池的12V 直流电转变成220V 纯正弦交流电。
本系统硬件电路设计主要由推挽拓扑结构的的DC/DC 升压模块,DC/AC 逆变模块,以及主控制电路和外围接口电路模块组成。
控制系统软件则重点阐述逆变器数字控制系统主要环节的设计,给出了软件的总体结构、SPWM波形的实现及软闭环软件控制结构,实现了对逆变器的保护、监测等逻辑控制功能。
最后对主电路及控制电路进行了仿真调试,结果表明,所设计的电路及控制策略能够较好地改善输出波形质量,电源直流升压环节波动小, 输出波形畸变率低, 具有较好性能。
关键词ATmega16 PI控制推挽逆变器一、系统设计方案 (2)1、设计要求 (2)2、方案论证与选取 (3)2.1 SPWM波生成原理及方案选取 (2)2.2 DC-DC升压电路的分析与选取 (4)3、系统设计方案 (5)二、系统硬件设计 (5)1、系统硬件结构 (5)2、主电路设计 (5)2.1 前级升压电路 (5)2.2 后极逆变电路 (7)3、控制电路设计 (8)3.1 前级控制电路 (8)3.2 后极控制电路 (9)4、驱动电路设计 (10)5、保护电路设计 (11)5.1 输入过压保护电路 (11)5.2 输入欠压保护电路 (11)5.3 系统过热保护电路 (12)5.4 输出过压保护电路 (13)5.5 输出过流保护电路 (13)三、系统软件设计 (14)1、主程序设计 (14)2、SPWM控制信号的产生 (15)四、结果分析 (16)1、主电路仿真 (16)2、仿真结果与分析 (16)五、结论 (17)参考文献 (15)12V/220V车载逆变电源制作引言车载电源又叫电源逆变器,能够将蓄电池12V直流电转换为和市电相同的220V交流电,供一般电器使用,由于常用于汽车而得名。
2024年车载电源逆变器市场分析现状
2024年车载电源逆变器市场分析现状1. 市场概述车载电源逆变器是一种能够将车辆的直流电源转换成交流电源供电设备,广泛应用于汽车、卡车、船只等交通工具上。
它的主要功能是将车载电池的直流电转换成交流电,供给各类电子设备使用,如手机充电器、电脑、电视等。
随着汽车行业的迅速发展和人们对车载电子设备的需求增加,车载电源逆变器市场也得到了快速的发展。
本文将对车载电源逆变器市场的现状进行分析。
2. 市场规模根据市场研究数据显示,车载电源逆变器市场在过去几年里呈现出稳步增长的态势。
预计到2025年,全球车载电源逆变器市场规模将达到X亿美元。
由于车载电子设备的广泛应用,特别是智能手机、平板电脑等设备的普及,消费者对车载电源逆变器的需求也在不断增加。
此外,汽车制造商对于提供更多能源供应接口的需求也随之增长,这进一步推动了车载电源逆变器市场的发展。
3. 市场使用情况3.1 主要用途车载电源逆变器的主要用途是为车辆内的电子设备提供交流电源。
目前市场上主要使用车载电源逆变器的设备包括手机充电器、电脑、电视、音响等。
随着人们对舒适度和娱乐性的要求增加,车载影音娱乐设备的安装也在不断增加,这进一步推动了车载电源逆变器市场的发展。
3.2 市场细分根据市场调研,车载电源逆变器市场可以进一步细分为以下几个细分市场:•小功率逆变器市场:主要应用于小型汽车和轻型客货车,用于供应低功率设备,如手机充电器等。
•中功率逆变器市场:主要应用于中型车辆,如卡车和大型SUV,用于供应中功率设备,如电视、电脑等。
•高功率逆变器市场:主要应用于大型客车、游艇等大型车辆,用于供应高功率设备,如电影屏幕、音响等。
4. 市场竞争格局目前,车载电源逆变器市场竞争激烈,主要厂商包括ABB、Schneider Electric、Delta Electronics等。
这些公司在技术研发、产品质量和市场渗透方面具有竞争优势,占据了市场的主要份额。
此外,一些汽车制造商也开始进军车载电源逆变器市场,通过与专业电子设备厂商的合作,提供原装的车载电源逆变器设备。
《逆变电源研究文献综述7000字》
逆变电源研究文献综述目录逆变电源研究文献综述 (1)1 国内外研究现状 (1)2 研究中存在的问题 (3)参考文献 (8)1 国内外研究现状从国内外研究状况来看,目前,国外知名企业,如山特公司、台达公司、东芝公司、梅兰日兰公司等,在逆变电源的数字控制方面的研究比较多,许多先进的技术已应用到了实际的系统中,生产出了许多知名品牌[7]。
生产的逆变电源的功率可达几千瓦,而且各项性能和可靠性都很高。
相对来说,国内的逆变电源数字控制方面的发展较为落后,目前国内生产的大多数逆变电源主要是还是以模拟控制与数字控制方式相结合的方式为主,全数字控制方面的应用较少且大多数研究还处于实验阶段,仅有少数用于逆变电源系统中。
在国内,由于逆变电源的生产起步较晚,并且功率和可靠性方面与国外生产的产品有较大差距,除了中小功率逆变电源有一定份额外,大功率逆变电源几乎全靠进口。
因此对逆变电源的研究具有十分重要实用价值。
在车载逆变电源的分析研究上,针对车载逆变电源的工作电路拓扑组成结构,现行分析研究列出了两大类完成模式,首先,全桥逆变电路生产加工频变压调节器展开逆变作用升压作用隔离防护自动输出的组成构造;其次,应用两级式升压作用逆变作用组成结构,第一步使用DC-DC升压作用工作电路拓扑组成结构把自动输入直流低压升压作用,再经过全桥逆变电路与正弦振荡脉宽调节控制专业技术展开逆变作用自动输出。
第二类设计方案由于应用了工频变压调节器,造成工作电源实际有效体积复杂,非常笨重,并且创造的噪音影响干扰不可以忽略,与车载需要的实际有效体积相去甚远,而且综合系统设计成本费用也随后增长,逐步被超越淘汰。
根据这类实际状况,第二类设计方案由于缺乏工频变压调节器组成结构,进而高效回避了这个组成结构创造的各类不利基本条件,而且电能的交换工作效率获取明显提升,所以逐步被推广普及使用。
车载逆变电源一般应用后级逆变电路开始运转工作,前级工作电路后开始运转工作的通电开启模式,并且参考依据自动输出工作电压实时在线修改调配操作控制系数,实现完善自动输出振荡波形综合质量的发展目的。
逆变器(文献综述)
一、前言利用晶闸管电路把直流转变成交流电,这种对应于整流的逆向过程,定义为逆变[1]。
如:应用逆变的电力机车,当再生制动时牵引电机作为发动机运行,把产生的电能反送到交流电网中。
当牵引制动时逆变器则为其提供交流电,驱动电机。
把直流电逆变为某一频率的交流电供给负载称为无源逆变;把直流电逆变为交流电反送到电网称为有源逆变[2]。
随着科技的不断发展,各种仪器对逆变器的要求越来越高,各种行业对电气设备的控制要求也越来越高。
高性能的逆变电路是工业发展的基本保证。
逆变器横跨电力、电子、微处理器等领域。
目前IGBT模块组成功率逆变器具有工作电压底的缺点,采用三电平NPC主电路,可将IGBT电压降低至两电平电路的一半左右[3].为了适应于大容量,高电压,电流谐波含量少的要求,本文通过查阅大量相关研究学者的论文,以及专家的文献综述,发现逆变器的各方面研究方法及其最前沿的研究成果和趋势。
本文主要分析逆变器各种不一样的控制策略之间的联系、缺点、优点;最后提出一些个人看法和认识。
相信逆变器技术在未来会有很大的突破和进步。
二、主题逆变器毋庸置疑成为现代工业在中高压调速领域,交流柔性供电系统的无功率补偿中关键的技术支点。
对逆变器的拓扑结构和调制策略也进行深入的研究,本文首先论述中高压三电平逆变器的发展现状,然后重点分析三电平逆变器的控制策略。
1.逆变器的发展现状及研究趋势。
于1931年有人研究逆变器的工作原理,直到1948年美国西屋电气公司研制出第一台3KHz感应加热逆变器。
随着晶闸管SCR的诞生,为正弦波逆变器的发展创造了条件。
20世纪70年代,可关断晶闸管(GTO)、电力晶体管(BJT)的诞生使逆变技术得到发展应用。
到了20世纪80年代,功率场效管(MOSFET)、绝缘栅极晶体管(IGBT)、MOS 控制晶闸管(MCT)以及静电感应功率器件的诞生为逆变器向大容量方向奠定了基础,因此电力电子器件的发展为逆变技术高频化,大容量创造了条件。
逆变电源文献综述
文献综述题目:基于PIC16F877A的高功率因数单相SPWM逆变器2013年11 月23 日1 前言随着科技的不断发展与仪器的更新换代对电源的要求越来越高,各行各业对电气设备的控制要求也越来越高,对供电器件的要求也日益提高,可以说一种高性能的电源是科学研究与工业得以顺利进行的有力保障,从而出现了高频化开关电源、不间断电源、感应加热电源等电力电子装置的广泛使用[1]。
逆变电源也应运而生,逆变电源技术是一门综合性的专业技术,它横跨电力、电子、微处理器及自动控制等多学科。
自20世纪60年代以来,电力电子技术迅猛发展,新型功率器件的开发促进了电源的高频化,功率MUSFET和IGBT可使中小型逆变电源工作频率达到几百KHZ,软开关技术使电源高频化的实现有了可能,它不仅可以减少电源的体积和重量,而且提高了电源的效率;控制技术的发展以及专用控制芯片的生产,不仅使电源电路大幅度简化,而且使电源的动态性能和可靠性大大提高。
在某种程度上可以说,这些相关技术的快速发展直接地带动了逆变电源技术发展。
为实现电源装置的高性能、高效率、高可靠性、减少体积和重量提供了坚实的基础。
同时逆变电源的应用也越来越广泛,如:车载逆变电源、工频逆变电源、UPS等[1]。
本系统的设计主要是基于16F877A核心处理器,设计采用软硬件结合的方法,利用面积等效法,并且基于PIC单片机的CCP模块实现对试验逆变系统的SPWM控制。
本系统的硬件主要包括:H桥整流滤波电路、功率因数校正电路、逆变电路、过流保护、死区电路、硬软件保护电路、驱动电路和自举电源。
H桥整流滤波电路能快捷方便的产生文波较小的直流电压,提供给逆变电路进行DA转换;功率因数校正电路能够确保输入电压和电流的相位基本保持一致,减少交换功率的损失,提高电源效率;过流保护和硬软件保护电路用于保护整个逆变器的安全工作;SPWM信号通过死区电路后得到两路具有一定死区时间的反相SPWM信号,进而来控制驱动电路,使逆变电路不可能发生两路同时工作的情况。
12v220v车载逆变电源实用制作技术
株洲师范高等专科学校物理与电子工程系毕业论文12v/220v车载逆变电源实用制作技术专业:应用电子技术班级:07级应电班学生姓名:蒋兴伟学号:04207106指导教师:黄卓冕设计时间:2010-3-5至2010-6-9摘要汽车由最原始的代步方式转变为生活的必须品,现在又开始由生活的必须品向享受生活的层面过渡了,有车族在户外需要使用的电子设备越来越多,例如汽车音响,车用DVD,车用冰箱,手提电脑,手机充电器和各种电源适配器。
在发达国家车载逆变源是每辆车必须具备的。
据统计,国内配备这种转换器的车还不足20%,加之每年汽车销量居高不下,因而电源转换器在国内有很大的市场前景。
车载逆变电源可以把汽车蓄电池的12V,24V直流电转变为大多数电器所需要的220V交流电,功率开关把输入的直流电压转变成脉宽调制交流电压,然后利用推挽逆变器和高频变压器把交流电压什高。
再用全波整流交流电压转换成直流,最后由全桥变换器把高压直流逆变所需交流电。
电源换器可作为移动交流电源在车辆,船舶上使用,也适合与太阳能电池配合使用,能够方便地为这些电气设备提供交流电。
UPS是一种含有蓄能的装置,以逆变器为主要组成部分的恒压,恒頻电源设备,主要用于给计算机,计算机网络系统或其他电力设备提供不间断的电力供应。
当市电正常时UPS将市电整流通过逆变器或直接稳压后提供给负载使用。
此时,UPS就是一台交流稳压器,同时还向机内的蓄电池充电,当市电发生中断等情况时,UPS立即将电池的电能通过逆变转换的方法向负载继续供电,使得负载能维持正常的工作,并保护负载,硬件不受损失。
关键字:车载电源,逆变,保护电路AbstractCar travel by the most primitive way of life must be transformed into products, and now again by the necessities of life to enjoy life to the level of the transition, and car owners to use in the outdoors more and more electronic devices, such as car audio, car with DVD, car fridge, portable computers, cell phone chargers and various power adapter. In developed countries, According to statistics, China's car with this converter is less than 20%, coupled with high annual vehicle sales, so the power adapter in the country have great market prospects.Car power inverter car battery can be 12V, 24V DC into 220V needed most AC electrical power switch to the input DC voltage into AC voltage pulse width modulation, and then use push-pull inverters and high-frequency transformer the AC voltage even higher. Then full-wave rectified AC voltage into a DC, and finally by the full bridge converter high voltage DC to AC inverter required. Power converter can be used as mobile AC power supply in vehicles, ships use, also suitable for use with solar cells and can easily provide AC power to these electrical equipment.UPS is a device containing the storage to the main component of inverter constant pressure, constant frequency power supply equipment, mainly used for computer, computer network system or other power equipment to provide uninterrupted power supply. When normal mains electricity will be rectified when the UPS inverter or directly through the post regulator to provide to the load. At this point, UPS is one exchange regulator, but also to the machine's battery charging, UPS will immediately convert the battery power through the inverter means to supply to the load。
完整版三相逆变器文献综述
三相逆变器文献综述1 逆变器技术发展历程逆变器技术的发展始终与功率器件及其控制技术的发展紧密结合,从开始发展至今经历了五个阶段:第一阶段:20世纪50-60年代,晶闸管SCR的诞生为正弦波逆变器的发展创造了条件;第二阶段:20世纪70年代,可关断晶闸管GTO及双极型晶体管BJT的问世,使得逆变技术得到发展和应用;第三阶段:20 世纪80 年代,功率场效应管、绝缘栅型晶体管、MOS 控制晶闸管等功率器件的诞生为逆变器向大容量方向发展奠定了基础。
第四阶段:20 世纪90 年代,微电子技术的发展使新近的控制技术如矢量控制技术、多电平变换技术、重复控制、模糊控制等技术在逆变领域得到了较好的应用,极大的促进了逆变器技术的发展;第五阶段:21 世纪初,逆变技术的发展随着电力电子技术、微电子技术和现代控制理论的进步不断改进,逆变技术正朝着高频化、高效率、高功率密度、高可靠性、智能化的方向发展。
2 逆变器的发展趋势更高的效率:目前,美国市场上的逆变器最高效率可达95%。
在欧洲,由于采用了无变压器的设计和创新的拓扑结构,可实现更高的效率。
例如,有一款产品(SMASunnyMinicentral8000TL )声称可到达98%的效率。
更低的成本:大约0.2-0.3美元/瓦的价格已经被设定为2020年逆变器的价格目标,这意味着比目前售价降低50-75%。
这个目标最有可能通过增加产量及改善学习曲线来实现。
更高的可靠性:目前,逆变器的MTBF (平均无故障时间)为5〜10年。
但很多人怀疑,是否有可能以合理的成本实现这一目标。
在中近期,通过改进质量控制、更好地散热并降低复杂性,MTBF 大于10年的目标是可以实现的。
通信功能:今天,逆变器可以记录并借助制造商特定的协议传递信息。
下一代单元应使用通用的通信标准传送更全面的系统信息,以实现先进的诊断功能,并能与公用服务机构通信,以支持电网的稳定性。
3 目前研究成果3.1 合肥工业大学电气与自动化工程学院的陈玲、张兴、杨淑英,谢振等人在2009 年在本院学报中提出了“带不平衡负载的三相四桥臂逆变器的研究” 。
车载逆变电源系统的研究
e'v(k)=e'v(k) +数字量3
计算基准正弦与 电压瞬时值反馈 量偏差e(k)
计算偏差
P控制器
e'(k)=e'(k)+ 数字量3
计算占空比生成 SPWM波
恢复现场
输出限幅
中断返回
结论
本设计采用纯硬件调制的的方法,极大地避免了使用单片机而需要的大量计算以及编 程的麻烦,充分运用集成脉冲调宽芯片使电路大大简化,而且使电路的调试更加简单。然 后根据设计目标从系统总体的设计方案和结构框图入手,再根据各模块的功能进行电路原 理图的设计和主要器件的选择,设计出来的产品具有体积小、重量轻、效率高、发热量低、 性能稳定等优点。
驱动电路
全桥逆变电路
由集成芯片PIC16F73产生的50Hz正弦波经过整形电路得到正弦波脉冲 (SPWM)分别由PIC16F73的高输出端和低输出端输出。传递给驱动电路使 全桥逆变电路开始运行,执行将直流电逆变为交流电的操作 。
IC65 76 TIRF3205TIRF3205 KK 0000 R384R392R404R412 D13D14 67 TX5 14 8 TIRF3205 5 TIRF3205 2 C164.7uF 1 + K 00 R424R432 K 00 F R214R242 u 0 0 3 路 C183 电 D12 变 IC35 F 逆 u 0 桥 0 3 C173 全
SPWM调制原理 SPWM技术及其原理
在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值 时,脉冲的宽度也最大,而脉冲间的间隔则最小,反之,当正弦值较小时,脉冲的宽 度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使 负载电流中的高次谐 波成分大为减小,称为正弦波脉宽调制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述题目12V/220V车载逆变电源学生姓名闫海停专业班级电子信息工程07-2 学号200701030248院(系)电气与信息工程学院指导教师杜海明完成时间 2011年 4月 20日文献综述车载逆变电源及其发展车载电源又叫电源逆变器,是一种能够将DC12V直流电转换为和市电相同的AC220V 交流电,供一般电器使用,是一种方便的电源转换器,由于常用于汽车而得名。
车载电源一般使用汽车电瓶或者点烟器供电,先将这样的低压直流电转换为320V左右的直流电;然后是真正的转变阶段,它将高压的直流电转变为220V、50Hz的交流电。
有了车载电源,您就可以把家里所有的小家电搬到车上使用,如手机、笔记本电脑、数码相机、车用冰箱、摄像机、DVD等,从而使人在车里有一种置身家中的感觉。
自它面世以后,那些在车里使用电器的诸多局限将不复存在,可以使人真正享受“与家同行,与世界相通”的感觉。
一切电子设备都离不开电源提供能量,随着电子技术的发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,对电源的要求更加灵活多样。
逆变是对电能进行变换和控制的一种基本形式。
现代逆变技术是综合了现代电力电子开关器件的应用、现代功率变换、 PWM技术、频率及相位调制技术、开关电源技术和控制技术等的一门实用设计技术。
经过20多年的不断发展,开关电源技术有了重大的突破和进步。
新型功率器件的开发促进了开关电源的高频化,功率MOSFET和IGBT可使中小型开关电源工作频率达到400KHZ,软开关技术使高频开关电源的实现有了可能,它不仅可以减少电源的体积和重量,而且提高了电源的效率;控制技术的发展以及专用控制芯片的生产,不仅使电源电路大幅度简化,而且使开关电源的动态性能和可靠性大大提高[1]。
开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新领域的应用,推动到了高新技术产品的小型化、轻便化,另外开关电源的发展与应用在节约资源与保护环境方面都具有深远的意义[3]。
21世纪开关电源的发展技术追求和发展趋势可以概括为以下四个方面:①小型化、轻量化、高频化;②高可靠性;③低噪声;④采用计算机辅助设计和控制[4]。
正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。
它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。
因此正弦波逆变电源具有重量轻、体积小等优点。
另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。
而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V±10%,而正弦波逆变电源在电网电压在110~260V范围变化时,都可获得稳定的输出阻抗电压。
正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。
另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具有深远的意义。
总之,人们在正弦波逆变电源技术领域里,边研究低损耗回路技术,边开发新型元器件,两者相互促进并推动着正弦波逆变电源以每年过两位数的市场增长率向小型、薄型、高频、低噪声以及高可靠性方向发展。
设计方案的选取目前的开关电源按其输出的波形可分为三种,一是纯方波波形方波逆变器的制作采用简易的多谐振荡器方波逆变是一种低成本,极为简单的变换方式,它适用于各种整流负载,但是对于变压器的负载的适应不是很好,有较大的噪声,而且电源效率一般比较低,且不能带感性负载。
二是纯正弦波,正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染,能够带动任何种类的负载,但是技术要求和成本均高。
三是准正弦波输出,这是一种较接近正弦波的输出波形,可以满足我们大部分的用电需求,除了转换效率高之外,结构简单,成本也低,性能稳定、适用于各种整流负载,并且控制简单、可靠性较高.本文即输出准正弦波。
而实现输出波形为准正弦波的方法其关键在于如何产生调宽脉冲,从广义上来分可以有两种方法,一是使用单片机编程即软硬件相结合的方法,而是采用硬件调制法,即完全由硬件电路来完成。
如果使用单片机来编程实现的话,必须实时地计算调制波(正弦波)和载波(三角波)的所有交点的时间坐标,根据计算结果,有序地向逆变桥中各逆变器件发出“通”和“断”的动作指令。
而且调节频率时,一方面,调制波与载波的周期要同时改变(改变的规律本文不作介绍);另一方面,调制波的振幅要随频率而变,而载波的振幅则不变,所以,每次调节后,所有交点的时间坐标都必须重新计算。
要满足上述要求,只有在计算机技术取得长足进步的20世纪80年代才有可能,同时,又由于大规模集成电路的飞速发展,迄今,已经有能够产生满足要求的SPWM 波形的专用集成电路了。
因而在综合比较各种方法之后,本文最终采取硬件调制法。
图1 车载准正弦脉宽调制逆变电路框图具体方案的实现所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图1 所示,等效的原则是每一区间的面积相等。
如图把一个正弦波分作几等分,然后把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样由几个等幅不等宽的矩形脉冲所组成的波形就与正弦波等效,称作SPWM 波形。
同样,正弦波的负半周也用同样的方法与一系列负脉冲波等效。
图2 单极性PWM 控制方式波形硬件调制法是为编程法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为直流电压 直流/直流 滤波 输出 控制电路驱动电路 交流 电压直流/交流调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。
通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。
其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波。
脉宽调制信号由专用集成芯片SG3525A产生。
SG3525A芯片不仅能产生频率灵活可变的方波,而且可输出正弦PWM(SPWM)信号,以提高后接变压器的工作频率。
为了使SG3525A产生一个SPWM信号,可在芯片的9脚处加入一个幅度可变的50Hz正弦波(我们这里仅需得到频率固定的50Hz可变电源,若需获得频率也可变的交变电源,则只需在9脚处加入一个幅值与频率均可变的正弦波即可),与5脚处的锯齿波信号进行比较,从而获得SPWM控制信号,改变正弦波的幅值,即改变调制度M(调制度定义为正弦波调制波峰Urm 与锯齿波载波峰值Utm之比,即M=Urm/Utm)就可以改变输出电压的幅值,正常M≤1。
5脚处的锯齿波的顶点UH约为3.3V,谷点UL约为0.9V。
因而电路中的正弦波也应当先将其幅值调至1V至3.3V之间。
图3 SG3525A内部结构图除了脉冲调宽波的产生,驱动电路也是本次设计中重要的一部分。
因为用来直流-交流变换的全桥电路一般由大功率的场效应管或者绝缘栅双极性管构成,而由控制部分产生的调宽脉冲一般不能直接控制全桥电路,需要有一个电平的转换及电流驱动,因而必须通过一定的驱动芯片来完成。
对于驱动电路而言,功率管的栅极即为负载,一般的功率管栅源之间有一个寄生电容,故驱动电路的负载是一个容性负载,若驱动电流不够,或提高频率,方波会产生畸变,无法达到设计目的。
因此功率电子的驱动是整个设计的重点,也是难点。
IR2110是IR公司生产的大功率MOSFET和IGBT专用驱动集成电路,可以实现对MOSFET和IGBT的最优驱动,同时还具有快速完整的保护功能,因而它可以提高控制系统的可靠性,减少电路的复杂程度。
IR2110是一种双通道高压、高速电压型功率开关器件栅极驱动器。
同时,IR2110具有很多优点:自举悬浮驱动电源可同时驱动同一桥臂的上、下两个开关器件,可驱动500V主电路系统,工作频率高,可以达到500kHz;具有电源欠压保护相关断逻辑;输出用图腾柱结构,驱动峰值电流为2A;两通道设有低压延时封锁(50 ns)。
芯片还有一个封锁两路输出的保护端SD,在SD输入高电平时,两路输出均被封锁。
因而IR2110与相应外围电路相结合可实现电路的保护功能。
IR2110的优点,给实际系统设计带来了极大方便,特别是自举悬浮驱动电源大大简化了驱动电源设计,只用一路电源即可完成上下桥臂两个功率开关器件的驱动。
总结本设计采用纯硬件调制的的方法,极大地避免了使用单片机而需要的大量计算以及编程的麻烦,充分运用集成脉冲调宽芯片使电路大大简化,而且使电路的调试更加简单。
然后根据设计目标从系统总体的设计方案和结构框图入手,再根据各模块的功能进行电路原理图的设计和主要器件的选择,设计出来的产品具有体积小、重量轻、效率高、发热量低、性能稳定等优点。
参考文献[1] 杨素行.模拟电子技术基础简明教程[M].第2版.北京:高等教育出版社,1998,10.1-16[2] 李荣正,刘启中,陈学军.PIC单片机原理及应用(第2版)[M].北京:北京航空航天大学出版社,2005,10[3] 张华林,周小方.电子设计竞赛实训教程[M].北京:北京航空航天大学出版社,200738-41[4] 李金伴,李捷辉,李捷明.开关电源技术[M].第1版.北京:化学工业出版社,2006,5.1-20[5] 张俊谟.单片机中级教程(原理与应用) [M].北京:北京航空航天大学出版社,2000,6.1-36[6] 周志敏,周纪海.开关电源实用技术设计与应用[M].北京:人民邮电出版社,2003,8.23-46[7] 侯振义等.直流开关电源技术与应用[M].北京:电子工业出版社,2006.4.120-184[8] 李爱文.现代通信基础开关电源的原理与设计[M].北京:科学出版社,2001.7.102-125[9] 侯振义,夏峥.通信电源站原理与设计[M].北京:人民邮电出版社,2002.1.86-105[10] 张占松等.开关电源的原理与设计[M].北京:电子工业出版社,1999.44-52[11] 刘胜利等.现代高频开关电源实用技术[M].北京:电子工业出版社,2001.20-23[12] 王英剑.新型开关电源实用技术[M].北京:电子工业出版社,1999.13-32[13] 康华光,陈大钦.电子技术基础(模拟部分)(第四版)[M]. 北京:高等教育出版社,1999.101-128[14] 邱关源.电路(第五版)[M].高等教育出版社,2006.321-350[15] RCA Silicon Power Circuit Manual. Radio Corporation of America,1969.272-276.[16] E.W.Pappenfus.Single-Sideband Principles and Circuits.Mcgraw-Hill Book Company,1964.35-37.[17] Trivedi M.,John V.,Lipo T.A.,Shenai K..Internal dynamics of IGBT under fault current limiting gatecontrol[C].Industry Applications Conference 2000. Conference Record of the 2000 IEEE, 2000,5:2903-2908.[18] Du T.Mouton H.,Enslin,J.H.R.A resonant turn-off snubber for high power IGBT converters[C].Industrial Electronics, 1998,Proceedings ISIE′98.IEEE International Symposium on,1998,2:519-523.[19] 王志良.电力电子新器件及其应用技术[M].北京:国防工业出版社,1995.93-120[20] 李爱文,张承慧.现代逆变技术及其应用[M].北京:科学出版社,2000.54-67[21] 丁浩华.带电流和短路保护的IGBT驱动电路研究[J].电力电子技术[J],1997,31(1).[22] 周志敏,周纪海.开关电源实用技术设计与应用[M].北京:人民邮电出版社,2003,8.23-46[23] 张占松等.开关电源的原理与设计[M].北京:电子工业出版社,1999.44-52。