《概率论与数理统计》第七章假设检验.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 假设检验

学习目标

知识目标:

理解假设检验的基本概念小概率原理;掌握假设检验的方法和步骤。 能力目标:

能够作正态总体均值、比例的假设检验和两个正态总体的均值、比例之差的假设检验。

参数估计和假设检验是统计推断的两种形式,它们都是利用样本对总体进行某种推断,然而推断的角度不同。参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。而在假设检验中,则是预先对总体参数的取值提出一个假设,然后利用样本数据检验这个假设是否成立,如果成立,我们就接受这个假设,如果不成立就拒绝原假设。当然由于样本的随机性,这种推断只能具有一定的可靠性。本章介绍假设检验的基本概念,以及假设检验的一般步骤,然后重点介绍常用的参数检验方法。由于篇幅的限制,非参数假设检验在这里就不作介绍了。

第一节 假设检验的一般问题

关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误

一、假设检验的基本概念

(一)原假设和备择假设

为了对假设检验的基本概念有一个直观的认识,不妨先看下面的例子。 例7.1 某厂生产一种日光灯管,其寿命X 服从正态分布)200 ,(2μN ,从过去的生产经验看,灯管的平均寿命为1550=μ小时,。现在采用新工艺后,在所生产的新灯管中抽取25只,测其平均寿命为1650小时。问采用新工艺后,灯管的寿命是否有显著提高?这是一个均值的检验问题。灯管的寿命有没有显著变

化呢?这有两种可能:一种是没有什么变化。即新工艺对均值没有影响,采用新工艺后,X 仍然服从)200 ,1550(2N 。另一种情况可能是,新工艺的确使均值发生了显著性变化。这样,1650=X 和15500=μ之间的差异就只能认为是采用新工艺的关系。究竟是哪种情况与实际情况相符合,这需要作检验。假如给定显著性水平05.0=α。

在上面的例子中,我们可以把涉及到的两种情况用统计假设的形式表示出来。第一个统计假设1550=μ表示采用新工艺后灯管的平均寿命没有显著性提高。第二个统计假设1550>μ表示采用新工艺后灯管的平均寿命有显著性提高。这第一个假设称为原假设(或零假设),记为0H :1550=μ;第二个假设1550>μ称为备择假设,记为1H :1550>μ。至于在两个假设中,采用哪一个作为原假设,哪一个作为备择假设,要看具体的研究目的和要求而定。假如我们的目的是希望从子样观察值对某一陈述取得强有力的支持,则把该陈述的否定作为原假设,该陈述本身作为备择假设。譬如在上例中,我们的目的当然是希望新工艺对产品寿命确有提高,但又没有更多的数据可以掌握。为此,我们取“寿命没有显著性提高)1550(=μ”作原假设,而以“寿命有显著性提高)1550(>μ”作为备择假设。

(二)检验统计量

假设检验问题的一般提法是:在给定备择假设1H 下对原假设0H 作出判断,若拒绝原假设0H ,那就意味着接受备择假设1H ,否则就接受原假设0H 。在拒绝原假设0H 或接受备择假设1H 之间作出某种判断,必须要从子样),,,(21n X X X 出发,制定一个法则,一旦子样),,,(21n x x x 的观察值确定之后,利用我们制定的法则作出判断:拒绝原假设0H 还是接受原假设0H 。那么检验法则是什么呢?它应该是定义在子样空间上的一个函数为依据所构造的一个准则,这个函数一般称为检验统计量。如上面列举的原假设0H :)1550(00==μμμ,

那么子样均值X 就可以作为检验统计量,有时还可以根据检验统计量的分布进一步加工,如子样均值服从正态分布时将其标准化,n X Z /0

σμ-=作为检验统计

量,简称Z 检验量。或者在总体方差2σ未知的条件下,n S X t n /0μ-=

作为检验量,

称为t 检验量。

(三)接受域和拒绝域 假设检验中接受或者拒绝原假设0H 的依据是假设检验的小概率原理。所谓小概率原理,是指发生概率很小的随机事件在一次实验中几乎是不可能发生的,根据这一原理就可以作出接受或是拒绝原假设的决定。如,一家厂商声称其某种产品的合格率很高,可以达到99﹪,那么从一批产品(如100件)中随机抽取一件,这一件恰好是次品的概率就非常之小,只有1﹪。如果把厂商的宣称,即产品的次品率仅为1﹪作为一种假设,并且是真的。那么由小概率原理,随机抽取一件是次品的情形就几乎是不可能发生的。如果这种情形居然发生了,这就不能不使人们怀疑原来的假设,即产品的次品率仅为1﹪的假设的正确性,这时就可以作出原假设为伪的判断,于是否定原假设。

接受域和拒绝域是在给定的显著性水平α下,由检验法则所划分的样本空间的两个互不相交的区域。原假设0H 为真时的可以接受的可能范围称为接受域,另一区域是当原假设0H 为真时只有很小的概率发生,如果小概率事件确实发生,就要拒绝原假设,这一区域称为拒绝域(或否定域)。落入拒绝域是个小概率事件,一旦落入拒绝域,就要拒绝原假设而接受备择假设。那么应该确定多大的概率算作小概率呢?这要根据不同的目的和要求而定,一般选择05.0或者01.0,通常用α表示。它说明用多大的小概率来检验原假设。显然α愈小愈不容易推翻原假设,而一旦拒绝原假设,原假设为真的可能性就越小。所以在作假设检验时通常要事先给定显著性水平.α(α-1称为置信水平)。图7-1所示Z 检验时的拒绝域和接受域。

(四)假设检验中的两类错误

由前面已知,假设检验是在子样观察值确定之后,根据小概率原理进行推断的,由于样本的随机性,这种推断不可能有绝对的把握,不免要犯错误。所犯错

H为真时却被拒绝了。这类错误称为弃真误的类型有两类:一类错误是原假设

错误,犯这种错误的概率用α表示,所以也叫α错误或第一类错误。另一类错误H为伪时,却被人们接受而犯了错误。这是一种取伪的错误,这种是指原假设

错误发生的概率用β表示,故也称β错误或第二类错误。在厂家出售产品给消费者时,通常要经过产品质量检验,生产厂家总是假定产品是合格的,但检验时厂家总要承担把合格产品误检为不合格产品的某些风险,生产者承担这些风险的概率就是α,所以α也称为生产者风险。而在消费者一方却耽心把不合格产品误检为合格品而被接受,这是消费者承担的某些风险,其概率就是β,因此第二类错误β也称为消费者风险。正确的决策和犯错误的概率可以归纳为表7.1。

自然,人们希望犯这两类错误的概率愈小愈好。但对于一定的子样容量n,不可能同时做到犯这两类错误的概率都很小。通常的假设检验只规定第一类错误α,即显著性水平,而不考虑第二类错误β,并称这样的检验为显著性检验。

表7.1 假设检验中各种可能结果的概率

相关文档
最新文档