化合物的标准热力学数据

化合物的标准热力学数据
化合物的标准热力学数据

热力学一般关系(热学高等数学偏微分)

第二部分工质的热力性质 六热力学函数的一般关系式 由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。 这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。 热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性 对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。从数学上说,状态函数必定具有全微分性质。这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。下面我们扼要介绍全微分的一些基本定理。

设函数),(y x f z =具有全微分性质 dy y z dx x z dz x y ? ??? ????+??? ????= (6-1) 则必然有 (1) 互易关系 令式(6-1)中 ),(y x M x z y =???? ????, ),(y x N y z x =???? ???? 则 y x x N y M ???? ????=? ??? ???? (6-2) 互易关系与 ?=0 dz 等价。它不仅是全微分的必要条件 ,而且是充分条件。因此,可反过来检验某一物理量是否具有全微分。 (2) 循环关系 当保持z 不变,即0=dz 时,由式(6-1),得 0=???? ????+??? ????z x z y dy y z dx x z

则 x y z y z x z x y ???? ???????? ????- =???? ???? 故有 1-=???? ???????? ???????? ????y z x z x x y y z (6-3) 此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。 (3) 变换关系 将式(6-1)用于某第四个变量ω不变的情况,可有 ωωωdy y z dx x z dz x y ? ??? ????+??? ????= 两边同除以ωdx ,得 ω ω??? ????? ??? ????+??? ????=??? ????x y y z x z x z x y (6-4) 式中:y x z ??? ????是函数),(y x z 对x 的偏导数;ω??? ????x z 是以),(ωx 为 独立变量时,函数),(ωx z 对x 的偏导数。上面的关系可用于它们之间的变换。这一关系式对于热力学公式的推导十分重要。

光子气体与它的热力学函数关系

目录 1引言 (1) 2热辐射和平衡辐射 (1) 3 用能量均分定律讨论热辐射 (3) 4 热力学量的统计表达式 (5) 4.1总分数和能的统计表达式 (5) 4.2广义作用力的统计表达式 (6) 4.3熵的统计表达式 (6) 5 光子气体的热力学函数 (7) 6 结论 (8) 参考文献 (9) 致谢 (10)

光子气体与它的热力学函数关系 摘要:早在1900年,马克斯·普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一分的能量为hv,1905年阿尔伯特·爱因斯坦进一步提出光除了波动性之外还具有粒子性,他指出电子辐射不仅在被发射吸收时以能量为hv的微粒形式出现,而且以这种形式以速度c在空间运动这种粒子称之为光量子;普朗克和爱因斯坦的光量子理论直到1924年康普顿成功地用光量子概念解释了x光被物质散射是波长变化的康普顿效应,从而光量子概念被广泛接受和应用1926年正式名称为光子。光子不但具有能量,而且具有动量,光子的静止质量为零。 该文论述了光子气体热力学函数并根据光子气体巨配分函数推导出热力学函数能、压强、熵、焓、自由能和吉布斯函数以及物态方程。 关键词:光子;热辐射;巨配分函数;熵;压强。

1引言 早在1900年,马克斯.普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一分的能量为hv,1905年阿尔伯特.爱因斯坦进一步提出光除了波动性之外还具有粒子性,他指出电子辐射不仅在被发射吸收时以能量为hv的微粒形式出现,而且以这种形式以速度c 在空间运动这种粒子称之为光量子;普朗克和爱因斯坦的光量子理论直到1924年康普顿成功地用光量子概念解释了x光被物质散射是波长变化的康普顿效应,从而光量子概念被广泛接受和应用1926年正式名称为光子。光子不但具有能量,而且具有动量,光子的静止质量为零。近代物理理论研究表明,辐射除了具有波动性质外,还具有微粒性质,辐射场可看成是有各种频率的电磁波所组成,也可以将其视为是光子的集合是光子气体。光子气体也普通气体一样按一定规律分布(波色分布),但与普通气体相比有着如下差异:(1)光子随时在产生或漂灭,故粒子数不能固定;(2) 由于光子具有相同的速度(光速) ,故不存在速度分布;(3)普通气体分子之间按速度的平衡分布,是通过分子之间相互碰撞与相互作用机制实现的.而光子气体中的光子彼此并不碰撞,其间的平衡分布,只在辐射场中有某种能够吸收和辐射光子的物体存在时才能建立起来.在吸收或辐射过程中,一种频率的光子将转变成另一种频率的光子.正是光子气体与普通气体之间的这些差异,从而导致光子气体具有与普通气体不同的热力学性质和特征函数。 2热辐射和平衡辐射 只要温度不是绝对零度,任何物体的表面都会向外发射各种波长的,频谱为连续的电磁波。温度升高,物体在单位时间从单位面积表面上向外发射的辐射总能量也之增加。一定时间辐射能量随波长的分布也与温度有关,简单来说爱热的固体会辐射电磁波,称为热辐射。一般情形下热辐射的强度和强度按频率的分布与辐射体的温度和性质有关。如果辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,于热辐射的其它特性无关,称为平衡辐射。. 考虑一个封闭的空窖,窖壁保持一定的温度T。窖壁将不断向空窖发射并吸收电磁波,窖辐射场与窖壁达到平衡后,二者具有共同的温度,显然空窖的辐射就是平衡辐射。 平衡辐射包含各种频率,沿各个方向传播的电磁波.这些电磁波的振幅和相位

标准热力学数据

标准热力学数据(298.15K) https://www.360docs.net/doc/8413259772.html, 2005-6-7 20:58:37 来源:生命经纬 化学式(状态)H G S 氢(hydrogen) H2(g)0 0 130.57 H+(aq)0 0 0 锂(lithium) Li(s)0 0 29.12 Li+(aq)-278.49 -293.30 13.39 Li2O(s)-597.94 -561.20 37.57 LiCl(s)-408.61 -384.38 59.33 钠(sodium) Na(s)0 0 51.21 Na+(aq)-240.12 261.89 58.99 Na2O(s)-414.22 -375.47 75.06 NaOH(s)-425.61 -379.53 64.45 NaCl(s)-411.65 -384.15 72.13 钾(potassium) K(S)0 0 64.18 K+(aq)-252.38 -283.26 102.51 KOH(s)-424.76 -379.11 78.87 KCl(s)-436.75 -409.15 82.59 铍(beryllium) Be(s)0 0 9.50 BeO(s)-609.61 -580.32 14.14 镁(magnesium) Mg(s)0 0 32.68 Mg2+(aq)-466.85 -454.80 -138.07 MgO(s)-601.70 -569.44 27.91 Mg(OH)2(s)-924.54 -833.58 63.18 MgCl2(s)-641.32 -591.83 89.62 MgCO3(s)-1095.79 -1012.11 65.69 钙(calcium) Ca(s)0 0 41.42 Ca2+(aq)-542.83 -553.54 -53.14 CaO(s)-635.09 -604.04 39.75 Ca(OH)2(s)-986.09 -898.56 83.39

热力学基本状态参数

功和热量 1-1 工质和热力系 一、工质、热机、热源与冷源 1、热机(热力发动机):实现热能转换为机械能的设备。 如:电厂中的汽轮机、燃气轮机和内燃机、航空发动机等。 2、工质:实现热能转换为机械能的媒介物质。 对工质的要求: 1)良好的膨胀性; 2)流动性好;3)热力性质稳定,热容量大;4)安全对环境友善;5)价廉,易大量获取。如电厂中的水蒸汽;制冷中的氨气等。 问题:为什么电厂采用水蒸汽作工质? 3、高温热源:不断向工质提供热能的物体(热源)。 如电厂中的炉膛中的高温烟气 4、低温热源:不断接收工质排放热的物体(冷源) 如凝汽器中的冷却水 二、热力系统 1、热力系统和外界概念 热力系:人为划分的热力学研究对象(简称热力系)。 外界:系统外与之相关的一切其他物质。 边界:分割系统与外界的界面。在边界上可以判断系统与外界间所传递的能量和质量的形式和数量。边界可以是实际的、假想的、固定的,或活动的。 注意:热力系的划分,完全取决于分析问题的需要及分析方法的方便。它可以是一个设备(物体),也可以是多个设备组成的系统。 如:可以取汽轮机内的空间作为一个系统,也可取整个电厂的作为系统。 2、热力系统分类 按系统与外界的能量交换情况分 1)绝热系统:与外界无热量交换。 2)孤立系统:与外界既无能量(功量、热量)交换,又无质量交换的系统。 注意:实际中,绝对的绝热系和孤立系统是不存在的,但在某些理想情况下可简化为这两种理想模型。这种科学的抽象给热力学的研究带来很大的方便。 如:在计算电厂中的汽轮机作功时,通常忽略汽缸壁的散热损失,可近似看作绝热系统。状态及基本状态参数 状态参数特点

热力学基本状态参数

热力学基本状态参数 功和热量 1-1 工质和热力系 一、工质、热机、热源与冷源 1、热机(热力发动机):实现热能转换为机械能的设备。 如:电厂中的汽轮机、燃气轮机和内燃机、航空发动机等。 2、工质:实现热能转换为机械能的媒介物质。 对工质的要求: 1)良好的膨胀性; 2)流动性好;3)热力性质稳定,热容量大;4)安全对环境友善;5)价廉,易大量获取。如电厂中的水蒸汽;制冷中的氨气等。 问题:为什么电厂采用水蒸汽作工质? 3、高温热源:不断向工质提供热能的物体(热源)。 如电厂中的炉膛中的高温烟气 4、低温热源:不断接收工质排放热的物体(冷源) 如凝汽器中的冷却水 二、热力系统 1、热力系统和外界概念 热力系:人为划分的热力学研究对象(简称热力系)。 外界:系统外与之相关的一切其他物质。 边界:分割系统与外界的界面。在边界上可以判断系统与外界间所传递的能量和质量的形式和数量。边界可以是实际的、假想的、固定的,或活动的。 注意:热力系的划分,完全取决于分析问题的需要及分析方法的方便。它可以是一个设备(物体),也可以是多个设备组成的系统。 如:可以取汽轮机内的空间作为一个系统,也可取整个电厂的作为系统。 2、热力系统分类 按系统与外界的能量交换情况分 1)绝热系统:与外界无热量交换。 2)孤立系统:与外界既无能量(功量、热量)交换,又无质量交换的系统。 注意:实际中,绝对的绝热系和孤立系统是不存在的,但在某些理想情况下可简化为这两种理想模型。这种科学的抽象给热力学的研究带来很大的方便。 如:在计算电厂中的汽轮机作功时,通常忽略汽缸壁的散热损失,可近似看作绝热系统。状态及基本状态参数 状态参数特点 u状态参数仅决定于状态,即对应某确定的状态,就有一组状态参数。反之,一组确定的

第五讲热力学函数法

第五讲热力学函数法 讲授内容:教科书§1.9-10 学时:6 教学方法:结合课件中的文字、画图、公式进行讲授;通过习题课使学生熟悉用热力学函数解决问题的方法 教学目的:1使学生熟悉热力学基本方程和基本不等式的应用,掌握热力学函数法的基本精神,会在典型热效应之间建立联系,会用热力学方法计算简单系统的热力学函数。 教学重点:热力学函数法的基本精神 教学难点:应用导数变换方法建立不同热效应之间的联系。本讲吸取国内对此内容的教学经验,将问题归纳为几种典型,通过较多的练习和习题课,使难点得以突破。 教学过程: 一热力学函数与典型过程(70分钟)(字幕) 引言:通过前面的讨论,我们在热力学定律和统计规律的基础上引进了两个基本的态函数——内能和熵。从原则上讲,利用这两个热力学函数再加上物态方程可以解决宏观热现象的一般问题。然而在实际操作上并不都很方便。例如在绝热过程中(字幕),外界对系统作的功等于系统内能的U A-U B=W (字幕)通过末态B与初态A内能之差可以直接得到功。根据熵增原理dS≥0(字幕)可以判断不可逆绝热过程的进行方向(字幕)。可是很多过程并不是绝热的,对于经常遇到的等温过程或等温等压过程就无法直接运用内能和熵解决上述问题。本节将引入几个新的热力学函数使问题得到简洁地处理。 1焓与等压过程:(字幕)

1.1等压过程中的功: (字幕)如果系统只有V 作为外参量,在等压过程中外界对系统的功W=-P 0(V B -V A )=-P 0ΔV (字幕) 1.2焓与等压过程中的热量: (字幕)ΔU=U B -U A =Q-P 0ΔV (字幕)移项得Δ(U+P 0V)=Q (字幕)不管等压过程是否可逆,只要初末态是平衡态,系统在初末态的压强P =P 0,引入新的热力学函数——焓H=U+PV (字幕)则ΔH=Q (字幕) 对于初末态为平衡态的无穷小过程则有dH=δQ (字幕)焓是广延量,具有和内能相同的量纲。焓具有明显的物理意义:在没有非体变功的等压过程中系统吸收的热量等于系统焓的增加,系统放出的热量等于系统焓的减少。(字幕)通过末态与初态焓的差就可以算得系统在等压过程中吸收的热量。 1.3焓的全微分式: (字幕)在热力学基本方程两端加d(PV),即 d U P V T d S P d V d P V ()()+=-+ 于是有 d H T d S Vd P =+ (字幕) 上式是以熵S 和压强P 为独立变量时焓的全微分表达式。有时,使用它讨论等压过程的问题比使用基本方程更为方便。通常,H(S,P)的全微分为 dH H S dS H P dP P S =+(/)(/)???? 两式对照即有(/)??H S T P =, (/)??H P V S = 。(字幕) 1.4定压热容:(字幕)系统的定压热容 C li m H T )H T )P T P ==→???0(/(/?? 对于等压过程, dH T dS Q C dT P ===δ 定压热容又可以由下式算得C H T T S T P P P ==(/)(/)???? (字幕) 2自由能与等温过程:(字幕) 2.1自由能与等温过程的功:(字幕)对于等温过程,将热力学基本不等式移项可得

《实用无机物热力学数据手册》使用说明

《实用无机物热力学数据手册》 使用说明 1 关于化学反应吸热(或放热)量的计算 1.1计算公式 根据《手册》P.21式(70):

()()298G G G G G G T T 298T 298H H H -H H -H ?????=?+-????∑∑iiii生成物反物 nn (1.1) 式中: T G H ?——应理解为实际状态(101.325kPa ,T K )下的定压化学反应热P,T Q 。在反应前后温度T 相同时,(因压力均为101.325kPa )故也可理解为定压化学反应热效应。 化学反应热效应与反应热的区别仅仅在于:热效应是状态量(反应前后的温度、压力必须相同),而反应热是过程量(反应前后的温度、压力不一定相同)。 298 G H ?——为热化学标准状态(101.325kPa ,298K )下,生成物与反应物的标准生成焓298G H 之差。按下式计算: ()()298G G G 298298H H H ?????=-????∑∑iiii生成物反物 nn (1.2) ( )G G T 298H -H ????∑i i生成物 n——化学反应的每个生成物,从反应温度T K 降温到298K 的焓变(放热量)之和。 ( )G G T 298H -H ????∑i i反物 n——化学反应的每个反应物,从298K 升温到反应温度T K 的焓变(吸热量)之和。 ()G 298H ???? ∑i i 生成物 n——化学反应的每个生成物,从反应温度T K 降温到298K 的焓变 (放热量)之和。 ()G 298H ???? ∑i i 反物 n——化学反应的每个反应物,从298K 升温到反应温度T K 的焓变 (吸热量)之和。 ()G G T 298H -H i——单个生成物从反应温度T K 降温到298K 的焓变,或单个反应物从 298K 升温到反应温度T K 的焓变。 in——单个生成物(或单个反应物)的化学计量系数,即:化学反应方程式中,该物质的分子式前面的系数(也就是参与反应的该物质的摩尔数)。 1.2 吸热反应或放热反应的判定 根据式(1.1):当0G T H ?>时,表示系统能量增加,为吸热反应;当0G T H ?<时,表示系统能量减少,为放热反应。 1.3 对计算公式的分析 对于式(1.1):反应热G T H ?主要体现在298G H ?之中,即298G H ?为主要部分;而()()G G G G T 298T 298H -H H -H ????-????∑∑iiii生成物反物nn相当于是对298G H ?进行温度修正,为次要部分。

热力学与统计物理第二章知识归纳

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 ?焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分

(4) 从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2)H(S,P)

同(2)式相比有 由得(8) (3)F(T,V) 同(3)式相比 (9) (4)G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。

热力学函数意义,应用

一、热力学函数: 1、热力学能(U): 意义:反映了处于一定状态下的系统内部的能量总和。 应用:其本身无实际应用意义,但是热力学能变,即△U,可以反映系统变化前后的能量变化,其变化只与系统始终状态有关而与过程的具体途径无关。即△U等于系统与环境之间的能量传递。△U=W+Q。△U>0表明系统吸收了能量, △U<0表明系统放出了能量。 2、焓(H): 意义:热力学中将(U+pV)定义为焓,其本身并无明确的物理意义。 应用:H= U+pV,因而,焓就和热力学能一样,无实际意义,但是焓变△H却很有应用意义,Q p =H2-H1 =△H反映了在恒温恒压只做体积功的封闭系统中,系统吸收的能量全部用于增加系统的焓。△H>0表明系统吸热,△H<0则表明系统放热。即可以用其表示恒压条件下系统放出的或吸收的热量多少,实践证明,即使有气体参加的反应,p△V也很小,即△H≈△U,因而,在没有△U数据时,可以暂时用△H代替。 3、熵(S): 意义:熵反映了在一定状态下系统混乱度的大小。 应用:熵变△S却反映了系统变化前后混乱度的变化,0 K时,纯物质完美晶体的微观粒子熵为0,即S m* (B,0 K)=0,因而可以以此为基准,确定其他温度下物质的熵,△r S m(B)= S m(B,T)- S m* (B,0 K)= S m(B,T)。 4、吉布斯函数(G): 意义:吉布斯函数和焓一样,本身没有明确的物理意义,热力学中将H-TS规定为吉布斯函数。 应用:其本身无实际用途,但是其变化,即△G=△H-T△S,反映了在恒温恒压非体积功等于零的自发过程中,其焓变、熵变和温度三者的关系。△G的大小可作为判断反应能否自发进行的判据。即: △G<0 自发进行 △G=0 平衡状态 △G>0 不能自发进行(其逆过程是自发的)即根据△H,T,△S可以计算出△G,用于判断反应的可行性。 二、解离常数(K): 意义:反映了物质在溶液中电解能力的大小。 应用:常用的是电解质在水中的解离常数,如果是酸,跟据其解离常数可以计 算出溶液的解离常数大小,进而可以判断其酸碱性强弱或者直接换成pH的大小,碱也是如此。另外,只要知道弱电解质的解离度大小,根据其浓度,就能计算出其溶液中离子的浓度。跟据加入的电解子的离子,还可以计算出溶解平衡的移动方向,即同离子效应。 三、溶度积(K sp): 意义:反映了难容电解质的饱和溶液中,个离子活度幂次方的乘积大小,从而反映出该物质溶解能力的大小。 应用:1、根据溶度积原理,可以判断沉淀平衡移动的方向。 Q i >K sp 溶液为过饱和溶液,平衡向生成沉淀的方向移动。

热力学数据

https://www.360docs.net/doc/8413259772.html,/data/2006/0822/article_4750.htm 国外的.这是在线免费查热力学的数据库. https://www.360docs.net/doc/8413259772.html,/show/download/shtml/014965.shtml 这个则是150页的许多种有机物的热力学数据. https://www.360docs.net/doc/8413259772.html,/ 化学数据库https://www.360docs.net/doc/8413259772.html,7KMWeWFuZ2Rvbmd5dQ==Ir0z ---清风小木虫 1. 化合物毒性相关数据库 Toxnet https://www.360docs.net/doc/8413259772.html,/ 2毒性物质与健康和环境数据库https://www.360docs.net/doc/8413259772.html,/efdb/TSCA TS.htm 3. 急性毒性数据库https://www.360docs.net/doc/8413259772.html,/data/acute/acute.html 4. SpectraOnline,Galact https://www.360docs.net/doc/8413259772.html,/SpectraOnline/Default_ie.htm 5. 药物使用指南,USP DI https://www.360docs.net/doc/8413259772.html,/medlineplus/druginformation.html 6。美国常用药物索引库RxList https://www.360docs.net/doc/8413259772.html,/ 7. 有机化合物光谱资料库系统http://www.aist.go.jp/RIODB/SDBS/menu-e.html 8. NIST的Chemistry WebBook https://www.360docs.net/doc/8413259772.html,/chemistry/ 9. 化合物基本物性库https://www.360docs.net/doc/8413259772.html, 10. 化学物质热力学数据https://www.360docs.net/doc/8413259772.html,/databases/key1.html 11. 溶剂数据库SOLV-DB https://www.360docs.net/doc/8413259772.html,/solvdb.htm 12. 三维结构数据库NCI-3D https://www.360docs.net/doc/8413259772.html,/nci3d/ 13. 有机合成手册数据库https://www.360docs.net/doc/8413259772.html,/ 14. Beilstein Abstracts https://www.360docs.net/doc/8413259772.html,/databases/belabs 15. 有机合成文献综述数据库 https://www.360docs.net/doc/8413259772.html,/ ... als/info/index.html 16. 预测LogP和LogW https://www.360docs.net/doc/8413259772.html,/ 17. 物性、质谱、晶体结构数据库http://factrio.jst.go.jp/ 18. 网上光谱资料库https://www.360docs.net/doc/8413259772.html,/SpectraOnline/Default_ie.htm 19. 中国科学院学位论文数据库https://www.360docs.net/doc/8413259772.html,/cgrs 全球实用化学化工期刊和数据库网址 资源名称:AIChE(美国化学工程师协会) 资源地址:https://www.360docs.net/doc/8413259772.html,/ 获取途径:部分资源可免费查阅 资源名称:American Chemical Society(美国化学学会网站) 资源地址:https://www.360docs.net/doc/8413259772.html,/ 获取途径:大部分资源可免费查阅,34种期刊(https://www.360docs.net/doc/8413259772.html,/about.html)全部免费阅览全文。 精选网络化学资源之一常用资源 ? A. 元素周期表WebElements - https://www.360docs.net/doc/8413259772.html,/ B. 化合物性质(MSDS) ChemFinder服务https://www.360docs.net/doc/8413259772.html,/

配分函数与热力学函数的关系

第七章统计热力学基础 教学目的与要求: 通过本章的教学使学生初步了解统计热力学的基本研究方法,各种独立子系统的微观状态数的求法,不同系统的统计规律,系统的各热力学函数的表示式,配分函数的计算,固体的热容理论导出的基本思路。 重点与难点: 统计热力学的基本研究方法,不同系统的微观状态数的计算,玻尔兹曼分布律的含义,系统的热力学函数的表示式,配分函数的计算,不同的固体热容理论的基本方法。 §7.1 概论 统计热力学的研究任务和目的 统计力学的研究对象是大量微观粒子所构成的宏观系统。从这一点来说,统计热力学和热力学的研究对象都是一样的。但热力学是根据从经验归纳得到的四条基本定律,通过演绎推理的方法,确定系统变化的方向和达到平衡时的状态。由于热力学不管物质的微观结构和微观运动形态,因此只能得到联系各种宏观性质的一般规律,而不能给出微观性质与宏观性质之间的联系。而统计热力学则是从物质的微观结构和基本运动特性出发,运用统计的方法,推导出系统的宏观性质,和变化的可能方向。 统计力学的研究方法是微观的方法,它根据统计单位(微粒)的力学性质如速度、动量、位置、振动、转动等,用统计的方法来推求系统的热力学性质,例如压力、热容、熵等热力学函数。统计力学建立了体系的微观性质和宏观性质之间的联系。从这个意义上,统计力学又可称为统计热力学。 相对于热力学,统计力学对系统的认识更深刻,它不但可以确定系统的性质,变化的方向和限度,而且还能确定系统的性质的微观根源,这一点要比热力学要深刻。对于简单系统,应用统计热力学的方法进行处理,其结果是令人满意的。当然统计热力学也有自身的局限性,由于统计力学要从微观粒子的基本运动特性出发,确定系统的状态,这就有一个对微观粒子的运动行为的认识问题。由于人们对于物质结构的认识不断深化,不断地修改充实物质结构的模型,所对统计理论和统计方法也要随之修改,所以统计理论是一种不断发展和完善的。同时模型本身也有近似性,所以由此得到的结论也有近似性。从历史的发展来看,最早是由玻兹曼(Boltzmann)以经典力学为基础建立的统计方法,称为经典统计热力学。1900 年普朗克(Planck)提出了量子论,麦克斯韦(Maxwell)将能量量子

化工热力学常用数据手册

常用数据手册 D. R. Lide,“CRC Handbook of Chemistry and Physics”,77th ed.,Chemical Rubber Co, 该手册是美国化学橡胶公司(Chemical Rubber Co,简称CRC)出版的一部著名化学和物理学科的工具书。它初版于1913年,以后逐年改版,内容不断完善更新。该手册资料丰富,查阅方便,为人们提供了可靠的常用基础数据。 全书由目录、正文、附录和索引组成,正文分16个部分。其中: 第3部分是有机化合物的物理常数。主要内容是有机化合物的物理常数表,收录了1.5万多种有机化合物的物理常数。 第4部分是元素和无机化合物的性质。主要内容为元素和各种化合物的物理和化学性质、无机化合物的物理常数表。 第5部分是热力学、电化学和动力学。主要内容有化学物质的标准热力学性质、某些有机化合物的燃烧焓、无机化合物的融化焓、电解质水溶液的当量导电率、电解质的溶解焓等。 第6部分是流体的性质,汇集了流体的各种物理和化学数据。主要内容有流体的热物理性质、蒸气压、气体在水中的溶解度、某些化合物的临界常数、沸点、熔点、无机物和有机物的气化焓、共沸混合物、流体的粘度等。 第7部分是生物化学和营养。 第8部分是分析化学,包括试剂的制备、酸碱盐的标准溶液、有机分析试剂、酸碱指示剂、荧光指示剂、电化次序、酸碱在水溶液中的解离常数,溶解度表等。 J. A. Dean; “L ange’s Handbook of chemistry”,14th ed,McGraw-Hill New York,1992 这是一本著名的化学数据手册,1934年发行第一版。正文以表格形式为主,共分为11个部分。其中有(9)热力学性质和(10)物理性质。每一部分的前面有目次表,书末有主题索引。 该手册的第13版有中译本,名为《兰氏化学手册》,由尚久方等翻译,1991年3月科学出版社出版。 R. C. Reid et.al.,“The properties of Gases and Liquids,” Fourth ed.,McGraw-Hill,New York,1987 该书共分11个部分:(1)物理性质的估算;(2)纯组分常数,包括临界性质、偏心因子、沸点、熔点及偶极矩;(3)纯气体的PVT关系;(4)混和物的容积性质;(5)热力学性质;(6)理想气体热力学性质;(7)纯液体的蒸气压和蒸发焓;(8)多组元系统的流体相平衡;(9)粘度;(10)导热系数; (11)表面张力。书后附有468种物质的物性数据表,涉及了几乎所有类型的热力学性质。国内外

热力学参数优化评估的标准规程-USTB

热力学参数优化评估的标准规程 The standard regulations for the assessment of thermodynamic parameters (讨论稿) 2011年10月11日

前言 本规程主要针对Thermo-Calc热力学计算软件的使用群体。 本规程阐述了对相图及热力学数据的搜集、常用热力学模型的选取、热力学参数的优化和数据库的建立。 本规程的起草单位:北京科技大学材料科学与工程学院材料相平衡与新材料设计梯队。 本规程的主要起草人:王金三博士,李长荣教授。

热力学参数优化评估的标准规程 1 范围 本规程中数据库文件的格式是以Thermo-Calc热力学计算软件中的数据库标准格式为准。 本规程采用了CALPHAD(CALculation of PHAse Diagram)技术。 2 术语和定义 2.1 相图计算技术Calculation of phase diagram,简写为CALPHAD 在热力学理论和热力学数据库支持下,进行相图计算的技术。 2.2 热力学计算软件Thermo-Calc software,简称TC 一款以CALPHAD技术为核心,能够实现热力学优化计算的软件。 2.3 热力学数据库文件Thermo-Calc Database,简写为TDB 以Thermo-Calc软件规定格式书写的数据库文件。 2.4 欧洲热力学数据科学组织The Scientific Group Thermodata Europe,简称SGTE 在欧洲成立的一个专门发展无机和冶金体系热力学数据库的科学组织。 3 概述 相图的热力学参数的优化过程是利用目标体系已有的相图和热化学实验信息,建立描述该体系中各相吉布斯自由能与温度、压力、成分等变量之间关系的热力学模型、确定模型参数的过程。目前,热力学参数的优化一般借助专业的热力学计算软件来完成,本文是以国际上较为流行的Thermo-Calc软件为标准。

第一章 热力学函数及其相互关系(2)

第一章 热力学函数及其相互关系(2): 热力学第零定律、第一定律 热力学第零定律、状态函数、热、功、内能、热功当量、热力学第一定律、第一类永动机、焓、热容、过程热 热力学的主要基础是热力学第一定律与第二定律,二者均为经验定律,或者说是人类长期宏观实践经验达到归纳与总结。它们既不涉及物质的微观结构,也不能用数学来证明。但实践业已证明,自然界还未发现有悖于这两大定律的现象。两大定律的可靠性是无庸臵疑的。 第一定律的本质是能量守恒,因而是定量研究各种形式能量转化的基础,例如伴随着物质发生各种变化而产生的热、机械功、电功等。在第一定律的基础上,还建立了内能U 及焓H 两个状态函数,因而本章的许多内容、结论是用热力学特有的状态函数法推演而得。掌握热力学的状态函数与状态函数研究方法无疑是正确运用热力学解决实际问题之关键。又因为热力学计算中还涉及诸如摩尔热容、汽化热、熔化热等基础数据,这类数据均由精确的实验所得。实验数据的可靠性亦将直接影响到热力学计算的准确性,所以热力学研究非常重视基础数据的测定工作。 1.8 热力学第零定律 (The zeroth law of thermodynamics) 经验表明,如果一个“热”的系统与一个“冷”的系统相互接触、或者通过导热极好的介质相互作用,而发生热交换,并使其与环境隔离,则这两个系统的性质将发生变化。经过相当长时间后,它们的各种性质都不再发生变化。此时,我们就说这两个系统处于热平衡,或者说整个系统处于内部热平衡。 “当与环境隔离的两个系统分别与第三个系统处于热平衡时,这两个系统彼此间也处于热平衡。”此即热力学第零定律。 1.9状态函数的数学本质 如果积分?df 与路径无关,具有形如y)dy Q(x,y)dx P(x,dy y f dx x f df +=??+ ??= 的微 分就是恰当微分(exact differential ),又叫全微分(total differential)。因为 y) P(x,x f =??, y)Q(x,y f =??,而 x y f y P 2 ???=??, x y f x Q 2 ???= ??。所以 x Q y P ??= ??。 热力学状态函数仅仅与系统的初始状态、终了状态有关,而与系统具体的演化路径无关,即热力学状态函数不是路径函数。那么,具备什么样数学特征的函数才是状态函数呢?可以证明,作为热力学状态函数的热力学变量必须能表达为全微分。

第一章 热力学函数及其相互关系(1)

第一章热力学函数及其相互关系(1):热力学状态与气体方程 系统与环境、平衡状态、非平衡状态、稳定状态、可逆过程与不可逆过程、局部平衡、部分平衡与介稳平衡、温标的发展、热力学温标、理想气体定律、van der Waals状态方程、virial方程、Redlich-Kwong方程、实际气体的液化与临界现象、对应态理论 1.1系统、环境、热力学状态 1.1.1 系统与系统的环境 热力学把相互联系的客观真实世界区分为系统与系统的环境两部分。 系统(system)是我们要研究的那部分真实世界,即我们要研究的那部分物质或空间。假如要研究一台运行着的热机汽缸内气体性质的变化,或者要研究一反应器中的全部物质,就分别是两种不同情况下的系统。又如一氧气缸瓶在不断地向外喷射氧气,我们要研究喷射过程到某阶段时钢瓶中剩余氧气的性质,则该瞬间瓶中残留的氧应当是系统。以往的书刊中曾用过一些系统的同义词,例如“物系”、“体系”等等。 系统的环境(surroundings)是系统以外与之相联系的真实世界,可以简单称为环境或外界。需要指出,系统与环境之间可以有实际存在的边界隔开,例如上述汽缸、反应器壁等;也可能在系统与环境间只有假象的边界隔开,例如上述氧气瓶中作为系统的残留氧气与喷射出去的那些氧气本来是存在于同一钢瓶中,它们之间没有任何间隔,而喷射出去的那些氧气实际是环境的一部分。 系统与环境之间的联系包括有能量交换与物质交换两类。针对二者之间联系情况的差别,可以把系统分成以下三种: (1) 隔离系统(孤立系统, isolated system) 隔离系统(孤立系统)与环境之间既无能量交换,又无物质交换,所以环境对隔离系统中发生的任何变化不会有任何影响。 在热力学中,有时我们把所研究的系统及该系统的环境作为一个整体来看待,这个整体就应当是隔离系统。 (2)封闭系统(closed system) 封闭系统与环境之间只有能量交换而无物质交换。在前面提到的几个系统中,物质均被封闭于实有的容器间壁内或假象的边界内,使系统仅能通过界面与环境有热、功等形式的能量交换,故应当属于封闭系统。相对而言,封闭系统与环境既有一定的联系,但又比较简单,所以它是热力学研究的基础。在本课程中,除特别指明的外,均以封闭系统作为研究对象,并且忽略地心引力等外力场的作用,也不涉及系统本身的宏观运动。 (3)开放系统(敞开系统, open system) 开放系统与环境之间既有能量交换也有物质交换。实验及化工生产中常遇到一些连续进料、出料的装臵,若把装臵中的物质与空间确定为系统,则系统与环境间的进、出料就构成了二者之间的物质交换,这种系统就是开放系统。 此外,有的学者将没有物质交换、存在除热量之外的能量形式交换的系统叫作绝热(adiabatic)系统。

热力学函数法

第五讲 热力学函数法 讲授内容:教科书§1.9-10 学时:6 教学方法:结合课件中的文字、画图、公式进行讲授;通过习题课使学生熟悉用热力学函数解决问题的方法 教学目的:1使学生熟悉热力学基本方程和基本不等式的应用,掌握热力学函数法的基本精神,会在典型热效应之间建立联系,会用热力学方法计算简单系统的热力学函数。 教学重点:热力学函数法的基本精神 教学难点:应用导数变换方法建立不同热效应之间的联系。本讲吸取国内对此内容的教学经验,将问题归纳为几种典型,通过较多的练习和习题课,使难点得以突破。 教学过程: 一 热力学函数与典型过程(70分钟)(字幕) 引言:通过前面的讨论,我们在热力学定律和统计规律的基础上引进了两个基本的态函数——内能和熵。从原则上讲,利用这两个热力学函数再加上物态方程可以解决宏观热现象的一般问题。然而在实际操作上并不都很方便。例如在绝热过程中(字幕),外界对系统作的功等于系统内能的U A -U B =W (字幕)通过末 态B 与初态A 内能之差可以直接得到功。根据熵增原理dS ≥0(字幕)可以判断不可逆绝热过程的进行方向(字幕)。可是很多过程并不是绝热的,对于经常遇到的等温过程或等温等压过程就无法直接运用内能和熵解决上述问题。本节将引入几个新的热力学函数使问题得到简洁地处理。 1焓与等压过程: (字幕) 1.1等压过程中的功: (字幕)如果系统只有V 作为外参量,在等压过程中外界对系统的功W=-P 0(V B -V A )=-P 0ΔV (字幕) 1.2焓与等压过程中的热量: (字幕)ΔU=U B -U A =Q-P 0ΔV (字幕)移项得Δ (U+P 0V)=Q (字幕)不管等压过程是否可逆,只要初末态是平衡态,系统在初末 态的压强P =P 0,引入新的热力学函数——焓H=U+PV (字幕)则ΔH=Q (字幕) 对 于初末态为平衡态的无穷小过程则有dH=δQ (字幕)焓是广延量,具有和内能相同的量纲。焓具有明显的物理意义:在没有非体变功的等压过程中系统吸收的热量等于系统焓的增加,系统放出的热量等于系统焓的减少。(字幕)通过末态与初态焓的差就可以算得系统在等压过程中吸收的热量。 1.3焓的全微分式: (字幕)在热力学基本方程两端加d(PV),即 d U PV T dS PdV d PV ()()+=-+ 于是有 dH T dS VdP =+ (字幕) 上式是以熵S 和压强P 为独立变量时焓的全微分表达式。有时,使用它讨论等压过程的问题比使用基本方程更为方便。通常,H(S,P)的全微分为 dH H S dS H P dP P S =+(/)(/)???? 两式对照即有(/)??H S T P =, (/)??H P V S = 。(字幕) 1.4定压热容:(字幕)系统的定压热容

标准热力学数据

标准热力学数据(298.15K) 化学式(状态)H G S 氢(hydrogen) H2(g)0 0 130.57 H+(aq)0 0 0 锂(lithium) Li(s)0 0 29.12 Li+(aq)-278.49 -293.30 13.39 Li2O(s)-597.94 -561.20 37.57 LiCl(s)-408.61 -384.38 59.33 钠(sodium) Na(s)0 0 51.21 Na+(aq)-240.12 261.89 58.99 Na2O(s)-414.22 -375.47 75.06 NaOH(s)-425.61 -379.53 64.45 NaCl(s)-411.65 -384.15 72.13 钾(potassium) K(S)0 0 64.18 K+(aq)-252.38 -283.26 102.51 KOH(s)-424.76 -379.11 78.87 KCl(s)-436.75 -409.15 82.59 铍(beryllium) Be(s)0 0 9.50 BeO(s)-609.61 -580.32 14.14 镁(magnesium) Mg(s)0 0 32.68 Mg2+(aq)-466.85 -454.80 -138.07 MgO(s)-601.70 -569.44 27.91 Mg(OH)2(s)-924.54 -833.58 63.18 MgCl2(s)-641.32 -591.83 89.62 MgCO3(s)-1095.79 -1012.11 65.69 钙(calcium) Ca(s)0 0 41.42 Ca2+(aq)-542.83 -553.54 -53.14 CaO(s)-635.09 -604.04 39.75 Ca(OH)2(s)-986.09 -898.56 83.39

热力学整理资料

有几个重点跟大家说一下:p33 p34 Maxwell 方程式 ;p36 dS 方程的推导,最重要的是第二dS 方程;p63 化学位,偏摩尔性质的定义;p66 偏摩尔性质的计算公式;p70混合物逸度,组分逸度,纯物质逸度的定义式;p74混合物逸度与组分逸度关系的推导;p88超额性质偏摩尔性质的推导;p89例题;p106相平衡的的三个判据;p113计算框图(有可能考大题,看清楚框图的名称记住内容);第六章 熵平衡方程的特殊形式; 简答题 1、简述剩余性质的定义和作用。 剩余性质定义, *M M M R -= 指气体真实状态下的热力学性质M 与同一T ,P 下当气体处于理想状态下热力学性质M* 之间的差额。如果求得同一T ,P 下M R ,则可由理想气体的M* 计算真实气体的M 或ΔM 。 2、(8分)甲烷、乙烷具有较高的燃烧值,己烷的临界压力较低,易于液化,但液化石油气的主要成分既不是甲烷、乙烷也不是己烷,而是丙烷、丁烷和少量的戊烷。试用下表分析液化气成分选择的依据。 (1)虽然甲烷具有较高的燃烧值,但在它的临界温度远低于常温,而乙烷的临界温度也低于夏天的最高温度,也就是说,即使压力再高,也不能使它们液化。 (2)尽管己烷的临界压力较低,但它的正常沸点远高于常温,即在常温它不易气化,不利于燃烧。 3.写出封闭系统和稳定流动系统的热力学第一定律。 答:封闭系统的热力学第一定律:W Q U +=? 稳流系统的热力学第一定律:s W Q Z g u H +=?+?+?22 1 4.写出维里方程中维里系数B 、C 的物理意义,并写出舍项维里方程的混合规则。(重点,去年考了,很多人没写出来,不知道今年还考不考)

相关文档
最新文档