假设检验参考答案
统计学:假设检验习题与答案
![统计学:假设检验习题与答案](https://img.taocdn.com/s3/m/3e7a88fb650e52ea5418981a.png)
一、单选题1、在假设检验中,我们认为()。
A.原假设是不容置疑的B.拒绝域总是位于检验统计量分布的两边C.小概率事件在一次抽样中实际上不会发生D.检验统计量落入拒绝域是不可能的正确答案:C2、在假设检验中,显著性水平确定后()。
A.双边检验的拒绝域小于单边检验的拒绝域B.双边检验的拒绝域大于单边检验的拒绝域C.双边检验的拒绝域与单边检验的拒绝域不可简单直接对比D.双边检验的拒绝域等于单边检验的拒绝域正确答案:C3、单个正态总体均值的检验时若总体方差已知,()。
A.设计的检验统计量服从卡方分布B.设计的检验统计量服从F分布C.设计的检验统计量服从标准正态分布D.设计的检验统计量服从t分布正确答案:C4、总体成数的假设检验()。
A.设计的检验统计量服从标准正态分布B.设计的检验统计量服从卡方分布C.设计的检验统计量近似服从卡方分布D.设计的检验统计量近似服从标准正态分布正确答案:D5、两个正态总体均值之差的检验中,如果两个总体方差未知但相等,检验统计量t的自由度是()。
A.两样本容量之和B.两样本容量之和减2C.两样本容量之积D.两样本容量之和减1正确答案:B6、假设检验是检验()的假设值是否成立。
A.总体均值B.总体指标C.样本方差D.样本指标正确答案:B7、在大样本条件下,样本成数的抽样分布近似为()。
A.均匀分布B.卡方分布C.二项分布D.正态分布正确答案:D8、下列关于假设检验的说法,不正确的是()。
A.作出“拒绝原假设”决策时可能会犯第一类错误B.作出“不能拒绝原假设”决策时意味着原假设正确C.作出“不能拒绝原假设”决策时可能会犯第二类错误D.作出“接受原假设”决策时意味着没有充分的理由认为原假设是错误的正确答案:B9、将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两,每边占显著性水平的二分之一,这是()。
A.右侧检验B.单侧检验C.左侧检验D.双侧检验正确答案:D10、如果使用者偏重于担心出现纳伪错误而造成的损失,则应把显著性水平定得()。
医学统计学第5章 假设检验思考与练习参考答案
![医学统计学第5章 假设检验思考与练习参考答案](https://img.taocdn.com/s3/m/25217a6780eb6294dd886ce2.png)
第5章 假设检验思考与练习参考答案一、最佳选择题1. 样本均数比较作t 检验时,分别取以下检验水准,以( E )所取Ⅱ类错误最小。
A.0.01α=B. 0.05α=C. 0.10α=D. 0.20α=E. 0.30α=2. 在单组样本均数与一个已知的总体均数比较的假设检验中,结果t =3.24,t 0.05,v =2.086, t 0.01,v =2.845。
正确的结论是( E )。
A. 此样本均数与该已知总体均数不同B. 此样本均数与该已知总体均数差异很大C. 此样本均数所对应的总体均数与该已知总体均数差异很大D. 此样本均数所对应的总体均数与该已知总体均数相同E. 此样本均数所对应的总体均数与该已知总体均数不同3. 假设检验的步骤是( A )。
A. 建立假设,选择和计算统计量,确定P 值和判断结果B. 建立无效假设,建立备择假设,确定检验水准C. 确定单侧检验或双侧检验,选择t 检验或Z 检验,估计Ⅰ类错误和Ⅱ类错误D. 计算统计量,确定P 值,作出推断结论E. 以上都不对4. 作单组样本均数与一个已知的总体均数比较的t 检验时,正确的理解是( C )。
A. 统计量t 越大,说明两总体均数差别越大B. 统计量t 越大,说明两总体均数差别越小C. 统计量t 越大,越有理由认为两总体均数不相等D. P 值就是αE. P 值不是α,且总是比α小5. 下列( E )不是检验功效的影响因素的是:A. 总体标准差σB. 容许误差δC. 样本含量nD. Ⅰ类错误αE. Ⅱ类错误β二、思考题1.试述假设检验中α与P 的联系与区别。
答:α值是决策者事先确定的一个小的概率值。
P 值是在0H 成立的条件下,出现当前检验统计量以及更极端状况的概率。
P ≤α时,拒绝0H 假设。
2. 试述假设检验与置信区间的联系与区别。
答:区间估计与假设检验是由样本数据对总体参数作出统计学推断的两种主要方法。
置信区间用于说明量的大小,即推断总体参数的置信范围;而假设检验用于推断质的不同,即判断两总体参数是否不等。
假设检验测试答案
![假设检验测试答案](https://img.taocdn.com/s3/m/112936f8d05abe23482fb4daa58da0116c171f9b.png)
第八章假设检验1.A2.A3.B4.D5.C6.A1.某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为;某天测得25根纤维的纤度的均值39x,检验与原来设计的标准均值相比是.1=否有所变化,要求的显着性水平为05α,则下列正确的假设形式=.0是;A.H:μ=,1H:μ≠B.0H:μ≤,1H:μ>C.H:μ<,1H:μ≥D.0H:μ≥,1H:μ<2.某一贫困地区估计营养不良人数高达20%,然而有人认为这个比例实际上还要高,要检验该说法是否正确,则假设形式为;A.H:π≤,1H:π>B.0H:π=,1H:π≠C.H:π≥,1H:π<D.0H:π≥,1H:π<3.一项新的减肥计划声称:在计划实施的第一周内,参加者的体重平均至少可以减轻8磅;随机抽取40位参加该项计划的样本,结果显示:样本的体重平均减少7磅,标准差为磅,则其原假设和备择假设是; A.H:μ≤8,1H:μ>8B.0H:μ≥8,1H:μ<8C.H:μ≤7,1H:μ>7D.0H:μ≥7,1H:μ<74.在假设检验中,不拒绝原假设意味着;A.原假设肯定是正确的B.原假设肯定是错误的C.没有证据证明原假设是正确的D.没有证据证明原假设是错误的5.在假设检验中,原假设和备择假设;A.都有可能成立B.都有可能不成立C.只有一个成立而且必有一个成立D.原假设一定成立,备择假设不一定成立6.在假设检验中,第一类错误是指;A.当原假设正确时拒绝原假设B.当原假设错误时拒绝原假设C.当备择假设正确时拒绝备择假设D.当备择假设不正确时未拒绝备择假设7.B8.C9.B10.A11.D12.C7.在假设检验中,第二类错误是指;A.当原假设正确时拒绝原假设B.当原假设错误时未拒绝原假设C.当备择假设正确时未拒绝备择假设D.当备择假设不正确时拒绝备择假设8.指出下列假设检验哪一个属于右侧检验;A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ9.指出下列假设检验哪一个属于左侧检验;A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ10.指出下列假设检验哪一个属于双侧检验;A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ11.指出下列假设检验形式的写法哪一个是错误的;A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ12.如果原假设H为真,所得到的样本结果会像实际观测结果那么极端0或更极端的概率称为;A.临界值B.统计量C.P值D.事先给定的显着性水平13.B14.B15.A16.D17.C18.A13.P值越小;A.拒绝原假设的可能性越小B.拒绝原假设的可能性越大C.拒绝备择假设的可能性越大D.不拒绝备择假设的可能性越小14.对于给定的显着性水平α,根据P值拒绝原假设的准则是;A.P=αB.P<αC.P>αD.P=α=015.在假设检验中,如果所计算出的P值越小,说明检验的结果 ; A.越显着B.越不显着C.越真实D.越不真实16.在大样本情况下,总体方差未知时,检验总体均值所使用的统计量是 ; A.z=nx σμ0-B.z=nx 2σμ-C.t=n s x 0μ-D.z=ns x 0μ- 17.在小样本情况下,当总体方差未知时,检验总体均值所使用的统计量是 ; A.z=nx σμ0-B.z=nx 2σμ-C.t=n s x 0μ-D.z=ns x 0μ- 18.在小样本情况下,当总体方差已知时,检验总体均值所使用的统计量是 ; A.z=nx σμ0-B.z=nx 2σμ-C.t=n s x 0μ-D.z=ns x 0μ- 19.C20.A21.B22.D23.D24.C19.检验一个正态总体的方差时所使用的分布为 ; A.正态分布B.t分布C.2χ分布D.F分布20.一种零件的标准长度5cm,要检验某天生产的零件是否符合标准要求,建立的原假设和备择假设应为 ;A.0H :μ=5,1H :μ≠5B.0H :μ≠5,1H :μ=5 C.0H :μ≤5,1H :μ>5D.0H :μ≥5,1H :μ<5 21.一项研究表明,中学生中吸烟的比例高达30%,为检验这一说法是否属实,建立的原假设和备择假设应为 ;A.H:μ=30%,1H:μ≠30%B.0Hπ=30%,1H:π≠30% 0C.H:π≥30%,1H:π<30%D.0Hπ≤30%,1H:π>30% 022.一项研究表明,司机驾车时因接打手机而发生事故的比例超过20%,用来检验这一结论的原假设和备择假设应为;A.H:π=20%,1H:π≠20%B.0H:π≠20%,1H:π=20% 0C.H:π≥20%,1H:π<20%D.0H:π≤20%,1H:π>20% 023.某企业每月发生事故的平均次数为5次,企业准备制定一项新的安全生产计划,希望新计划能减少事故次数;用来检验这一计划有效性的原假设和备择假设应为;A.H:μ=5,1H:μ≠5B.0H:μ≠5,1H:μ=5C.H:μ≤5,1H:μ>5D.0H:μ≥5,1H:μ<524.环保部门想检验餐馆一天所用的快餐盒平均是否超过600个,建立的原假设和备择假设应为;A.H:μ=600,1H:μ≠600B.0H:μ≠600,1H:μ=600 0C.H:μ≤600,1H:μ>600D.0H:μ≥600,1H:μ<600 025.A26.C27.C28.B29.A30.B25.随机抽取一个n=100的样本,计算得到x=60,s=15,要检验假设H:μ=65,H:μ≠65,检验的统计量为;1A.B.C.D.26.随机抽取一个n=50的样本,计算得到x=60,s=15,要检验假设H:μ=65,1H :μ≠65,检验的统计量为 ;A.B.C.D.27.若检验的假设为0H :μ=0μ,1H :μ≠0μ,则拒绝域为 ; A.z >αz B.z <-αzC.z >2αz 或z <-2αz D.z >αz 或z <-αz28.若检验的假设为0H :μ≥0μ,1H :μ<0μ,则拒绝域为 ; A.z >αz B.z <-αzC.z >2αz 或z <-2αz D.z >αz 或z <-αz29.若检验的假设为0H :μ≤0μ,1H :μ>0μ,则拒绝域为 ; A.z >αz B.z <-αzC.z >2αz 或z <-2αz D.z >αz 或z <-αz30.设c z 为检验统计量的计算值,检验的假设为0H :μ≤0μ,1H :μ>0μ,当c z =时,计算出的P值为 ;A. 0.025B.C.D.31.C32.A33.A34.B35.A36.B31.设c z 为检验统计量的计算值,检验的假设为0H :μ≤0μ,1H :μ>0μ,当c z =时,计算出的P值为 ;A. 0.025B.C.D.32.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里;假定这位经销商要检验假设0H :μ≤24000,1H :μ>24000,取显着性水平为α=,并假设为大样本,则此项检验的拒绝域为 ;A.z>B.z<C.|z|>D.z=33.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里;假定这位经销商要检验假设H:μ≤24000,1H:μ>24000,抽取容量n=32个车主的一个随机样本,计算出两年行驶里程的平均值x=24517公里,标准差为s=1866公里,计算出的检验统计量为;A.z=B.z=-C.z=D.z=-34.由49个观测数据组成的随机样本得到的计算结果为x∑=68,∑=,2x取显着性水平α=,检验假设H:μ≥,1H:μ<,得到的检验结论是;A.拒绝原假设B.不拒绝原假设C.可以拒绝也可以不拒绝原假设D.可能拒绝也可能不拒绝原假设35.一项研究发现,2000年新购买小汽车的人中有40%是女性,在2005年所作的一项调查中,随机抽取120个新车主中有57人为女性,在α=的显着性水平下,检验2005年新车主中女性的比例是否有显着增加,建立的原假设和备择假设为H:π≤40%,1H:π>40%,检验的结论是;A.拒绝原假设B.不拒绝原假设C.可以拒绝也可以不拒绝原假设D.可能拒绝也可能不拒绝原假设36.从一个二项总体中随机抽出一个n=125的样本,得到p=,在α=的显着性水平下,检验假设H:π=,1H:π≠,所得的结论是;A.拒绝原假设B.不拒绝原假设C.可以拒绝也可以不拒绝原假设D.可能拒绝也可能不拒绝原假设37.A38.B39.A40.D41.B42.A37.从正态总体中随机抽取一个n=25的随机样本,计算得到x =17,2s =8,假定20σ=10,要检验假设0H :2σ=20σ,则检验统计量的值为 ; A.2χ=B.2χ=C.2χ=D.2χ=38.从正态总体中随机抽取一个n=10的随机样本,计算得到x =,s=,假定20σ=50,在α=的显着性水平下,检验假设0H :2σ≥20,1H :2σ<20,得到的结论是 ; A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 39.一个制造商所生产的零件直径的方差本来是;后来为削减成本,就采用一种费用较低的生产方法;从新方法制造的零件中随机抽取100个作样本,测得零件直径的方差为;在α=的显着性水平下,检验假设0H :2σ≤,1H :2σ>,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 40.容量为3升的橙汁容器上的标签标明,该种橙汁的脂肪含量的均值不超过1克,在对标签上的说明进行检验时,建立的原假设和备择假设为0H :μ≤1,1H :μ>1,该检验所犯的第一类错误是 ;A.实际情况是μ≥1,检验认为μ>1B.实际情况是μ≤1,检验认为μ<1C.实际情况是μ≥1,检验认为μ<1D.实际情况是μ≤1,检验认为μ>141.随机抽取一个n=40的样本,得到x=,s=7;在α=的显着性水平下,检验假设H:μ≤15,1H:μ>15,统计量的临界值为;A.z=-B.z=C.z=D.z=-42.一项调查表明,5年前每个家庭每天看电视的平均时间为小时;而最近对200个家庭的调查结果是:每个家庭每天看电视的平均时间为小时,标准差为小时;在α=的显着性水平下,检验假设H:μ≤,1H:μ>,得到的结论为;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H43.B44.B45.A46.B47.D48.D43.检验假设H:μ≤50,1H:μ>50,随机抽取一个n=16的样本,得0到的统计量的值为t=,在α=的显着性水平下,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H44.在某个城市,家庭每天的平均消费额为90元,从该城市中随机抽取15个家庭组成一个随机样本,得到样本均值为元,标准差为元;在α=的显着性水平下,检验假设H:μ=90,1H:μ≠90,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H45.航空服务公司规定,销售一张机票的平均时间为2分钟;由10名顾客购买机票所用的时间组成的一个随机样本,结果为:,,,,,,,,,;在α=的显着性水平下,检验平均售票时间是否超过2分钟,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 46.检验假设0H :π=,1H :π≠,由n=200组成的一个随机样本,得到样本比例为p=;用于检验的P值为,在α=的显着性水平下,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 47.如果能够证明某一电视剧在播出的头13周其观众收视率超过了25%,则可以断定它获得了成功;假定由400个家庭组成的一个随机样本中,有112个家庭看过该电视剧,在α=的显着性水平下,检验结果的P值为 ; A.B.C.D.48.检验两个总体的方差比时所使用的分布为 ; A.正态分布B.t分布C.2χ分布D.F分布49.A50.A51.B52.A53.A54.A49.从均值为1μ和2μ的两个总体中,随机抽取两个大样本n>30,在α=的显着性水平下,要检验假设0H :1μ-2μ=0,1H :1μ-2μ≠0,则拒绝域为 ;A.|z|>B.z>C.z<-D.|z|>50.从均值为1μ和2μ的两个总体中,抽取两个独立的随机样本,有关结果如下表:在α=的显着性水平下,要检验假设0H :1μ-2μ=0,1H :1μ-2μ≠0,得到的结论是 ; A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 51.从均值为1μ和2μ的两个总体中,抽取两个独立的随机样本,有关结果如下表:在α=的显着性水平下,要检验假设0H :1μ-2μ=,1H :1μ-2μ≠,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H52.根据两个随机样本,计算得到21s =,22s =,要检验假设0H :2221σσ≤1,1H :2221σσ>1,则检验统计量的F值为 ; A. 1.42B.C.D.53.一项研究表明,男人和女人对产品质量的评估角度有所不同;在对某一产品的质量评估中,被调查的500个女人中有58%对该产品的评分等级是“高”,而被调查的500个男人中给同样评分的却只有43%;要检验对该产品的质量评估中,女人评高分的比例是否超过男人1π为女人的比例,2π为男人的比例;用来检验的原假设和备择假设为 ;A.0H :1π-2π≤0,1H :1π-2π>0B.0H :1π-2π≥0,1H :1π-2π<0C.0H :1π-2π=0,1H :1π-2π≠0D.0H :1π-2π≠0,1H :1π-2π=054.一项研究表明,男人和女人对产品质量的评估角度有所不同;在对某一产品的质量评估中,被调查的500个女人中有58%对该产品的评分等级是“高”,而被调查的500个男人中给同样评分的却只有43%;要检验对该产品的质量评估中,女人评高分的比例是否超过男人1π为女人的比例,2π为男人的比例;在α=的显着性水平下,检验假设0H :1π-2π≤0,:1H 1π-2π>0,得到的结论是 ; A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H55.B56.B57.A58.A59.B60.A55.抽自两个总体的独立随机样本提供的信息如下表:在α=的显着性水平下,要检验假设H:1μ-2μ=0,1H:1μ-2μ≠0,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H56.抽自两个超市的顾客独立随机样本,得到他们对超市服务质量的评分结果如下表:在α=的显着性水平下,要检验假设H:1μ-2μ≥0,1H:1μ-2μ<0,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H57.在对两个广告效果的电视评比中,每个广告在一周的时间内播放6次,然后要求看过广告的人陈述广告的内容,记录的资料如下表:在α=的显着性水平下,检验对两个广告的回想比例没有差别,即检验假设H:1π-2π=0,1H:1π-2π≠0,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H58.在一项涉及1602名儿童的流感疫苗试验中,接受疫苗的1070人中只有14人患了流感,而接受安慰剂的532名儿童中有98人患了流感;在α=的显着性水平下,检验“疫苗减少了儿童患流感的可能性”,即检验假设H:1π-2π≥0,1H:1π-2π<0,得到的结论是;A.拒绝HB.不拒绝0HC.可以拒绝也可以不拒绝HD.可能拒绝也可能不拒绝0H59.在一项犯罪研究中,收集到2000年的犯罪数据;在那些被判纵火罪的罪犯中,有50人是酗酒者,43人不喝酒;在那些被判诈骗罪的罪犯中,有63人是酗酒者,144人是戒酒者;在α=的显着性水平下,检验“纵火犯中酗酒者的比例高于诈骗犯中酗酒者的比例”,建立的原假设和备择假设是;A.H:1π-2π≥0,1H:1π-2π<0B.H:1π-2π≤0,1H:1π-2π>0C.H:1π-2π=0,1H:1π-2π≠0D.H:1π-2π<0,1H:1π-2π≥060.来自总体1的一个容量为16的样本的方差21s =,来自总体2的一个容量为20的样本的方差22s =;在α=的显着性水平下,检验假设0H :2221σσ≤,1H :2221σσ>,得到的结论是 ;A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H 61.一个研究的假设是:湿路上汽车刹车距离的方差显着大于干路上汽车刹车距离的方差;在调查中,以同样速度行驶的16辆汽车分别在湿路上和干路上检测刹车距离;在湿路上刹车距离的标准差为32米,在干路上的标准差是16米;用于检验的原假设和备择假设是 ;A.0H :2221σσ≤1,1H :2221σσ>1B.0H :2221σσ≥1,1H :2221σσ<1C.0H :2221σσ=1,1H :2221σσ≠1D.0H :2221σσ<1,1H :2221σσ≥162.一个研究的假设是:湿路上汽车刹车距离的方差显着大于干路上汽车刹车距离的方差;在调查中,以同样速度行驶的16辆汽车分别在湿路上和干路上检测刹车距离;在湿路上刹车距离的标准差为32米,在干路上的标准差是16米;在σ=的显着性水平下,检验假设0H :2221σσ≤1,1H :2221σσ>1,得到的结论是 ; A.拒绝0H B.不拒绝0HC.可以拒绝也可以不拒绝0H D.可能拒绝也可能不拒绝0H。
习题八假设检验答案
![习题八假设检验答案](https://img.taocdn.com/s3/m/6dc4d8e6b52acfc789ebc9ef.png)
习题八假设检验答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题八 假设检验一、填空题1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量tX2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。
要检验假设0μμ=应用 U 检验法,检验的统计量是X U =0H 成立时该统计量服从N (0,1) 。
3.要使犯两类错误的概率同时减小,只有 增加样本容量 ;4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
(1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为X YU =0H 成立时该统计量服从 N (0,1) 。
(2)若X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为X YT =0H 成立时该统计量服从(2)t m n +- 。
5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 2200:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-=;当0H 成立时,该统计量服从 2(1)n χ- 。
6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
要检验假设220:X YH σσ=,应用 F 检验法,检验的统计量为 22XYS F S = 。
7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验假设22220010:;:;H H σσσσ=≠的拒绝域为 222(1)n αχχ≥-或222(1)n αχχ≤- ;8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下,检验假设0010:;:H H μμμμ≥<的统计量为 X U ={}U u α≤- 。
《应用数理统计》第三章假设检验课后作业参考答案
![《应用数理统计》第三章假设检验课后作业参考答案](https://img.taocdn.com/s3/m/f9939d8f4a7302768e9939e3.png)
第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
假设检验练习题 -答案
![假设检验练习题 -答案](https://img.taocdn.com/s3/m/109f2cf2112de2bd960590c69ec3d5bbfd0ada99.png)
假设检验练习题1. 简单回答下列问题:1假设检验的基本步骤答:第一步建立假设通常建立两个假设;原假设H0 不需证明的命题;一般是相等、无差别的结论;备择假设H1;与H0对立的命题;一般是不相等;有差别的结论有三类假设第二步选择检验统计量给出拒绝域的形式..根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1:W为双边H1:W为单边H1:W为单边第三步:给出假设检验的显著水平第四步给出零界值C;确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值;确定拒绝域..例如:对于=0.05有的双边W为的右单边W为的右单边W为第五步根据样本观测值;计算和判断计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝; 否则接受计算P值227页p值由统计软件直接得出时拒绝;否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受;否则接受2假设检验的两类错误及其发生的概率答:第一类错误:当为真时拒绝;发生的概率为第二类错误:当为假时;接受发生的概率为3假设检验结果判定的3种方式答:1.计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝; 否则接受2.计算P值227页p值由统计软件直接得出时拒绝;否则接受3.计算1-a的置信区间置信区间由统计软件直接得出;落入置信区间接受;否则接受4在六西格玛A阶段常用的假设检验有那几种应用的对象是什么答:连续型测量的数据:单样本t检验-----比较目标均值双样本t检验-----比较两个均值方差分析-----比较两个以上均值等方差检验-----比较多个方差离散型区分或数的数据:卡方检验-----比较离散数2.设某种产品的指标服从正态分布;它的标准差σ=150;今抽取一个容量为26 的样本;计算得平均值为1 637..问在5%的显著水平下;能否认为这批产品的指标的期望值μ = 1600..答:典型的Z检验1. 提出原假设和备择假设:平均值等于1600 :平均值不等于16002. 检验统计量为Z;拒绝域为双边~~N0;13.4. 查表得5. 计算统计量Z;有1.26=1.26<1.96 Z未落入拒绝域不能拒绝;目前能认为这批产品的指标的期望值μ = 1600..3.从正态总体Nμ ;1中抽取100 个样品;计算得 = 5.32..试检验:XH0 : μ = 5是否成立α = 0.05 ..答:典型的Z检验1. 提出原假设和备择假设:μ = 5:μ不等于52. 检验统计量为Z;拒绝域为双边~~N0;13.4. 查表得5. 计算统计量Z;有3.2=3.2 1.96 Z落入拒绝域拒绝;目前能认为这批产品的指标的期望值μ不等于5..4.根据资料用某种旧安眠药时;平均睡眠时间为20.8 h;标准差为1.6 h..有一种新安眠药;据说在一定剂量下;能比旧安眠药平均增加睡眠时间3 h..为了检验这个说法是否正确;收集到一组使用新安眠药的睡眠时间单位:h为:26.7;22.0;24.1;21.0;27.2;25.0;23.4..试问:从这组数据能否说明新安眠药已达到新的疗效假定睡眠时间服从正态分布;α = 0.05 ..答:分析:未知;假设检验中的t检验第一步提出原假设和备择假设=23.8 23.8第二步检验统计量为t;拒绝域为双边~~t5第三、四步:时查表得第五步:计算统计量t;有=0.46t=0.46<2.571 t未落入拒绝域接受;此新安眠药已达到新的疗效.5.测定某种溶液中的水份;由其10 个测定值求得= 0.452%; s = 0.037%;设X测定值总体服从正态分布Nμ ;σ2 ;试在显著水平α = 0.05 下;分别检验假设:1 H0: μ = 0.5% ;2 H0: σ = 0.04% ..6.有甲、乙两台机床加工同样产品;从这两台机床加工的产品中随机抽取若干件;测得产品直径单位:mm为机车甲 20.5 19.8 19.7 20.4 20.1 20.0 19.0 19.9机车乙 19.7 20.8 20.5 19.8 19.4 20.6 19.2假定两台机床加工的产品的直径都服从正态分布;且总体方差相等;试比较甲、乙两台机床加工的产品的直径有无显著差异α = 0.05 ..7.测得两批电子器件的样品的电阻单位:Ω为A 批: 0.140 0.138 0.143 0.142 0.144 0.137B 批: 0.135 0.140 0.142 0.138 0.136 0.140设这两批器材的电阻值总体分别服从分布N μ12 ;σ12 ;Nμ22 ;σ22 ;且两样本独立..1 检验假设H0: σ12 =σ22取α = 0.05 ;2 在1的基础上检验H 0 :μ1 = μ2取α = 0.05 ..8.对吸烟者生肺病的情况作过调查;数据如下:试问:生肺病与吸烟是否有关9. 根据某地环境保护的规定;倾入河流的废水中一种有毒化学物质的平均含量不得超过3ppm..已知废水中该有毒化学物质的含量X服从正态分布..该地区环保组织对沿涸一工厂进行检查;测定其每天倾入河流废水中该有毒物质的含量;15天的数据如下单位为ppm:3.1;3.2;3.3;2.9;3.5;3.4;2.5;4.3;2.9;3.6;3.2;3.0;2.7;3.5;2.9..试在α = 0.05的水平上判断该工厂的排放是否符合环保规定答:分析:未知;假设检验中的t检验第一步提出原假设和备择假设第二步检验统计量为t;拒绝域为单边~~t7第三、四步:时查表得第五步:计算统计量t;有=9.77未落入拒绝域接受10. 用三台机器生产规格相同的铝合金薄板;取样测量铝合金薄板的厚度结果如下:机器1 机器2 机器30.236 0.257 0.2580.238 0.253 0.2640.248 0.255 0.259我们假定影响铝合金薄板厚度的因素除机器之外其它的因素都相同;试判断机器对铝合金薄板的厚度是否有显著影响..练习题答案1.略2.接受H03.拒绝H04.新安眠药已达到新的疗效..5.1拒绝H0;2接受H0 ..6直径无显著差异..7.1 接受H0;2接受H0 ..8. 有关系;p=0.022..9. 不符合环保规定..10.有影响。
(完整版)统计学假设检验习题答案
![(完整版)统计学假设检验习题答案](https://img.taocdn.com/s3/m/5afd9089227916888486d7b0.png)
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
统计学第六章 假设检验课后答案
![统计学第六章 假设检验课后答案](https://img.taocdn.com/s3/m/cfde13374431b90d6c85c7ee.png)
第六章假设检验一、单项选择题二、多项选择题三、判断题四、填空题1、原假设(零假设)备择假设(对立假设)2、双侧检验Z Z =xn︱Z︱<︱︱(或1-α)23、左单侧检验Z <-(或α)4、右单侧检验Z Z =xnZ >(或α)5、t t =︱t︱>︱︱(或α)sx2n6、弃真错误(或第一类错误)存伪错误(或第二类错误)7、越大越小8、临界值五、简答题(略)六、计算题1、已知:σx = 12 n = 400 x= 21 建立假设H0:X≤20H1:X>20右单侧检验,当α= 0.05时,Z0.05 = 1.645 构造统计量ZxZ =1.667>Z0.05 = 1.645,所以拒绝原假设,说明总体平均数会超过20。
2、已知:P0 = 2% n = 500 p = 建立假设H0:P ≥ 2%H1:P <2%左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-1.597∣Z∣=1.597<∣Z0.05∣= 1.645,所以接受原假设,说明该产品不合格率没有明显降低。
3、已知:σx = 2.5 cm n = 100 X0 =12 cm x= 11.3 cm 建立假设H0:X≥12H1:X<12左单侧检验,当α= 0.01时,Z0.01 = -2.33 构造统计量Zx-2.8 2.5 ∣Z∣= 2.8>∣Z0.01∣= 2.33,所以拒绝原假设,说明所伐木头违反规定。
4、已知:P0 = 40% n = 60 p = 建立假设H0:P ≥ 40%H1:P <40% 21= 35% 60左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-0.791∣Z∣= 0.791<∣Z0.05∣= 1.645,所以接受原假设,说明学生的近视率没有明显降低。
5、已知:X0 =5600 kg/cm2 σx = 280 kg/cm2 n = 100 x= 5570 kg/cm2 建立假设H0:X= 5600 H1:X≠5600双侧检验,当α= 0.05时,∣Z0.025∣= 1.96 构造统计量Z∣Z∣∣Z∣=1.07<∣Z0.025∣= 1.96,所以接受原假设,说明这批车轴符合要求。
假设检验案例辨析及参考答案
![假设检验案例辨析及参考答案](https://img.taocdn.com/s3/m/b9847bd3d4d8d15abe234edc.png)
第5章假设检验案例辨析及参考答案案例5-1 为了比较一种新药与常规药治疗高血压的疗效,以血压下降值为疗效指标,有人作了单组设计定量资料均数比较的检验,随机抽取25名患者服用了新药,以常规药的疗效均值为,进行检验,无效假设是,对立假设是,检验水平α=1%。
结果值很大,拒绝了无效假设。
“拒绝了无效假设”意味着什么?下面的说法你认为对吗?(1)你绝对否定了总体均数相等的无效假设。
(2)你得到了无效假设为真的概率是1%。
(3)你绝对证明了总体均数不等的备择假设。
(4)你能够推论备择假设为真的概率是99%。
(5)如果你决定拒绝无效假设,你知道你将犯错误的概率是1%。
(6)你得到了一个可靠的发现,假定重复这个实验许多次,你将有99%的机会得到具有统计学意义的结果。
提示:就类似的问题,Haller和Kruss(2002)在德国的6个心理系问了30位统计学老师、44位统计学学生和39位心理学家。
结果所有的统计学学生、35位心理学家和24位统计学老师认为其中至少有一条是正确的;10位统计学老师、13位心理学家和26位统计学学生认为第4题是正确的。
(见Statistical Science, 2005, 20(3):223-230.)案例辨析6个选择均不正确。
(1)可能犯Ⅰ类错误。
(2)α=1%是表示在无效假设成立的条件下,犯Ⅰ类错误的概率。
(3)可能犯Ⅰ类错误。
(4)α=1%是表示在无效假设成立的条件下,犯Ⅰ类错误的概率,而不是推论备择假设为真的概率是99%。
(5)在无效假设成立的条件下,就该例拒绝无效假设犯错误的概率是。
(6)在无效假设成立的条件下,还可能犯错误,并不是完全“可靠”的发现;1-=99%是指无效假设成立的条件下不犯错误的概率是99%。
正确做法“拒绝了无效假设”意味着在无效假设成立的条件下,推断犯错误的概率为。
案例5-2 某工厂生产的某医疗器械的合格率多年来一直是80.0%。
最近从该厂一次抽取20个该器械检测,合格13个,计算得到合格率为65.0%;一周后又抽取15个器械检测,合格10个,计算得到合格率为66.7%,分别进行检验,得到两总体率相等的结论,表明合格率没下降,两个合格率的平均值为65.85%,进行检验,得到两总体率不等的结论,表明合格率下降了。
应用统计学——假设检验书面作业和答案
![应用统计学——假设检验书面作业和答案](https://img.taocdn.com/s3/m/bb638138d15abe23492f4dc6.png)
假设检验作业1. 一种罐装饮料采用自动生产线生产,每罐的容量是255ml (总体的均值 ),标准差为5ml (总体的标准差)。
为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml (样本的均值)。
取显著性水平=0.05 ,检验该天生产的饮料容量是否符合标准要求? 解:正态,总体方差已经,大样本,Z 检验统计量,双侧检验 96.105.040/52558.255)1,0(~n /2552552010==-=-=≠=αασμμμZ N X Z H H :: 若计算的Z 值在(-1.96,1.96)之间,不能拒绝原假设,认为符合标准;反之,拒绝原假设,即产品不符合标准。
2. 某一小麦品种的平均产量为5200kg/hm2 。
一家研究机构对小麦品种进行了改良以期提高产量。
为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2 。
试检验改良后的新品种产量是否有显著提高? (a=0.05)解:不知是否正态总体,总体标准差未知,但因是大样本,可用Z 分布检验统计量,右侧检验(注意临界值或拒绝域的确定,用图形表示更清楚)645.105.036/12052005275)1,0(~n /52005200010==-=-=≤ααμμμZ N s X Z H H ::计算出的Z 值,若Z 值大于1.645则拒绝原假设;反之,不能拒绝原假设。
3. 一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为女性。
为验证这一说法是否属实,某研究部门抽取了由200人组成的一个随机样本,发现有146个女性经常阅读该杂志。
分别取显著性水平 a=0.05和a=0.01 ,检验该杂志读者群中女性的比率是否为80%?注意:(1)有些书,用大写的π表示总体比例。
(2) 不同的显著性水平,可能得出不同的结论。
假设检验例题
![假设检验例题](https://img.taocdn.com/s3/m/6be9f2377f21af45b307e87101f69e314232fa5f.png)
选择题在进行假设检验时,原假设(H₀)通常表述为:A. 总体参数等于某特定值(正确答案)B. 总体参数不等于某特定值C. 样本参数等于某特定值D. 样本参数不等于某特定值下列哪一项不是假设检验的基本步骤?A. 确定显著性水平B. 计算检验统计量C. 无限次重复实验(正确答案)D. 作出决策当样本量较大时,哪种分布常用于构造假设检验的统计量?A. 二项分布B. 正态分布(正确答案)C. 泊松分布D. 超几何分布在单侧检验中,拒绝域的位置取决于:A. 样本均值的大小B. 备择假设的方向(正确答案)C. 总体标准差D. 显著性水平的大小与方向无关第一类错误是指:A. 原假设为真时拒绝原假设(正确答案)B. 原假设为假时接受原假设C. 备择假设为真时拒绝备择假设D. 备择假设为假时接受备择假设在进行t检验前,需要满足的前提条件是:A. 总体方差已知B. 样本量必须大于30C. 样本数据来自正态分布总体(正确答案)D. 以上都不是假设检验中,P值的意义是:A. 原假设为真的概率B. 在原假设成立条件下,观测到当前或更极端结果出现的概率(正确答案)C. 备择假设为真的概率D. 以上都不是若显著性水平α=0.05,则拒绝域的面积占整个分布曲线的比例为:A. 0.05(正确答案)B. 0.95C. 0.025D. 依赖于具体分布形态在进行方差分析(ANOVA)时,若F统计量的值较大,则:A. 说明各组均值无显著差异B. 说明至少有一组均值与其他组有显著差异(正确答案)C. 一定存在误差项方差为零的情况D. 以上都不是必然结论。
假设检验例题及解析
![假设检验例题及解析](https://img.taocdn.com/s3/m/4dd06a177ed5360cba1aa8114431b90d6c858989.png)
选择题在进行假设检验时,如果原假设为真,而样本数据却导致我们拒绝了原假设,这种情况被称为:A. 第一类错误(正确答案)B. 第二类错误C. 第三类错误D. 无错误假设我们要检验某种药物是否能有效降低血压,原假设应为:A. 药物能降低血压B. 药物不能降低血压(正确答案)C. 药物对血压无影响D. 药物可能升高血压在单样本t检验中,如果计算出的t值大于临界t值,我们应该:A. 接受原假设B. 拒绝原假设(正确答案)C. 无法判断D. 重新进行试验假设检验中的P值表示的是:A. 原假设为真的概率B. 备择假设为真的概率C. 在原假设为真的条件下,观察到当前或更极端结果的概率(正确答案)D. 犯第二类错误的概率在进行两个独立样本的均值比较时,如果两个样本的方差未知且不相等,我们应使用:A. 单样本t检验B. 配对t检验C. Welch's t检验(正确答案)D. 方差分析假设检验中的显著性水平α通常设定为:A. 0.01B. 0.05(正确答案)C. 0.10D. 0.20在进行卡方检验时,如果计算出的卡方值小于临界卡方值,我们应该:A. 接受原假设(正确答案)B. 拒绝原假设C. 无法判断D. 需要更多数据假设我们要检验某种食品中是否含有某种有害物质,原假设应为:A. 食品中含有有害物质B. 食品中不含有害物质(正确答案)C. 食品中可能含有有害物质D. 食品中一定不含有害物质在进行假设检验时,如果犯第二类错误的成本远高于犯第一类错误的成本,我们应该:A. 提高显著性水平αB. 降低显著性水平α(正确答案)C. 保持显著性水平α不变D. 无法确定如何调整显著性水平α。
假设检验作业参考答案
![假设检验作业参考答案](https://img.taocdn.com/s3/m/ce5f0ac589eb172ded63b77d.png)
(4)计算检测统计量的值
2
n 1 S 2 30 1 2 103.11
02
0.752
(5)作出决策
2 103.11 42.557 ,落入拒绝域,故在 0.05 的显著性水平上拒绝 H 0 。
结论:有证据表明电视的使用寿命的方差显著大于视频录像设备的使用寿命的方差。
2
n=30, S =2, s0 = 0.75 = 0.5625 (1)提出假设
2 2 H0 : 2 0 ; H1 : 2 0
2
2
2
(2)构造检测统计量
n 1 S 2 2 n 1 2
2
0
(3)给定显著性水平 0.05 29 42.557 ,其拒绝域为 42.557, 。
(3)给定显著性水平 0.01 ,确定拒绝域。
0.01 , z0.01 2.33 ,其拒绝域为 2.33, 。
(4)计算检测统计量的值
z
x 0 7.25 6.70 3.11 s / n 2.5 / 200
(5)作出决策
z 3.11 2.33 ,落入拒绝域,故在 0.01 的显著性水平上拒绝 H 0 。
np 356 0.879 313 5 , np 1 p 356 0.879 1 0.879 37.81 5 。
本题为大样本下总体比例的双侧检验问题,应采取 Z 检验法。 (1)已知本题假设为
H 0 : 0.75; H1 : 0.75
n
p 0
0.879 0.75 0.75 1 0.75 356
5.63
(5)作出决策
习题八 假设检验答案
![习题八 假设检验答案](https://img.taocdn.com/s3/m/22d8735203d8ce2f006623a4.png)
习题八 假设检验一、填空题1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量t2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。
要检验假设0μμ=应用 U 检验法,检验的统计量是U =0H 成立时该统计量服从N (0,1) 。
3.要使犯两类错误的概率同时减小,只有 增加样本容量 ;4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X XX N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
(1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为X YU =0H 成立时该统计量服从 N (0,1) 。
(2)若X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为 X YT = ;当0H 成立时该统计量服从 (2)t m n +- 。
5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 2200:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-= ;当0H 成立时,该统计量服从 2(1)n χ- 。
6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X XX N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
要检验假设220:X Y H σσ=,应用 F 检验法,检验的统计量为 22X YS F S = 。
7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验假设22220010:;:;H H σσσσ=≠的拒绝域为 222(1)n αχχ≥-或222(1)n αχχ≤- ; 8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下,检验假设0010:;:H H μμμμ≥<的统计量为 X U = ,拒绝域为 {}U u α≤- 。
假设检验习题答案
![假设检验习题答案](https://img.taocdn.com/s3/m/ab2d2ba6ba4cf7ec4afe04a1b0717fd5360cb2d0.png)
单击此处添加副标题
汇报人姓名 汇报日期
目 录CATALOGUE
1 假设检验的基本概念 2 参数假设检验 3 非参数假设检验 4 习题答案与解析
ONE
1
假设检验的基本概念
定义与目的
判断该假设是否成 立,从而做出接受 或拒绝该假设的决 策。
假设检验是一种统计方法,用于根据样本数据对 某一假设进行评估。
假设检验的类型
单侧检验 只关注某一方向的假设是否成立。
参数检验 对总体参数进行假设检验。
双侧检验 同时关注两个方向的假设是否成立。
非参数检验 不涉及总体参数的假设检验。
ONE
2
参数假ቤተ መጻሕፍቲ ባይዱ检验
单参数假设检验
在单参数假设检验 中,我们通常会对 一个总体参数提出 假设,然后使用样 本数据来检验这个 假设。例如,我们 可能会假设一组数 据的平均值等于某 个值,然后使用样 本数据来检验这个 假设是否成立。
据是否符合正态分布、泊松分布等。
ONE
4
习题答案与解析
习题一答案与解析
答案:D
logo
解析:根据题目给出的数据,我们首先计 算出平均值和标准差。然后,利用假设检 验的方法,我们计算出Z统计量并确定其所 属的临界区间。根据临界区间的结果,我 们判断原假设是否被拒绝,并选择相应的 答案。
习题一答案与解析
秩次检验
详细描述
秩次检验将数据按照大小排序,并赋予每个数据 一个秩次值。然后比较两组数据的秩次分布是否 相同,以判断它们的相对大小关系。如果两组数 据的秩次分布相似,则可以认为它们的相对大小 关系相同;如果秩次分布不同,则可以认为它们 的相对大小关系不同。
秩次检验是一种非参数统计方法,用于比较两组 数据的相对大小关系。
(完整版)假设检验习题及答案
![(完整版)假设检验习题及答案](https://img.taocdn.com/s3/m/d5da176d941ea76e58fa04bd.png)
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。
取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50)=1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。
第六章 假设检验习题答案
![第六章 假设检验习题答案](https://img.taocdn.com/s3/m/d3dd18c8f61fb7360b4c6552.png)
不拒绝H0
P值 2P(t(19) 1.9323
| u 0.618) 0.06837 结论:
样本提供的证据表明:在显著性水平=0.05时能认为 该厂生产的工艺品框架宽与长的平均比率为0.618
• 一个著名的医生声称75%的女性所穿过的 鞋子过小,一个研究组织对356名女性进 行了研究,发现其中有313名女性所穿的
• 某种纤维原有的平均强度不超过6克,现希望通过改进工艺来提高 其平均强度。研究人员测得了100个关于新纤维的强度数据,发现其均 值为6.35。假定纤维强度的标准差仍保持为1.19不变,在5%的显著性 水平下对该问题进行假设检验。
1)选择检验统计量并说明其抽样分布是什么样的? 2)检验的拒绝规则是什么? 3)计算检验统计量的值,你的结论是什么?
•H0 : =0.618 •H1 : ≠ 0.618 • = 0.05
•n = 20 •临界值(c):
检验统计量:
t(19) x 0
sn
0.6583 0.618 1.9323 0.09327 20
拒绝 H0
0.025
拒绝 H0
0.025
-2.0930 0 2.0930
t
决策:
显著性水平=0.05时能否认为该厂生产的工艺
品框架宽与长的平均比率为0.618?
0.668
0.749 0.615 0.611
0.654 0.606 0.606
0.670 0.690 0.609
0.612 0.628 0.601
0.553 0.570 0.844 0.576 0.933
根据题意,提出假设:
根据题意,提出假设:
•H0 : ≤ 6 •H1 : > 6 • = 0.05
假设检验习题及答案
![假设检验习题及答案](https://img.taocdn.com/s3/m/332610dd852458fb760b5680.png)
假设检验习题及答案填空题1.原假设与备择假设是一个__________,也就是说在假设检验中原假设与备择假设只有一个成立,且必有一个成立。
(完备事件组)2.我们在检验某项研究成功与否时,一般以研究目标作为__________,如在研究新管理方法是否对销售业绩(周销售量)产生影响时,设原周销售量为A 元,欲对新管理方法效果进行检验,备择假设为__________。
(备择假设H1:μ>A)单选题从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断的过程称为( )A.参数估计B.统计推断C.区间估计D.假设检验答案:d2.假设检验的概率依据是( )。
A.小概率原理B.最大似然原理C.大数定理D.中心极限定理答案:a多选题1.统计推断包括以下几个方面的内容( )。
A.通过构造统计量,运用样本信息,实施对总体参数的估计B.从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断C.相关分析D.时间序列分析E.回归分析答案:a, b2.假设检验的基本思想是( )。
A.先对总体的参数或分布函数的表达式做出某种假设,然后找出一个在假设成立条件下出现可能性甚小的(条件)小概率事件。
B.如果试验或抽样的结果使该小概率事件出现了,这与小概率原理相违背,表明原来的假设有问题,应予以否定,即拒绝这个假设。
C.若该小概率事件在一次试验或抽样中并未出现,就没有理由否定这个假设,表明试验或抽样结果支持这个假设,这时称假设也实验结果是相容的,或者说可以接受原来的假设。
D.如果试验或抽样的结果使该小概率事件出现了,则不能否认这个假设。
E.若该小概率事件在一次试验或抽样中并未出现,则否定这个假设。
答案:a, b, c3.假设检验的具体步骤包括( )。
A.根据实际问题的要求,提出原假设及备择假设;B.确定检验统计量,并找出在假设成立条件下,该统计量所服从的概率分布;C.根据所要求的显着性水平和所选取的统计量,查概率分布临界值表,确定临界值与否定域;D.将样本观察值代入所构造的检验统计量中,计算出该统计量的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 假设检验(练习及习题标准答案) 一、单项选择题1.当总体服从正态分布,但总体方差未知小样本的情况下,0100:;:μμμμ〈≥H H ,则0H 的拒绝域为( ) A.)1(-≤n t t α B. )1(--≤n t t α C. )1(--〉n t t α D. )1(/2--≤n t t α 2.在假设检验中,原假设0H ,备选假设1H ,则称( )为犯第二类错误。
A.0H 为真,不拒绝1H B. 0H 为真,拒绝1H C. 0H 不真,不拒绝0H D. 0H 不真,拒绝0H 3.假设检验是对未知总体某个特征提出某种假设,而验证假设是否成立的资料是( )。
A.样本资料B.总体全部资料C.重点资料D.典型资料4.下列对总体特征值θ的假设,哪一种写法是正确的?( )。
A. 0100:;:θθθθ〈≥H HB. 0100:;:θθθθ≤≥H HC.0100:;:θθθθ〈≤H HD.0100:;:θθθθ≥=H H 5. 一家食品生产企业声称,它们生产的某种食品的合格率在95%以上。
为检验这一说法是否属实,某食品安全检测部门打算抽取部分食品进行检验,该检验的原假设和备择假设为( )A. %95:%;95:10〉≤ππH HB. %95:%;95:10≠=ππH HC. %95:%;95:10〈≥ππH HD. %95:%;95:10≥〉ππH H6.对于非正态总体,使用统计量/x z s n =估计总体均值的条件是( )A .小样本B .总体方差已知C .总体方差未知D .大样本7.在假设检验中,原假设和备选假设( )A .都有可能成立B .都有可能不成立C .只有一个成立而且必有一个成立D .原假设一定成立,备选假设不一定成立8.一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A .0:5H μ=,1:5H μ≠ B .0:5H μ≠,1:5H μ>C .0:5H μ≤,1:5H μ>D .0:5H μ≥,1:5H μ< 9.若检验的假设为00:H μμ≥,10:H μμ<,则拒绝域为( ) A .z z α> B .z z α<- C ./2z z α<-或/2z z α<- D .z z α>或z z α<-10.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程不超过24000公里。
假定这位经销商要检验假设0:24000H μ≤,1:24000H μ>,取显著水平为α=0.01,并假设为大样本,则此项检验的拒绝域为( )A . 2.33z >B . 2.33z <-C . 2.33z >D . 2.33z = 二、多项选择题1.假设检验涉及两类错误,第Ⅰ类错误发生的概率记作α,第Ⅱ类错误发生的概率记作β,下面陈述正确的是( )A.第Ⅰ类错误也称为弃真错误,第Ⅱ类错误称作取伪错误B.第Ⅰ类错误称作取伪错误,第Ⅱ类错误称作弃真错误C.在一定样本容量下,减少α会引起β增大D.在增大样本容量的条件下,就会使使α、β同时减小E.在一定样本容量下,减少β不会引起α增大 2.下列关于假设检验的陈述正确的是( )A.假设检验实质上是对原假设进行检验B.假设检验实质上是对备择假设进行检验C.当拒绝原假设时,只能认为肯定它的根据尚不充分,而不是认为它绝对错误D.假设检验并不是根据样本结果简单地判断原假设和备择假设哪一个更有可能正确E.当不拒绝原假设时,只能认为否定它的根据尚不充分,而不是认为它绝对正确3.在假设检验中,显著性水平α表示( )A.不拒绝0H ,0H 不真B.拒绝0H ,0H 为真C. 拒绝1H ,1H 为真D.取伪概率E. 弃真概率 4.假设检验中的两类检验错误是指( ) A.弃真错误 B.第一类错误 C.取伪错误D.第二类错误E.以上全对5.显著性水平与检验拒绝域关系( )A.显著性水平提高,意味着拒绝域缩小B.显著性水平降低,意味着拒绝域扩大C.显著性水平提高,意味着拒绝域扩大D.显著性水平降低,意味着非拒绝域缩小E.显著性水平降低,意味着拒绝域缩小 三、简答题:1.什么是显著性水平?显著性水平与置信水平有何关系?2.试述假设检验的一般步骤。
3.单侧检验与双侧检验的区别?4.怎样正确运用单侧检验和双侧检验?四、计算题1. 机器包装食盐,每袋净重量X (单位:克)服从正态分布,规定每袋净重量为500克,标准差不能超过10克。
某天开工后,为检验机器工作是否正常,从包装好的食盐中随机抽取9袋,测得其平均净重量为499克,03.16=s 克。
以显著性水平α=0.05检验这天包装机工作是否正常?2. 从某厂生产的产品中随机抽取200件样品进行质量检验,发现有9件不合格品,问是否可以认为该厂产品的不合格率不大于3%?(取显著性水平05.0=α)3.一种元件,要求其平均寿命不小于1000小时,现在从一批这种元件中随机抽取25件,测得平均寿命为 950 小时,已知这种元件寿命服从 σ =100小时的正态分布,试在显著性水平 α = 0.05 条件下确定这批元件是否合格.4.某工厂生产一批产品,要求次品率不超过10%,如果从产品中抽取50件,发现有8件次品,可否认为这批产品合格(取α=0.05)?5.一种机床加工的零件尺寸绝对平均误差允许值为1.35mm 。
生产厂家现采用一种新的机床进行加工以期进一步降低误差。
为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验,得出均值为 1.3152 mm ,标准差为0.365749 mm 。
利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是 否有显著降低? (α=0.01)练习及习题标准答案一、单项选择题1.B2.C3.A4.A5.C6.D7.C8.A9.B 10.A二、多项选择题1.ACD2.ACDE3.BE4.ABCDE5.ABD三、简答题:1.显著性水平,通常以α表示,是一个临界概率值。
它表示在假设检验中,用样本资料推断总体时,当原假设0H 为真时,由于样本的随机性使得样本检验统计量落在了拒绝域内,犯拒绝原假设的错误的概率,亦称弃真概率。
置信水平,也叫置信度。
是指总体参数值落在样本统计值某一区内的概率;通常以1-α表示。
2.(1)提出原假设和备择假设(2)确定显著性水平α,并根据样本统计量的概率分布确定原假设0H 的不拒绝域和拒绝域(3)选择检验统计量,并根据样本数据计算出检验统计量(4)比较检验统计量和临界值,做出决策3.单侧检验指按分布的一侧计算显著性水平概率的检验。
用于检验大于、小于、高于、低于、优于、劣于等有确定性大小关系的假设检验问题。
这类问题的确定是有一定的理论依据的。
假设检验写作:0100:;:μμμμ〈≥H H 或0100:;:μμμμ〉≤H H 。
双侧检验指按分布两端计算显著性水平概率的检验, 应用于理论上不能确定两个总体一个一定比另一个大或小的假设检验。
一般假设检验写作0100:;:μμμμ≠=H H 。
4.答:单双侧检验首先应根据专业知识来确定,同时也应考虑所要解决的目的。
若从专业知识判断一种统计方法的结果可能低于或高于另一种方法的结果,则用单侧检验;在尚不能从专业知识判断两种结果谁高谁低时,用双侧检验。
若研究者对低于或高于两种结果都不关心,则用双侧检验;若仅关心其中一种可能,则取单侧检验。
一般认为双侧检验较保守和稳妥,单侧检验由于充分利用了另一侧的不可能性,故更易得出有差别的结论,但应慎用。
四、计算题1.解:检验包装机工作是否正常,就是要检验是否均值为500:1≠μH ,方差是否为22110:〉σH 。
(1)首先检验均值是否为500=μ设0H :500=μ; 1H :500≠μ根据显著性水平α,并根据样本统计量的概率分布确定原假设0H 的拒绝域和非拒绝域。
对显著性水平05.0=α,查表得31.2)8()1(025.02/==-t n t α。
所以拒绝域)1(2/-〉n t t α 由于499=x ,03.16=s ,由于2σ未知,选统计量t ,根据样本数据计算出检验统计量 187.03/03.16500499/0=-=-=n s x t μ0.187<2.31,所以不拒绝0H ,认为每袋平均重量为500克。
(2)其次检验方差是否为2210〉σ设0H :2210≤σ; 1H :2210>σ根据题意,选2χ统计量:)1(~)1(22022--=n Sn χσχ对显著性水平05.0=α,查表得5.15)8()1(205.02==-χχαn , )1(5.1556.20100257822-=>=⨯=n αχχ拒绝0H ,认为标准差大于10。
结论:尽管包装机没有系统误差,但是工作不够稳定,因此这天包装机工作不正常。