中考复习专题——解直角三角形
中考《解直角三角形》复习练习题及答案
中考数学复习专题练习解直角三角形一、选择题:1、在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形2、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=3、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )A.2 B. C. D.4、在Rt ABC中,∠C=90°,sinB=,则tanA的值为( )A. B. C. D.5、在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.6、在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长是()A. B.2 C.1 D.27、如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB值为( )A. B. C. D.8、如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10mB.mC.15m D.m9、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4米B.6米C.12米D.24米10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图,已知的三个顶点都在方格图的格点上,则的值为( )A. B. C. D.12、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、在△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C=________.14、已知在Rt△ABC中,∠C=90°,AB=15,cosB=,则BC= .15、如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______米.16、如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为______.17、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .18、如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(+) tan+tan.(填“>”“=”“<”)19、如图在四边形ABCD中,∠ACB=∠BAD=105°,∠B=∠D=45°若 AD=,则AB=__________20、如图所示的半圆中,是直径,且,,则的值是.21、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.22、如图,在中,是边边上的中线,如果,tanB值是________23、如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米.24、如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°= .三、简答题:25、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.26、已知:如图,正方形ABCD中,点E为AD边的中点,联结CE. 求cos∠ACE和tan∠ACE的值.27、如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)28、如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)29、张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)30、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.31、中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)参考答案1、A.2、C.3、B.4、D.5、B.6、B.7、B.8、A.9、B.10、A.11、D.12、B.13、答案为:60°14、答案为:9.15、答案为:(米).16、答案为24.17、答案为:4.3 18、答案为:>. 19、答案为:.20、答案为: ;21、答案为:2 ;22、答案为:23、答案为:137.24、答案为:2﹣.25、解:∵方程(5+b)x2+2ax+(5-b)=0有两个相等的实数根,且c=5,∴△=(2a)2-4(c+b)(c-b)=0,∴a2+b2=c2,则△ABC为直角三角形,且∠C=90°.设x1,x2是方程2x2-(10sin A)x+5sin A=0的两个根,则根据根与系数的关系有x1+x2=5sin A,x1·x2=sin A.∴x12+x22=(x1+x2)2-2x l·x2=(5sin A)2-2×sin A=6,解得sinA=或sinA=-(舍去),∴a=csin A=3,b==4,S△ABC=ab==18.26、解:过点作于点,∵四边形是正方形,∴平分,.∴,.∵是中点,∴.设,则,,.在Rt△AEF中,,.∴.∴,.27、【解答】解:(1)过C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离约为60海里.28、【解答】解:过点C作CE∥AD,交AB于E∵CD∥AE,CE∥AD∴四边形AECD是平行四边形∴AE=CD=50m,EB=AB﹣AE=50m,∠CEB=∠DAB=30°又∠CBF=60°,故∠ECB=30°∴CB=EB=50m∴在Rt△CFB中,CF=CB•sin∠CBF=50•sin60°≈43m答:河流的宽度CF的值为43m.29、解:如图,过B作BE⊥CD交CD延长线于E,∵∠CAN=45°,∠MAN=30°,∴∠CAB=15°∵∠CBD=60°,∠DBE=30°,∴∠CBD=30°,∵∠CBE=∠CAB+∠ACB,∴∠CAB=∠ACB=15°,∴AB=BC=20,在Rt△BCE中,∠CBE=60°,BC=20,∴CE=BCsin∠CBE=20×BE=BCcos∠CBE=20×0.5=10,在Rt△DBE中,∠DBE=30°,BE=10,∴DE=BEtan∠DBE=10×,∴CD=CE﹣DE=≈11.5,答:这棵大树CD的高度大约为11.5米.30、:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.31、【解答】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD=,则AD=AC•sin∠ACD=250≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.。
2025年中考数学二轮复习专题:解直角三角形的应用训练
2025年中考数学二轮复习专题:解直角三角形的应用训练思考:1、解一个直角三角形需要知道几个边或角的条件?2、解一个三角形需要几个条件?例1 如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进10m到达点B处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,≈1.73).(限时训练第3题)【变式练习1】如图,一勘测人员从山脚B点出发,沿坡度为1:3的坡面BD行至D点处时,他的垂直高度上升了15米;然后再从D点处沿坡角为45°的坡面DA以20米/分钟的速度到达山顶A点时,用了10分钟.(1)求D点到B点处的水平距离;(2)求山顶A点处的垂直高度是多少米?(结果可以保留根号,也可以用小数表示;若用小数表示,请保留一位小数)例2 为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域.如图所示,AB=60()海里,在B处测得C在北偏东45°的方向上,A处测得C 在北偏西30°的方向上,在海岸线AB上有一灯塔D,测得AD=120()海里.(1)分别求出A与C及B与C的距离AC、BC(结果保留根号)(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,图中有无触礁的危险?(参考数据:=1.41,=1.73,=2.45)(限时训练第5题)【变式训练2】如图,在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,AB =8km,有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向,小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向,求点C与点B之间的距离(结果保留根号).【拓展提升】如图1所示,一架长4m的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面所成的角α为60度.若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.(1)如图2所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端NO下滑了多少米?(2)如图3所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.(限时训练第6题)2025年中考数学二轮复习专题:解直角三角形的应用训练限时训练班级:______ 学号:____ 姓名:__________1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A .斜坡AB 的坡度是10°B .斜坡AB 的坡度是tan10°C .AC=1.2tan10°米D .AB= 10cos 12米 2.一艘轮船从O 处出发,以30海里/时的速度沿东偏南30°的航线航行,两小时后到达A 处.此时接到大风警报,轮船必须在1.5小时内赶到B 处避风.B 在O 的正东方,从A 处测得B 的方位是北偏东45°.图所示的坐标系的单位长是1海里.(1)求点A 和点B 的坐标;(2)如果轮船以原速度沿AB 方向直行,能否在限定的时间内到达避风港?3.如图,为了测量山坡上一棵树PQ 的高度,小明在点A 处利用测角仪测得树顶P 的仰角为45°,然后他沿着正对树PQ 的方向前进10m 到达点B 处,此时测得树顶P 和树底Q 的仰角分别是60°和30°,设PQ 垂直于AB ,且垂足为C .(1)求∠BPQ 的度数;(2)求树PQ 的高度(结果精确到0.1m ,≈1.73).4.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)5.为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域.如图所示,AB=60()海里,在B处测得C在北偏东45°的方向上,A处测得C在北偏西30°的方向上,在海岸线AB上有一灯塔D,测得AD=120()海里.(1)分别求出A与C及B与C的距离AC、BC(结果保留根号)(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,图中有无触礁的危险?(参考数据:=1.41,=1.73,=2.45)6.如图1所示,一架长4m的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面所成的角α为60度.若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.(1)如图2所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端NO下滑了多少米?(2)如图3所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠P OP′=15°,试求AA′的长.(此部分课堂完成)【变式练习1】如图,一勘测人员从山脚B点出发,沿坡度为1:3的坡面BD行至D点处时,他的垂直高度上升了15米;然后再从D点处沿坡角为45°的坡面DA以20米/分钟的速度到达山顶A点时,用了10分钟.(1)求D点到B点处的水平距离;(2)求山顶A点处的垂直高度是多少米?(结果可以保留根号,也可以用小数表示;若用小数表示,请保留一位小数)【变式训练2】如图,在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,AB =8km,有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向,小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向,求点C与点B之间的距离(结果保留根号).。
中考数学复习专题15解直角三角形
解直角三角一、单选题1.(2021·浙江温州市)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+【答案】A【分析】根据勾股定理和三角函数求解.【详解】∵在Rt OAB 中,AOB α∠=,1AB =∴1=sin sin AB OB αα= 在Rt OBC 中,1BC =,2222221111sin sin OC OB BC αα⎛⎫=+=+=+ ⎪⎝⎭故选:A . 【点睛】本题主要考查勾股定理和三角函数.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .2.(2021·浙江金华市)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米【答案】A 【分析】根据等腰三角形的性质得到12BD DC BC ==,根据余弦的定义即可,得到答案. 【详解】过点A 作AD BC ⊥,如图所示:∵AB AC =,AD BC ⊥,∴BD DC =,∵DC co ACα=,∴cos 2cos DC AC αα=⋅=, ∴24cos BC DC α==,故选:A . 【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.3.(2021·湖北随州市)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( )A .1米B .1.5米C .2米D .2.5米【答案】C 【分析】根据梯子长分别利用三角函数的正弦定义求出CD =CE sin β与AD =AB sin α,两线段作差即可.【详解】解:如图所示标记字母,根据题意得AB =CE =10米,∵sin β45===, 在Rt △ECD 中,sin 4105CD CD CE β===,∴CD =410=85⨯, 在Rt △ABD 中,sin 3=105AD AD AB α==,∴310=65AD =⨯,∴AC =CD -AD =8-6=2.故选择C .【点睛】本题考查三角函数的定义,解直角三角形,掌握正弦与余弦的平方关系以及锐角三角函数的定义是解题关键.4.(2021·湖南株洲市)某限高曲臂道路闸口如图所示,AB 垂直地面1l 于点A ,BE 与水平线2l 的夹角为()090αα︒≤≤︒,12////EF l l ,若 1.4AB =米,2BE =米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度.①当90α=︒时,h 小于3.3米的车辆均可以通过该闸口;②当45α=︒时,h 等于2.9米的车辆不可以通过该闸口;③当60α=︒时,h 等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A .0个B .1个C .2个D .3个【答案】C 【分析】①,,A B E 三点共线,直接计算可得;②做出辅助线,构造直角三角形,利用特殊角的三角函数,求出h ;③方法同②.【详解】如图过E 点作EM AB ⊥交AB 的延长线于点M ,12////EF l l ∴MEB α∠= 则sin h AM AB BE α==+⨯①当90α=︒时,,,A B E 三点共线, 1.42 3.4 3.3h AE AB BE ==+=+=>∴h 小于3.3米的车辆均可以通过该闸口,故①正确.②当45α=︒时,sin 1.42 1.4 1.41 2.81 2.92h AB BE α=+⨯=+⨯≈+=< ∴h 等于2.9米的车辆不可以通过该闸口,故②正确.③当60α=︒时,sin 1.42 1.4 1.73 3.13 3.1h AB BE α=+⨯=+≈+=> ∴ h 等于3.1米的车辆可以通过该闸口,故③错误.综上所述:说法正确的为:①②,共2个.故选:C .【点睛】本题考查了三角函数的应用,二次根式的估值,正确的作图,计算和对比选项是解题关键. 5.(2021·湖南衡阳市)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米【答案】D 【分析】结合题意,根据三角函数的性质计算,即可得到答案. 【详解】根据题意,得:sin 370.6BC AB ︒=≈ ∵6BC =米∴6100.60.6BC AB ===米故选:D . 【点睛】本题考查了三角函数的知识;解题的关键是熟练掌握三角函数的性质,从而完成求解. 6.(2021·天津)tan30︒的值等于( )A B C .1 D .2【答案】A【分析】根据30°的正切值直接求解即可.【详解】解:由题意可知,tan 30︒=,故选:A . 【点睛】本题考查30°的三角函数,属于基础题,熟记其正切值即可.7.(2021·重庆)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A .69.2米B .73.1米C .80.0米D .85.7米【答案】D 【分析】作DF ⊥AB 于F 点,得到四边形DEBF 为矩形,首先根据坡度的定义以及DE 的长度,求出CE ,BE 的长度,从而得到DF =BE ,再在Rt △ADF 中利用三角函数求解即可得出结论.【详解】如图所示,作DF ⊥AB 于F 点,则四边形DEBF 为矩形,∴50DE BF ==,∵斜坡CD 的坡度(或坡比)为1:2.4i =,∴在Rt △CED 中,15tan 2.412DE C CE ∠===, ∵50DE =,∴120CE =,∴15012030BE BC CE =-=-=,∴30DF =,在Rt △ADF 中,∠ADF =50°,∴tan tan 50 1.19AF ADF DF∠=︒==, 将30DF =代入解得:35.7AF =,∴AB =AF +BF =35.7+50=85.7米,故选:D .【点睛】本题考查解直角三角形的实际应用,理解坡度的定义,准确构造直角三角形,熟练运用锐角三角函数是解题关键.8.(2021·云南)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .80【答案】D【分析】根据三角函数的定义得到BC 和AC 的比值,求出BC ,然后利用勾股定理即可求解.【详解】解:∵∠ABC =90°,sin ∠A =BC AC =35,AC =100,∴BC =100×3÷5=60,∴AB ,故选D .【点睛】本题主要考查的是解直角三角形,掌握勾股定理和正弦函数的定义是解题的关键.9.(2021·山东泰安市)如图,为了测量某建筑物BC 的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A 点出发,沿斜坡AD 行走130米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡AD 的坡度1:2.4i =.根据小颖的测量数据,计算出建筑物BC 的高度约为( )(参1.732≈)A .136.6米B .86.7米C .186.7米D .86.6米【答案】A 【分析】作DF ⊥AB 于F 点,EG ⊥BC 于G 点,根据坡度求出DF =50,AF =120,从而分别在△BEG 和△CEG 中求解即可.【详解】如图,作DF ⊥AB 于F 点,EG ⊥BC 于G 点,则四边形DFBG 为矩形,DF =BG ,∵斜坡AD 的坡度1:2.4i =,∴15tan 2.412DF DAF AF∠===, ∵AD =130,∴DF =50,AF =120,∴BG =DF =50,由题意,∠CEG =60°,∠BEG =45°,∴△BEG 为等腰直角三角形,BG =EG =50,在Rt △CEG 中,CG EG∴6505136.BC BG CG ≈=+=+米,故选:A .【点睛】本题考查解直角三角形的实际应用,正确理解坡度的定义,准确构建合适的直角三角形是解题关键.10.(2021·重庆)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )(参考数据:1.73≈≈)A .9.0mB .12.8mC .13.1mD .22.7m【答案】C 【分析】分别解直角三角形Rt DEF △和Rt MBC ,求出NE 和MB 的长度,作差即可.【详解】解:∵50FE m =,DF 的坡度i =1:1.25,∴:1:1.25DE EF =,解得40m DE =, ∴5258ND DE m ==,∴65NE ND DE m =+=,∵60MCB ∠=︒,30m BC =,∴tan 60MB BC =⋅︒=,∴顶端M 与顶端N 的高度差为6513.1NE MB m -=-≈,故选:C .【点睛】本题考查解直角三角形的实际应用,掌握解直角三角形是解题的关键.11.(2021·四川泸州市)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设△ABC 的外心为O ,连结OA ,OB ,过O 作OD ⊥AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OA,利用圆的面积公式S 圆=163π. 【详解】解:方法一:∵∠A =75°,∠B =45°,∴∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 6032c R C ===︒,∴3R =,∴S 圆=222163R OA ππππ===⎝⎭. 方法二:设△ABC 的外心为O ,连结OA ,OB ,过O 作OD ⊥AB 于D ,∵∠A =75°,∠B =45°,∴∠C =180°-∠A -∠B =180°-75°-45°=60°,∴∠AOB =2∠C =2×60°=120°,∵OA =OB ,∴∠OAB =∠OBA =()1180120302︒-︒=︒, ∵OD ⊥AB ,AB 为弦,∴AD =BD =122AB =,∴AD =OA cos30°, ∴OA=cos302AD ÷︒==S 圆=2221633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.三、填空题1.(2021·四川广元市)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.【答案】12【分析】由题意易得BD =4,BC =2,∠DBC =90°,∠BAE =∠BDC ,然后根据三角函数可进行求解.【详解】解:由题意得:BD =4,BC =2,∠DBC =90°,∵∠BAE =∠BDC ,∴1tan tan 2BC BAE BDC BD ∠=∠==,故答案为12. 【点睛】本题主要考查三角函数及圆周角定理,熟练掌握三角函数及圆周角定理是解题的关键. 2.(2021·浙江衢州市)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且OA OB =,椅面底部有一根可以绕点H 转动的连杆HD ,点H 是CD 的中点,F A ,EB 均与地面垂直,测得54cm FA =,45cm EB =,48cm AB =.(1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值30时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)【答案】40 12.5【分析】(1)过点C 作CM 垂直AF ,垂足为M ,MFC AFB ∆∽,列比例求出CM 长度,则CE =AB -CM ;(2)根据图2可得OCD OBA ∽,对应袋图3中求出CD 长度,列比例求AB 即可.【详解】解:(1)过点C 作CM 垂直AF ,垂足为M ,∵椅面CE 与地面平行,∴MFC AFB ∆∽, ∴54454854CM FM FA EB CM AB FA FA --==⇔=,解得:CM =8cm , ∴CE =AB -CM =48-8=40cm ;故答案为:40;(2)在图2中,∵OA OB =,椅面CE 与地面平行,∴BCE ADM ∠=∠,∵90AM BE AMD BEC =∠=∠=︒,,∴AMD BEC ≌,∴DM CE =,∴8MC ED cm ==,∴488832CD cm =--=,∵H 是CD 的中点,∴1162CH HD CD ===, ∵椅面CE 与地面平行,∴COD BOA ∽,∴322483CO CD BO AB ===, 图3中,过H 点作CD 的垂线,垂足为N ,因为1162CH HD CD === ,=30CHD ∠︒, ∴15CHN DHN ∠=∠=︒,∴2sin15=8.32CD CH cm =︒,∴28.323CO CD OB AB AB =⇔=, 解得:12.4812.5AB cm =≈,故答案为:12.5.【点睛】本题主要考查相似三角形的判定与性质,锐角三角函数等知识点,找到对应相似三角形并正确列出比例是解决本题的关键.3.(2021·浙江绍兴市)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).【答案】303 【分析】根据题意即可求得∠MOD =2∠NOD ,即可求得∠NOD =30°,从而得出∠ADB =30°,再解直角三角形ABD 即可.【详解】解:∵时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O , ∴∠MOD =2∠NOD , ∵∠MOD +∠NOD =90°,∴∠NOD =30°,∵四边形ABCD 是矩形,∴AD //BC ,∠A =90°,AD =BC ,∴∠ADB =∠NOD =30°,∴()30==303cm tan 30tan 30==AB BC AD 故答案为:【点睛】本题考查的矩形的性质、解直角三角形等知识;理解题意灵活运用所学知识得出∠NOD =30°是解题的关键.4.(2021·湖北武汉市)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile 1.73≈,结果用四舍五入法精确到0.1).【答案】10.4【分析】过点A 作AD ⊥BC ,垂足为D ,根据题意,得∠ABC =30°,∠ACD =60°,从而得到AC =BC =12,利用sin 60°=AD AC计算AD 即可 【详解】过点A 作AD ⊥BC ,垂足为D ,根据题意,得∠ABC =30°,∠ACD =60°,∴∠ABC =∠CAB =30°,∴AC =BC =12,∵sin 60°=AD AC ,∴AD =AC sin 60°=122⨯ 1.73610.38≈⨯=≈10.4故答案为:10.4. 【点睛】本题考查方位角,解直角三角形,准确理解方位角的意义,构造高线解直角三角形是解题的关键. 5.(2021·四川乐山市)如图,已知点(4,3)A ,点B 为直线2y =-上的一动点,点()0,C n ,23n -<<,AC BC ⊥于点C ,连接AB .若直线AB 与x 正半轴所夹的锐角为α,那么当sin α的值最大时,n 的值为________.【答案】12【分析】设直线y =﹣2与y 轴交于G ,过A 作AH ⊥直线y =﹣2于H ,AF ⊥y 轴于F ,根据平行线的性质得到∠ABH =α,由三角函数的定义得到sin α5BA =,根据相似三角形的性质得到比例式234GB n n +=-,于是得到GB 14=-(n +2)(3﹣n )14=-(n 12-)22516+,根据二次函数的性质即可得到结论. 【详解】解:如图,设直线y =﹣2与y 轴交于G ,过A 作AH ⊥直线y =﹣2于H ,AF ⊥y 轴于F ,∵BH ∥x 轴,∴∠ABH =α,在Rt △ABH 中,AB =,sin α5BA=,即sin α5BA = ∵sinα随BA 的减小而增大,∴当BA 最小时sinα有最大值;即BH 最小时,sinα有最大值,即BG 最大时,sinα有最大值, ∵∠BGC =∠ACB =∠AFC =90°,∴∠GBC +∠BCG =∠BCG +∠ACF =90°,∴∠GBC =∠ACF ,∴△ACF ∽△CBG ,∴BG CG CF AF=, ∵(4,3)A ,()0,C n 即234BG n n +=-,∴BG 14=-(n +2)(3﹣n )14=-(n 12-)22516+, ∵23n -<<∴当n 12=时,BG 最大值2516=故答案为:12. 【点睛】本题考查了相似三角形的判定和性质,三角函数的定义,平行线的性质,正确的作出辅助线证得△ACF ∽△CBG 是解题的关键.6.(2021·四川乐山市)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)【分析】先根据已知条件得出△ADC 是等腰三角形,再利用AB =sin 60°×AD 计算即可 【详解】解:由题意可知:∠A =30°,∠ADB =60°∴∠CAD =30°∴△ADC 是等腰三角形,∴DA =DC 又DC =5米故AD =5米在Rt △ADB 中,∠ADB =60°∴AB =sin 60°×AD 5= 【点睛】本题考查等腰三角形的性质、解直角三角形,熟练记忆特殊角的锐角三角函数值是关键 7.(2021·浙江)如图,已知在Rt ABC 中,90,1,2ACB AC AB ∠=︒==,则sin B 的值是______.【答案】12【分析】在直角三角形中,锐角B 的正弦=锐角B 的对边:直角三角形的斜边,根据定义直接可得答案. 【详解】解: 90,1,2ACB AC AB ∠=︒==,1sin ,2AC B AB ∴== 故答案为:12 【点睛】本题考查的是锐角的正弦的含义,掌握锐角的正弦的定义是解题的关键.8.(2021·浙江宁波市)如图,在矩形ABCD 中,点E 在边AB 上,BEC △与FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与,CE CF 交于M ,N 两点,若BM BE =,1MG =,则BN 的长为________,sin AFE ∠的值为__________.【答案】2 1【分析】由BEC △与FEC 关于直线EC 对称,矩形,ABCD 证明,BEC FEC ≌再证明,BCN CFD ≌ 可得,BN CD = 再求解2,CD = 即可得BN 的长; 先证明,AFE CBG ∽ 可得:,AE EF CG BG = 设,BM x = 则,1,2,BE BM FE x BG x AE x ====+=- 再列方程,求解,x 即可得到答案. 【详解】解: BEC △与FEC 关于直线EC 对称,矩形,ABCD,BEC FEC ∴≌ 90,ABC ADC BCD ∠=∠=∠=︒90,,,,EBC EFC BEC FEC BE FE BC FC ∴∠=∠=︒∠=∠==,BM BE = ,BEM BME ∴∠=∠ ,FEC BME ∴∠=∠//,EF MN ∴ 90BNC EFC ∴∠=∠=︒, 90,BNC FDC ∴∠=∠=︒90BCD ∠=︒, 90,NBC BCN BCN DCF ∴∠+∠=︒=∠+∠,NBC DCF ∴∠=∠ ,BCN CFD ∴≌ ,BN CD ∴=矩形,ABCD //,//,AB CD AD BC ∴ ,BEM GCM ∴∠=∠,1,BEM BME CMG MG G ∠=∠=∠=为CD 的中点,,GMC GCM ∴∠=∠ 1,2,CG MG CD ∴=== 2.BN ∴=如图,,//,BM BE FE MN EF == 四边形ABCD 都是矩形,,//,90,AB CD AD BC A BCG ∴=∠=∠=︒ ,AEF ABG ∠=∠90,AFE AEF ABG CBG ∠+∠=︒=∠+∠ ,AFE CBG ∴∠=∠,AFE CBG ∴∽ ,AE EF CG BG ∴= 设,BM x = 则,1,2,BE BM FE x BG x AE x ====+=- 2,11x x x -∴=+ 解得:x = 经检验:x =x =2AE EF ∴== sin 1.AE AFE EF ∴∠=== 故答案为: 1. 【点睛】本题考查的是矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数的应用,分式方程的解法,掌握以上知识是解题的关键.9.(2021·四川乐山市)在Rt ABC 中,90C ∠=︒.有一个锐角为60︒,4AB =.若点P 在直线AB 上(不与点A 、B 重合),且30PCB ∠=︒,则CP 的长为________.2【分析】依据题意画出图形,分类讨论,解直角三角形即可.【详解】解:情形1:60A ∠=︒,则30B ∠=︒,,∵30PCB ∠=︒,∴60ACP ∠=︒,∴ACP △是等边三角形,∴122CP AC AB ===;情形2:60B ∠=︒,则30A ∠=︒,2BC =,AC =∵30PCB ∠=︒,∴CP AB ⊥,∴1122AC BC AB CP ⋅=⋅,解得CP =情形3:60B ∠=︒,则30A ∠=︒,2BC =,AC =∵30PCB ∠=︒,∴CP AC ==2.【点睛】本题考查解直角三角形,掌握分类讨论的思想是解题的关键.10.(2021·浙江杭州市)sin30°的值为_____. 【答案】12【详解】根据特殊角的三角函数值计算即可:sin30°=12. 三、解答题1.(2021·青海)如图1是某中学教学楼的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转35︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据sin350.6︒≈,cos350.8︒≈ 1.4≈).【答案】1.4米【分析】作BE ⊥AD 于点E ,作CF ⊥AD 于点F ,延长FC 到点M ,使得BE =CM ,则EM =BC ,在Rt △ABE 、Rt △CDF 中可求出AE 、BE 、DF 、FC 的长度,进而可得出EF 的长度,再在Rt △MEF 中利用勾股定理即可求出EM 的长,此题得解.【详解】解:作BE ⊥AD 于点E ,作CF ⊥AD 于点F ,延长FC 到点M ,使得BE =CM ,如图所示.∵AB =CD ,AB +CD =AD =2,∴AB =CD =1.在Rt △ABE 中,AB =1,∠A =35°,∴BE =AB •sin ∠A=1sin35⨯︒≈0.6,AE =AB •cos ∠A ≈0.8.在Rt △CDF 中,CD =1,∠D =45°,∴CF =CD •sin ∠D ≈0.7,DF =CD •cos ∠D ≈0.7.∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CM ,又∵BE =CM ,∴四边形BEMC 为平行四边形,∴BC =EM ,CM =BE .在Rt △MEF 中,EF =AD -AE -DF =0.5,FM =CF +CM =1.3,∴EM ,∴B 与C 之间的距离约为1.4米.【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC 的长度是解题的关键.2.(2021·四川成都市)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角33MBC ∠=︒,在与点A 相距3.5米的测点D 处安置测倾器,测得点M 的仰角45MEC ∠=︒ (点A ,D 与N 在一条直线上),求电池板离地面的高度MN 的长.(结果精确到1米;参考数据:sin330.54,cos330.84,tan330.65︒≈︒≈︒≈)【答案】8米【分析】过E 作EF ⊥MN 于F ,连接EB ,设MF =x 米,可证四边形FNDE ,四边形FNAB 均是矩形,设MF =EF =x ,可求FB = x +3.5,由tan ∠MBF =0.653.5MF x FB x =≈+,解得 6.5x ≈米,可求MN =MF +FN =6.5+1.6≈8米.【详解】解:过E 作EF ⊥MN 于F ,连接EB ,设MF =x 米,∵∠EFN =∠FND =∠EDN =∠A =90°, ∴四边形FNDE ,四边形FNAB 均是矩形,∴FN =ED =AB =1.6米,AD =BE =3.5米,∵∠MEF =45°,∠EFM =90°,∴MF =EF =x ,∴FB =FE +EB =x +3.5,∴tan ∠MBF =0.653.5MF x FB x =≈+,∴解得 6.5x ≈米,经检验 6.5x ≈米符合题意, ∴MN =MF +FN =6.5+1.6=8.1≈8米.【点睛】本题考查矩形判定与性质,锐角三角函数,简单方程,掌握矩形判定与性质,锐角三角函数,简单方程是解题关键.3.(2021·山东聊城市)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C 处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】420米【分析】过D 点分别作DE ⊥BC ,DF ⊥AB ,垂足分别是点E ,点F .由三角函数可求120CE ≈,160DE ≈.可证四边形 BEDF 是矩形,可求AF =140,在Rt △ADF 中,利用三角函数可求DF =AF ·tan65°≈299.60.,可求BC =BE +CE ≈420(米).【详解】解∶过D 点分别作DE ⊥BC ,DF ⊥AB ,垂足分别是点E ,点F .由题意得,CDE ∠=37°.在R △CDE 中∵sin 37,cos37,200CE DE CD CD CD︒=︒==, 200sin372000.60120CE ∴=⋅︒≈⨯=,200cos372000.80160DE =⋅≈⨯=︒.,,AB BC DE BC DF AB ⊥⊥⊥,90B DEB DFB ∴∠=∠=∠=︒.∴四边形 BEDF 是矩形,∴BE =DF ,BF =DE =160,∴AF =AB -BF =300-160=140.在Rt △ADF 中,tan 65DF AF︒=,∴DF =AF ·tan65°≈140×2.14=299.60. ∴BC =BE +CE =299.60+120≈420(米).所以,革命纪念碑与党史纪念馆之间的距离约为 420米.【点睛】本题考查解直角三角形应用,矩形判定与性质,掌握锐角三角函数的定义与矩形判定和性质是解题关键.4.(2021·四川广元市)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC 的高度为米.(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D都在同一平面内.参考数据:tan 752︒=tan152︒=.计算结果保留根号)【答案】(1)()30米;(2)()6秒【分析】(1)通过作辅助线构造直角三角形,解直角三角形即可求出DE 的值,进而得到DH 的值;(2)先利用特殊角的三角函数值求出∠BAC 的度数,接着求出∠GF A 的度数,作辅助线构造直角三角形求出DG 和GF ,进而得到DF 的值,最后除以无人机速度即可.【详解】解:如图1,过D 点作DH ⊥AB ,垂足为点H ,过C 点作CE ⊥DH ,垂足为点E ,可知四边形EHBC 为矩形,∴EH =CB ,CE =HB ,∵无人机测得小区楼房BC 顶端点C 处的俯角为45︒,测得操控者A 的俯角为75︒,DM ∥AB ,∴∠ECD =45°,∠DAB =75°,∴∠CDE =∠ECD =45°,∴CE =DE ,设CE =DE =HB =x ,∴AH =45-x ,DH =DE +EH =x +在Rt △DAH 中,DH =tan75°×AH =(()245x +-,即(()245x x +=-,解得:x =30,∴DH = 30∴此时无人机的高度为()30米; (2)如图2所示,当无人机飞行到图中F 点处时,操控者开始看不见无人机,此时AF 刚好经过点C ,过A 点作AG ⊥DF ,垂足为点G ,此时,由(1)知,AG =30(米),∴°30153===15tan 7523AG DG ++;∵1533tan =453BC CAB AB ∠==,∴°=30CAB ∠∵DF ∥AB ,∴∠DF A =∠CAB =30°,∴°45tan 30GA GF ==,∴=30DF GF DG -=,因为无人机速度为5米/秒,所以所需时间为3065(秒);所以经过()6秒时,无人机刚好离开了操控者的视线.【点睛】本题综合考查了解直角三角形的应用,涉及到了等腰直角三角形的性质、矩形的判定与性质、特殊角的三角函数值、解直角三角形等知识,解决本题的关键是读懂题意,能从题意与图形中找出隐含条件,能构造直角三角形求解等,本题蕴含了数形结合的思想方法等.5.(2021·四川资阳市)资阳市为实现5G 网络全覆盖,2020-2025年拟建设5G 基站七千个.如图,在坡度为1:2.4i =的斜坡CB 上有一建成的基站塔AB ,小芮在坡脚C 测得塔顶A 的仰角为45︒,然后她沿坡面CB 行走13米到达D 处,在D 处测得塔顶A 的仰角为53︒(点A 、B 、C 、D 均在同一平面内)(参考数据:434sin 53,cos53,tan 53553︒≈︒≈︒≈)(1)求D 处的竖直高度;(2)求基站塔AB 的高.【答案】(1)5米;(2)19.25米【分析】(1)过点D 作DE ⊥CM ,根据坡度及勾股定理求DE 的长度;(2)延长AB 交CM 于点F ,过点D 作DG ⊥AF ,则四边形DEFG 是矩形,然后利用锐角三角函数和坡度的概念解直角三角形【详解】解:(1)过点D 作DE ⊥CM∵斜坡CB 的坡度为1:2.4i =∴设DE =x ,则CE =2.4x在Rt △CDE 中,222(2.4)13x x +=解得:x =±5(负值舍去)∴DE =5 即D 处的竖直高度为5米;(2)延长AB 交CM 于点F ,过点D 作DG ⊥AF ,则四边形DEFG 是矩形∴GF =DE =5,CE =2.4DE =12,由题意可得:∠ACF =45°,∠ADG =53°设AF =CF =a ,则DG =EF =a -12,AG =AF -GF =a -5∴在Rt △ADG 中,tan 53AG DG ︒=,54123a a -=-解得:a =33 经检验:33a =符合题意,∴DG =33-12=21, 又∵斜坡CB 的坡度为1:2.4i =∴12.4BG DG =,121 2.4BG =解得:BG =8.75 ∴AB =AF -GF -BG =19.25即基站塔AB 的高为19.25米.【点睛】本题考查解直角三角形、坡度、坡角、仰角、勾股定理、三角函数等知识,熟练掌握这些知识就解决问题的关键,属于中考常考题型.6.(2021·江苏宿迁市)一架无人机沿水平直线飞行进行测绘工作,在点P 处测得正前方水平地面上某建筑物AB 的顶端A 的俯角为30°,面向AB 方向继续飞行5米,测得该建筑物底端B 的俯角为45°,已知建筑物AB 的高为3米,求无人机飞行的高度(结果精确到1≈1.414≈ =1.732).【答案】无人机飞行的高度约为14米.【分析】延长PQ ,BA ,相交于点E ,根据∠BQE =45°可设BE =QE =x ,进而可分别表示出PE =x +5,AE=x -3,再根据sin ∠APE =AE PE ,∠APE =30°即可列出方程35x x -=+ 【详解】解:如图,延长PQ ,BA ,相交于点E ,由题意可得:AB ⊥PQ ,∠E =90°,又∵∠BQE =45°,∴BE =QE ,设BE =QE =x ,∵PQ =5,AB =3,∴PE =x +5,AE =x -3,∵∠E =90°,∴sin ∠APE =AE PE ,∵∠APE =30°,∴sin30°=35x x -=+解得:x =7≈14,答:无人机飞行的高度约为14米.【点睛】本题考查解直角三角形的应用-俯角仰角问题,难度适中,要求学生能借助其关系构造直角三角形并解直角三角形.7.(2021·浙江嘉兴市)一酒精消毒瓶如图1,AB 为喷嘴,BCD ∆为按压柄,CE 为伸缩连杆,BE 和EF 为导管,其示意图如图2,108DBE BEF ∠=∠=︒,6cm BD =,4cm BE =.当按压柄BCD ∆按压到底时,BD 转动到'BD ,此时'//BD EF (如图3).(1)求点D 转动到点'D 的路径长;(2)求点D 到直线EF 的距离(结果精确到0.1cm ).(参考数据:sin360.59︒≈,cos360.81︒≈,tan360.73︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)【答案】(1)65π;(2)点D 到直线EF 的距离约为7.3cm .【分析】(1)根据题目中的条件,首先由108DBE BEF ∠=∠=︒,'//BD EF ,求出'D BE ∠,再继续求出'DBD ∠,点D 转动到点'D 的路径长,是以BD 为半径,B 为圆心的圆的周长的一部分,根据'DBD ∠占360︒的比例来求出路径;(2)求点D 到直线EF 的距离,实际上是过点D 作EF 的垂线交EF 于某点,连接两点所确定的距离即为所求,但这样做不好求解.于是把距离拆成两个部分,放在两个直角三角形中,分别利用直角三角形中锐角三角函数知识求出每段的距离,再求和即为所求.【详解】解:(1)如图,∵'//BD EF ,108BEF ∠=︒,∴'18072D BE BEF ∠=︒-∠=︒.∵108DBE ∠=︒,∴''1087236DBD DBE D BE ∠=∠-∠=︒-︒=︒.又∵6BD =,∴点D 转动到点'D 的路径长()3666cm 1805ππ⨯⨯==. (2)如图,过点D 作'DG BD ⊥于点G ,过点E 作'EH BD ⊥于点H .在Rt DGC △中,sin DG DBD BD'∠=∴sin36 3.54DG BD =⋅︒≈. 在Rt BHE 中,sin EH EBH BE ∠=∴sin72 3.80EH BE =⋅︒≈. ∴ 3.54 3.807.347.3DG EH +=+=≈.又∵'//BD EF ,∴点D 到直线EF 的距离约为7.3cm .【点睛】本题考查了两点间转动的路径问题、点到直线的距离问题,锐角三角函数知识,解题的关键是:确定路径是在圆上,占圆周长的多少,就转化成角度间的比值问题了;距离问题,当直接求解比较困难的时候,看是否能把所求拆分成几个部分,再逐一突破.8.(2021·江苏连云港市)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB 摆成如图1所示.已知 4.8m AB =,鱼竿尾端A 离岸边0.4m ,即0.4m AD =.海面与地面AD 平行且相距1.2m ,即 1.2m DH =.(1)如图1,在无鱼上钩时,海面上方的鱼线BC 与海面HC 的夹角37BCH ∠=︒,海面下方的鱼线CO 与海面HC 垂直,鱼竿AB 与地面AD 的夹角22BAD ∠=︒.求点O 到岸边DH 的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角53BAD ∠=︒,此时鱼线被拉直,鱼线 5.46m BO =,点O 恰好位于海面.求点O 到岸边DH 的距离.(参考数据:3sin 37cos535︒=︒≈,4cos37sin 535=︒︒≈,3tan 374︒≈,3sin 228︒≈,15cos2216︒≈,2tan 225︒≈)【答案】(1)8.1m ;(2)4.58m【分析】(1)过点B 作BF CH ⊥,垂足为F ,延长AD 交BF 于点E ,构建Rt ABE △和Rt BFC △,在Rt ABE △中,根据三角函数的定义与三角函数值求出BE ,AE ;再用BE EF +求出BF ,在Rt BFC △中,根据三角函数的定义与三角函数值求出FC ,用CF AE AD CH ;(2)过点B 作⊥BN OH ,垂足为N ,延长AD 交BN 于点M ,构建Rt ABM 和Rt BNO ,在Rt ABM 中,根据53°和AB 的长求出BM 和AM ,利用BM +MN 求出BN ,在Rt BNO 中利用勾股定理求出ON ,最后用HN +ON 求出OH .【详解】(1)过点B 作BF CH ⊥,垂足为F ,延长AD 交BF 于点E ,则AE BF ⊥,垂足为E . 由cos AE BAE AB∠=,∴cos 22 4.8︒=AE ,∴1516 4.8=AE ,即 4.5AE =, ∴ 4.50.4 4.1=-=-=DE AE AD ,由sin BE BAE AB ∠=,∴sin 22 4.8︒=BE , ∴38 4.8=BE ,即 1.8BE =,∴ 1.8 1.23=+=+=BF BE EF . 又tan ∠=BF BCF CF ,∴3tan 37︒=CF ,∴334=CF ,即4CF =, ∴4 4.18.1=+=+=+=CH CF HF CF DE ,即C 到岸边的距离为8.1m .(2)过点B 作⊥BN OH ,垂足为N ,延长AD 交BN 于点M ,则AM BN ⊥,垂足为M . 由cos ∠=AM BAM AB ,∴cos53 4.8︒=AM ,∴35 4.8=AM , 即 2.88=AM ,∴ 2.880.4 2.48=-=-=DM AM AD . 由sin ∠=BM BAM AB ,∴sin 53 4.8︒=BM ,∴45 4.8=BM , 即 3.84=BM ,∴ 3.84 1.2 5.04=+=+=BN BM MN .∴ 2.1====ON ,∴ 4.58=+=+=OH ON HN ON DM ,即点O 到岸边的距离为4.58m .【点睛】本题以钓鱼为背景,考查了学生运用三角函数知识解决实际问题的能力,解题关键在于构造合适的直角三角形,运用三角函数的运算,根据一边和一角的已知量,求其他边;再根据特殊的几何位置关系求线段长度.9.(2021·浙江绍兴市)拓展小组研制的智能操作机器人,如图1,水平操作台为l ,底座AB 固定,高AB 为50cm ,连杆BC 长度为70cm ,手臂CD 长度为60cm .点B ,C 是转动点,且AB ,BC 与CD 始终在同一平面内,(1)转动连杆BC ,手臂CD ,使143ABC ∠=︒,//CD l ,如图2,求手臂端点D 离操作台l 的高度DE 的长(精确到1cm ,参考数据:sin530.8︒≈,cos530.6︒≈).(2)物品在操作台l 上,距离底座A 端110cm 的点M 处,转动连杆BC ,手臂CD ,手臂端点D 能否碰到点M ?请说明理由.【答案】(1)106cm ;(2)能碰到,见解析【分析】(1)通过作辅助线构造直角三角形,利用三角函数值解直角三角形即可完成求解;(2)求出端点D 能够到的最远距离,进行比较即可得出结论.【详解】解:(1)过点C 作CP AE ⊥于点P ,过点B 作BQ CP ⊥于点Q ,如图1,143ABC ∠=︒,53CBQ ∴∠=︒,∴在Rt BCQ △中,()sin53700.856CQ BC cm =⋅︒≈⨯=, ()50PQ AB cm ==.//CD l ,()5650106DE CP CQ PQ cm ∴==+=+=.∴手臂端点D 离操作台 l 的高度DE 的长为106cm .。
中考数学专题复习——解直角三角形的实际应用的基本类型课件
) D.6 3 m
2.(202X·益阳中考)南洞庭大桥是南益 高速公路上的重要桥梁,小芳同学在校 外实践活动中对此开展测量活动.如 图,在桥外一点A测得大桥主架与水面的交汇点C的俯角 为α,大桥主架的顶端D的仰角为β,已知测量点与大桥
主架的水平距离AB=a,则此时大桥主架顶端离水面的高
CD为 ( C )
【核心突破】 【类型一】 仰角俯角问题 例1(202X·天津中考)如图,海面上一艘 船由西向东航行,在A处测得正东方向上 一座灯塔的最高点C的仰角为31°,再向东继续航行30 m
到达B处,测得该灯塔的最高点C的仰角为45°,根据测 得的数据,计算这座灯塔的高度CD(结果取整数). 参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60.
____2_2____海里(结果保留整数).(参考数据sin 26.5° ≈0.45,cos 26.5°≈0.90,tan 26.5°≈0.50, 5 ≈ 2.24)
5.(202X·上海宝山区模拟)地铁10 号线某站点出口横截面平面图如图 所示,电梯AB的两端分别距顶部9.9 米和2.4米,在距电梯起点A端6米的P处,用1.5米高的测 角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度 与长度.
解直角三角形的实际 应用的基本类型
【主干必备】 解直角三角形的实际应用的基本类型
应用 类型
图示
测量方式
解答要点
仰角 俯角 问题
(1)运用仰角测距离. (2)运用俯角测距离. (3)综合运用仰角俯 角测距离.
水平线与竖直 线的夹角是 90°,据此构 造直角三角形.
应用 类型
坡度 (坡 比)、 坡角 问题
A.asinα+asinβ C.atanα+aβ D. a a
中考解直角三角形知识点复习
中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半;3、直角三角形斜边上的中线等于斜边的一半4、勾股定理: 如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形;考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;3、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形;经典直角三角形:勾三、股四、弦五用它判断三角形是否为直角三角形的一般步骤是:1确定最大边不妨设为c ;2若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形其中c 为最大边; 若a 2+b 2>c 2,则此三角形为锐角三角形其中c 为最大边4. 勾股定理的作用:1已知直角三角形的两边求第三边; 2已知直角三角形的一边,求另两边的关系;3用于证明线段平方关系的问题; 4利用勾股定理,作出长为n 的线段 考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值三角函数 30°45°60°sinα cos αtan α 1 cot α14、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A ; 2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4商弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,1正弦值随着角度的增大或减小而增大或减小;2余弦值随着角度的增大或减小而减小或增大;3正切值随着角度的增大或减小而增大或减小;4余切值随着角度的增大或减小而减小或增大 考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形; 2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为a,b,c 1三边之间的关系:222c b a =+勾股定理 2锐角之间的关系:∠A+∠B=90°3边角之间的关系:正弦sin,余弦cos,正切tan4 面积公式:h c 为c 边上的高考点五、解直角三角形 应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:1仰角:视线在水平线上方的角;俯角:视线在水平线下方的角;2坡面的铅直高度h 和水平宽度l 的比叫做坡度坡比;用字母i 表示,即hi l=;坡度一般写成1:m 的形式,如1:5i =等; 把坡面与水平面的夹角记作α叫做坡角,那么tan hi lα==; 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角;如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°;解直角三角形的基本类型及其解法公式总结2测量底部可以到达的物体的高度h =h 1+h 2=a 1tan α+tan β3测量底部不可到达的物体的高度1数学模型所用工具 应测数据 数量关系根据 理论 皮尺 侧倾器仰角α 俯角β 高度a tan α=x h 1 ,tan β=xah =a +h 1=a +a =a1+矩形的性质和直角三角形的边角关系俯角α 俯角β 高度 tan α=, tan β=xa∴x == ∴h =a -测量底部不可到达的物体的高度2数字模型 所用工具 应测距离 数量关系根据 原理皮尺侧倾器 仰角α, 仰角β 水平距离a 1 侧倾器高a 2tan α=xa h +11tan β=x h 1∴h 1=αββαtan tan tan tan 1-ah =a 2+h 1=a 2+αββαtan tan tan tan 1-a矩形的性质和直角三角形的边角关系仰角α 仰角β 高度atan α=, tan β= h =tan α=, tan β=、h =仰角α 仰角β 高度atan α=, tan β=h =第三部分 真题分类汇编详解2007-2012200719.本小题满分6分一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈2200819.本小题满分6分在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米结果保留两个有效数字参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=200919.本小题满分6分在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰D DC BβC GEFhα β x h xaα βhAa x α βhaxαβ hx α β角37CGE ∠=°,已知测倾器高米,请你根据以上数据计算出古塔CD 的高度. 参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈ 201019.本小题满分6分小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.结果保留整数参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,解:201119.6分某商场准备改善原有楼梯的安全性能, 原来的40o 减至35o .已知原楼梯AB 长为5m,调整后的楼梯所占地 面CD 有多长结果精确到0.1m .参考数据:sin40o ≈,cos40o ≈≈,tan35o ≈ 201220.8分附历年真题标准答案:200719.本小题满分6分解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD.设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°.在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°. ∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近. …………………………6′ 200819.本小题满分6分解:设CD 为x ,在Rt△BCD 中, 6.18==∠αBDC ,∵CDBCBDC =∠tan ,∴x BDC CD BC 34.0tan =∠⋅=. ········· 2′ 在Rt△ACD 中, 5.64==∠βADC , ∵CDACADC =∠tan ,∴x ADC CD AC 1.2tan =∠⋅=. ∵BC AC AB -=,∴x x 34.01.22-=. 1.14x ≈. 答:CD 长约为米. 200919.本小题满分6分B CD A CG EDBAF B37° 48°DC A 第19题图40o 35o ADBC解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =,在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CE CGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°∵EF FG EG =+,∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=米.答:古塔的高度约是39米. ························ 6分 201019.本小题满分6分解:设CD = x .在Rt △ACD 中,tan37ADCD︒=, 则34AD x =,∴34AD x =. 在Rt△BCD 中,tan48° = BD CD,则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分201119.本小题满分6分 201220.8分第19题图。
2024年中考数学总复习专题18解直角三角形复习划重点 学霸炼技法
叫做坡度(或坡比),用字母 i 表示;
比)、坡角
坡面与水平面的夹角 α 叫坡角,i=
h
tan α= .如图(3)
l
第16页
返回目录
专题十八
解直角三角形
中考·数学
一般指以观测者的位置为中心,将正
北或正南方向作为起始方向旋转到目
方向角
标方向所成的角(一般指锐角),通常
表达成北(南)偏东(西)××度.如图
专题十八
解直角三角形
中考·数学
(2)sin ∠ADC的值.
∵AD 是△ABC 的中线,
1
∴CD= BC=2,∴DE=CD-CE=1.
2
∵AE⊥BC,DE=AE,∴∠ADC=45°,
AE
2
∴sin ∠ADC=
=
.
DE
2
第25页
返回目录
专题十八
解直角三角形
中考·数学
[规律方法]
解此类题的一般方法
(1)构造直角三角形.
(2)理清直角三角形的边、角关系.
(3)利用特殊角的三角函数值解答问题.
第26页
返回目录
专题十八
研究4
解题模型分析
解直角三角形
中考·数学
常见解直角三角形模型
■命题角度1:母子型
基本
模型
AB=AB;BD+DC=BC
第27页
BC=BC;AD+DB=AB
返回目录
专题十八
解直角三角形
中考·数学
演变
模型
BC=EF;
解直角三角形
中考·数学
[对接教材]
人教:九下P60~P84;
北师:九下P2~P27;
中考数学总复习《解直角三角形》专项测试卷带答案
中考数学总复习《解直角三角形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.已知∠A 是锐角,sin A =35,则tan A 的值是 ( )A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 ( )A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 ( )A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50 m,则这栋楼的高度为m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 ( ) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 ( )A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m至点Q处,测得教学楼顶端点B的俯角为45°,则教学楼AB的高度约为m.(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=.C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.,β=30°,求该介质的(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√74折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.参考答案A 层·基础过关1.(2024·潍坊寿光市二模)已知∠A 是锐角,sin A =35,则tan A 的值是 (B)A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 (A)A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.(2024·泸州中考)宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 (A)A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 105° .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60°,测得底部点B 的俯角为45°,点A 与楼BC 的水平距离AD =50 m,则这栋楼的高度为 (50+50√3) m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为11.5米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【解析】(1)∵AD⊥BC,AB=10,AD=6∴BD=√AB2-AD2=√102-62=8;∵tan∠ACB=1,∴CD=AD=6∴BC=BD+CD=8+6=14;(2)∵AE 是BC 边上的中线,∴CE =12BC =7,∴DE =CE -CD =7-6=1,∵AD ⊥BC∴AE =√AD 2+DE 2=√62+12=√37∴sin ∠DAE =DEAE =√37=√3737.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 (A) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 (A)A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m 至点Q 处,测得教学楼顶端点B 的俯角为45°,则教学楼AB 的高度约为 17 m .(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至或AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=274.7C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√7,β=30°,求该介质的4折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.【解析】(1)∵cos α=√74∴如图设b=√7x,则c=4x,由勾股定理得,a=√(4x)2-(√7x)2=3x∴sin α=ac =3x4x=34,又∵β=30°∴sin β=sin 30°=12∴折射率为sinαsinβ=3412=32.(2)根据折射率与(1)的材料相同,可得折射率为32∵α=60°∴sinαsinβ=sin60°sinβ=32,∴sin β=√33.∵四边形ABCD是矩形,点O是AD中点∴AD=2OD,∠D=90°又∵∠OCD=β∴sin∠OCD=sin β=√33在Rt△ODC中,设OD=√3x,OC=3x由勾股定理得,CD=√(3x)2-(√3x)2=√6x∴tan β=ODCD =√3x√6x=√2.又∵CD=10 cm∴OD10=√2∴OD=5√2cm∴AD=10√2cm,∴截面ABCD的面积为:10√2×10=100√2cm2.。
解直角三角形——中考专题复习
解直角三角形——中考专题复习在《义务教育数学课程标准》中对图形与几何应用的具体要求有:能运用勾股定理及其逆定理解决一些简单的实际问题;能利用锐角三角函数的相关知识解决一些简单的实际问题等。
模型思想是《数学课程标准(2011版)》新增的核心概念,是近年中考数学考查的要点和热点题型,主要考查建立数学模型解决实际应用问题的能力. 其意图是引领学生建立数学与生活的联系,让学生明确数学是解决现实生活和生产实践问题的有效工具,并能利用所学的数学知识解决生活中的实际问题.关于数学建模与问题解决的中考试题,是把在实际中出现的相关问题从数学的角度去分析和解决,目的是让学生明确数学是解决现实生活和生产实践问题的有效工具.数学建模与问题解决的中考试题是山近年来中考的必考题.其中一类是就是建立几何模型(主要是“相似三角形模型”与“直角三角形模型”)解决问题.它们或以三角形为背景,或以四边形为背景,通常还会与图形变换、平面直角坐标系等知识结合起来,在解决此类问题时,最终要根据题目中的内容抽象成数学问题中相似三角形模型与直角三角形的模型,根据其性质使得问题得到解决.在近几年的中考中,关于数学建模与问题解决的中考试题,占比都很大,通常结合方程、函数、不等式和几何图形,考查学生数学建模、几何直观、推理能力、运算能力、阅读素养和应用意识. 在解决此类问题时,要根据题目中的数据抽象成数学模型问题,根据所学数学知识进行解答.专题示例:例1.一学习小组在进行课外活动是对学校附近斜拉索桥产生了兴趣,于是就对斜拉索桥上的一些数据进行了测量,测量结果如下表(1)请帮助该小组根据上表中的测量数据,求斜拉索项端点C到AB的距离(参考数据sin 38°≈0.6,cos 38°≈0.8, tan 38°≈0.8, sin 28°≈0.5, cos 28°≈0.9,tan28°≈0.5):(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可)。
中考数学一轮复习中考命题课三角形中考专题4++解直角三角形的实际应用(针对省卷22题,兰州卷25题)
模型拓展
DF=EC,DE=FC, BF+DE=BC,AE+ DF=AC
AE=CF,AC=EF, EC-BE=BC
BC+AE=BF
2.[2024兰州一诊24题]小伟站在一个深为3米的泳池边,他看到泳池内 有一块鹅卵石,据此他提出问题:鹅卵石的像到水面的距离是多少米? 小伟利用光学知识和仪器测量数据解决问题,具体研究方案如下:
请你根据上述信息解决以下问题:
(1)求∠CBN的大小; 解:∵ssiinn∠∠ACBBMN =1.33,sin∠ABM≈0.665, ∴sin ∠CB N=0.665=1,
1.33 2 ∴∠CBN=30°.
(2)求鹅卵石的像G到水面的距离GH.(结果精确到0.1 m) (参考数据 :sin41.7°≈0.665,cos41.7°≈0.747,tan41.7°≈0.891, ≈1.73) 解:∵∠ABM=∠NBG=41.7°,BN∥HC.
问题 工具
鹅卵石的像到水面的距离 纸、笔、计算器、测角仪等
图形 数据
根据实际问题画出示意图(如图), 鹅卵石在C处,其像在G处,泳 池深为BN,且BN=CH, 说明 MN⊥NC于点N,MN⊥BH于点 B,CH⊥BH于点H,点G在CH 上,A,B,G三点共线,通过 查阅资料获得=1.33 BN=3 m,∠ABM=41.7°
2025年甘肃中考数学一轮复习中考命题探究
解直角三角形的实际应用
中考专题四
(针对省卷22题,兰州卷25题)
考点 1 背靠背型(省卷:5年2考) 背靠背型指图中有两个有一条公共边的直角三角形,其中一 个直角三角形在另一个直角三角形的外部,或通过作高线,
模型解读 构造出这样的两个直角三角形,常利用公共边建立两个直角 三角形的联系,运用锐角三角函数关系进行求解
中考数学点对点-解直角三角形问题(解析版)
∴AD=AB×sin30°=20 10(海里),
BD=AB×cos30°=20 10 10×1.73=17.3,
∵BD⊥AC,BF⊥CE,CE⊥AC,
∴∠BDC=∠DCF=∠BFC=90°,
∴四边形BDCF为矩形,
∴DC=BF﹣9.7,FC=BD=17.3,
如图,连接BC.
∵∠ADC和∠ABC所对的弧长都是 ,
∴根据圆周角定理知,∠ADC=∠ABC.
在Rt△ACB中,根据锐角三角函数的定义知,
sin∠ABC ,
∵AC=2,BC=3,
∴AB ,
∴sin∠ABC ,
∴sin∠ADC .
【例题3】(2020•荆门)如图,海岛B在海岛A的北偏东30方向,且与海岛A相距20海里,一艘渔船从海岛B出发,以5海里/时的速度沿北偏东75°方向航行,同时一艘快艇从海岛A出发,向正东方向航行.2小时后,快艇到达C处,此时渔船恰好到达快艇正北方向的E处.
(2)在Rt△BEF中,解直角三角形求出EF,BF,在Rt△ABD中,解直角三角形求出AD,BD,证明四边形BDCF为矩形,得出DC,FC,求出CE的长,则可得出答案.
【解析】(1)过点B作BD⊥AC于点D,作BF⊥CE于点E,
由题意得,∠NAB=30°,∠GBE=75°,
∵AN∥BD,
∴∠ABD=∠NAB=30°,
∠B=90°-∠A,a=c·sinA, b=c·cosA
五、特殊值的三角函数
三角函数
0°
30°
45°
60°
90°
sinα
0
1
cosα
1
0
tanα
0
1
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。
中考专题复习解直角三角形(含答案)
中考专题复习解直⾓三⾓形(含答案)中考数学专题解直⾓三⾓形第⼀节锐⾓三⾓函数1、勾股定理:直⾓三⾓形两直⾓边、的平⽅和等于斜边的平⽅。
2、如下图,在Rt△ABC中,∠C为直⾓,则∠A的锐⾓三⾓函数为(∠A可换成∠B):定义表达式取值范围关系正弦(∠A为锐⾓)余弦(∠A为锐⾓)正切(∠A为锐⾓)(倒数)余切(∠A为锐⾓)3、任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值。
4、任意锐⾓的正切值等于它的余⾓的余切值;任意锐⾓的余切值等于它的余⾓的正切值。
5、30°、45°、60°特殊⾓的三⾓函数值(重要)三⾓函数30°45°60°116、正弦、余弦的增减性:当0°≤≤90°时,sin随的增⼤⽽增⼤,cos随的增⼤⽽减⼩。
7、正切、余切的增减性:当0°<<90°时,tan随的增⼤⽽增⼤,cot随的增⼤⽽减⼩。
第⼆节解⾓直⾓三⾓形1、解直⾓三⾓形的定义:已知边和⾓(两个,其中必有⼀条边)→求所有未知的边和⾓。
依据:①边的关系:;②⾓的关系:∠A+∠B=90°;③边⾓关系:(见前⾯三⾓函数的定义)。
2、应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。
(2)坡⾯的铅直⾼度和⽔平宽度的⽐叫做坡度(坡⽐)。
⽤字母表⽰,即。
坡度⼀般写成的形式,如等。
把坡⾯与⽔平⾯的夹⾓记作(叫做坡⾓),那么。
【重点考点例析】考点⼀:锐⾓三⾓函数的概念例1 如图所⽰,△ABC的顶点是正⽅形⽹格的格点,则sinA的值为()A.12B.55C.1010D.255对应训练1.在平⾯直⾓坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.12考点⼆:特殊⾓的三⾓函数值例2 计算:cos245°+tan30°?sin60°=.对应训练(2012?南昌)计算:sin30°+cos30°?tan60°.考点三:化斜三⾓形为直⾓三⾓形例3 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.对应训练3.如图,在Rt △ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三⾓形.若AB=2,求△ABC 的周长.(结果保留根号)考点四:解直⾓三⾓形的应⽤例4 黄岩岛是我国南海上的⼀个岛屿,其平⾯图如图甲所⽰,⼩明据此构造出该岛的⼀个数学模型如图⼄所⽰,其中∠B=∠D=90°,AB=BC=15千⽶,CD=32千⽶,请据此解答如下问题:(1)求该岛的周长和⾯积;(结果保留整数,参考数据2≈1.414,3≈1.73 ,6≈2.45)(2)求∠ACD的余弦值.对应训练6.超速⾏驶是引发交通事故的主要原因之⼀.上周末,⼩明和三位同学尝试⽤⾃⼰所学的知识检测车速.如图,观测点设在A 处,离益阳⼤道的距离(AC)为30⽶.这时,⼀辆⼩轿车由西向东匀速⾏驶,测得此车从B处⾏驶到C处所⽤的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳⼤道60千⽶/⼩时的限制速度?(计算时距离精确到1⽶,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千⽶/⼩时≈16.7⽶/秒)【聚焦中考】1.如图,在8×4的矩形⽹格中,每格⼩正⽅形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.32.把△ABC三边的长度都扩⼤为原来的3倍,则锐⾓A的正弦函数值()A.不变B.缩⼩为原来的13C.扩⼤为原来的3倍D.不能确定3.计算:tan45°+ 2cos45°= .4.在△ABC中,若∠A、∠B满⾜|cosA- 12|+(sinB-22)2=0,则∠C= .5.校车安全是近⼏年社会关注的重⼤问题,安全隐患主要是超速和超载.某中学数学活动⼩组设计了如下检测公路上⾏驶的汽车速度的实验:先在公路旁边选取⼀点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21⽶,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1⽶,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千⽶/⼩时,若测得某辆校车从A到B⽤时2秒,这辆校车是否超速?说明理由.6.如图,某校教学楼AB的后⾯有⼀建筑物CD,当光线与地⾯的夹⾓是22°时,教学楼在建筑物的墙上留下⾼2⽶的影⼦CE;⽽当光线与地⾯夹⾓是45°时,教学楼顶A在地⾯上的影⼦F与墙⾓C有13⽶的距离(B、F、C在⼀条直线上)(1)求教学楼AB的⾼度;(2)学校要在A、E之间挂⼀些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)【备考真题过关】⼀、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.452.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.433.如图,在Rt △ABC中,∠C=90°,AB=6,cosB= 23,则BC的长为()A.4 B.25C.181313D.1213134.2cos60°的值等于()A.1 B.2C.3D.25.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.16.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则C( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°.7.在“测量旗杆的⾼度”的数学课题学习中,某学习⼩组测得太阳光线与⽔平⾯的夹⾓为27°,此时旗杆在⽔平地⾯上的影⼦的长度为24⽶,则旗杆的⾼度约为()A.24⽶B.20⽶C.16⽶D.12⽶8.如图,某⽔库堤坝横断⾯迎⽔坡AB的坡⽐是1:3,堤坝⾼BC=50m,则应⽔坡⾯AB的长度是()A.100m B.1003m C.150m D.503m1.如图,为测量某物体AB的⾼度,在D点测得A点的仰⾓为30°,朝物体AB⽅向前进20⽶,到达点C,再次测得点A的仰⾓为60°,则物体AB的⾼度为()A.10⽶B.10⽶C.20⽶D.⽶2.⼩明想测量⼀棵树的⾼度,他发现树的影⼦恰好落在地⾯和⼀斜坡上,如图,此时测得地⾯上的影长为8⽶,坡⾯上的影长为4⽶.已知斜坡的坡⾓为30°,同⼀时刻,⼀根长为1⽶、垂直于地⾯放置的标杆在地⾯上的影长为2⽶,则树的⾼度为()A.(6+)⽶B.12⽶C.(4﹣2)⽶D.10⽶3.如图,从热⽓球C处测得地⾯A、B两点的俯⾓分别是30°、45°,如果此时热⽓球C处的⾼度CD为100⽶,点A、D、B在同⼀直线上,则AB两点的距离是()A.200⽶B.200⽶C.220⽶D.100()⽶⼆、填空题9.在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.tan60°= .11.若∠a=60°,则∠a的余⾓为,cosa的值为.12.如图,为测量旗杆AB的⾼度,在与B距离为8⽶的C处测得旗杆顶端A的仰⾓为56°,那么旗杆的⾼度约是⽶(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题13.如图,定义:在直⾓三⾓形ABC中,锐⾓α的邻边与对边的⽐叫做⾓α的余切,记作ctanα,即ctanα== ACBC,根据上述⾓的余切定义,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=34,其中∠A为锐⾓,试求ctanA的值.14.⼀副直⾓三⾓板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.15.为促进我市经济的快速发展,加快道路建设,某⾼速公路建设⼯程中需修隧道AB,如图,在⼭外⼀点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)16.如图,某⾼速公路建设中需要确定隧道AB的长度.已知在离地⾯1500m,⾼度C处的飞机,测量⼈员测PABQ24.5°49°41°北东南西得正前⽅A 、B 两点处的俯⾓分别为60°和45°,求隧道AB 的长.17.如图,⾃来⽔⼚A 和村庄B 在⼩河l 的两侧,现要在A ,B 间铺设⼀知输⽔管道.为了搞好⼯程预算,需测算出A ,B 间的距离.⼀⼩船在点P 处测得A 在正北⽅向,B 位于南偏东24.5°⽅向,前⾏1200m ,到达点Q 处,测得A 位于北偏东49°⽅向,B 位于南偏西41°⽅向.(1)线段BQ 与PQ 是否相等?请说明理由;(2)求A ,B 间的距离.(参考数据cos41°=0.75)练习作业:1. 已知在Rt △ABC 中,∠C =90°,根据表中的数据求其它元素的值:a b c ∠A ∠B 12 30° 4 45° 260°5 35 4 28 CD=3,AD=12,求证:AD ⊥BD .3.计算ooo5sin 302cos60tan 45-- oo o o2cos 45tan 30sin 45tan 60-+?4.如图所⽰,已知:在△ABC中,∠A=60°,∠B=45°,AB=443,?求△ABC的⾯积(结果可保留根号).例5.已知:如图所⽰,在△ABC中,AD是边BC上的⾼,E?为边AC?的中点,BC=14,AD=12,sinB=45,求:(1)线段DC的长;(2)tan∠EDC的值.例6.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sinB?sinC的值.。
2024年广东省中考数学总复习专题20:解直角三角形
2024年广东省中考数学总复习专题20
解直角三角形一、锐角三角函数的定义
在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b
,
正弦:sin A=∠的对边
=
斜边
A a
c;余弦:cos A=
∠的邻边
=
斜边
A b
c;正切:tan A=
∠的对边
=
邻边
A a
b.
根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
二、特殊角的三角函数值
三、解直角三角形
1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2;2)两锐角关系:∠
A+∠B=90°;3)边与角关系:sin A=cos B=a
c,cos A=sin B=
b
c,tan A=
a
b;4)sin
2A+cos2A=1.
3.科学选择解直角三角形的方法口诀:
第1页(共12页)。
中考数学解直角三角形
中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。
二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。
2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。
3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。
4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。
解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。
下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。
一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。
一般题型为:已知一个锐角,求其它锐角的三角函数值。
例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。
解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。
二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。
一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。
例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。
解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考二轮复习之——解直角三角形
特殊角的三角函数值
α
sin α cos α tan α 30︒ 12 32
33
45︒ 22
22 1
60︒
3
2
12
3
如图7-2,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视
线与水平线的夹角叫做俯角.
如图7-3,坡面的铅垂高度(h )和水平宽度(l )的比叫做坡面的坡度(或坡比),记作i ,即h
i l
=
.坡度通常写成1∶m 的形式,如i =1∶6.坡面与水平面的夹角叫做坡角,记作,
有h
i l
=
=tan .显然,坡度越大,坡角α就越大,坡面就越陡. 方位角:指南或指北的方向线与目标方向线所成的小于90°角的为方位角.
四.例题分析:
1.勾股定理与锐角三角函数知识的应用
例1 在Rt △ABC 中,∠C =90°,若sin A =5
13
,则cos A 的值为( ) A .512 B .813 C .23 D .1213
变式: 如图7-4,在Rt△ABC 中,∠C =90°,AB =10,sin A =25
. 求BC 的长和tan B 的值.
铅垂线
视线
视线
水平线 仰角 俯角
图7-2
α
i =h :l
h
l
图7-3
A
图7-4
2.仰角、俯角、方位角、坡角和坡度(或坡比)的概念
例1 如图7-6-1,某大楼的顶部树有一块广告牌CD ,小在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡
AB 的坡度i =1
,AB =10米,AE =15米.(i =1
BH 与水平宽度AH 的比)
(1)求点B 距水平面AE 的高度BH ; (2)求广告牌CD 的高度.
(测角器的高度忽略不计,结果精确到0.1
≈1.414
1.732)
例2 如图7-7-1,为了测量山顶铁塔AE 的高,小明在27m 高的楼CD 底部D 测得塔顶A 的仰角为45°,在楼顶C 测得塔顶A 的仰角36°52′.已知山高BE 为56m ,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE .(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)
图7-6-
1
图7-7-1
例3 如图7-8,在一笔直的海岸线l 上有AB 两个观测站,A 在B 的正向,AB =2(单位:km).有一艘小船在点P 处,从A 测得小船在北偏西60°的方向,从B 测得小船在北偏东45°的方向.
(1)求点P 到海岸线l 的距离;
(2)小船从点P 处沿射线AP 的方向航行一段时间后,到
点C 处,此时,从B 测得小船在北偏西15°的方向.求点C 与点B 之间的距离.(上述两小题的结果都保留根号)
变式:1.如图,天空中有一个静止的广告气球C ,从地面点A 测得点C 的仰角为45°,
从地面点B 测得点C 的仰角为60°.已知AB=20 m ,点C 和直线AB 在同一铅垂平面上,求气球离地面的高度(结果保留根号).
2.如图所示,海上有一灯塔P ,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A 点处测得P 在它的北偏东60°的方向,继续行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险?
图7-8-1
45°
60°
B C P
东 北
3.数形结合思想与转化思想的渗透
例3如图7-5-1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20︒(即图10-5-2中∠ACB=20︒)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分
AD=0.5m,请求出木板CD的长度.
(参考数据:sin 20︒≈0.3420,cos 20︒≈0.9397,精确到0.1m).
变式:1.如图所示,某风景区有一古塔AB,在塔的北面有筑物,冬至日的正午光线与水平面的夹角是30°,•此时塔在建筑物的墙上留下了高3•米的影子CD;而在春分日正午光线与地面的夹角是45°,此时塔尖A在地面上的影子E•与墙角C有15米的距离(B、
E、C在一条直线上),求塔AB的高度(结果保留根号)
2.如图,在观测点E测得小山上铁塔顶A的仰角为60°,铁塔底部B的仰角为45°.已知塔高AB=20m,观察点E到地面的距离EF=35m,求小山BD的高(精确到0.1m,3≈1.732).
A
B
C
D
图7-5-1 图7-5-2
3.如图所示,小山的顶部是一块平地,•在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1:3,斜坡BD的长是50米,•在山坡的坡底处测得铁架顶端A的仰角为45°,在山坡的坡项D处测得铁架顶端A的仰角为60°.
(1)求小山的高度;
(2)求铁架的高度.(3≈1.73,精确到0.1米)
四.综合演练
填空题
1.如图1,防洪大堤的横断面是梯形,坝高AC等于6米,背水坡AB的坡度i=1:2,则斜坡AB的长为_______米.
2.如图2所示,AB是⊙O的直径,弦AC、BD相交于E,则CD
AB
等于()
A.tan∠AED B.cot∠AED C.sin∠AED D.cos∠AED
3.如图3,在矩形ABCD中DE⊥AC于E,设∠ADE=a,且cosα=3
5
,AB=4,则AD的长为()
A.3 B.162016
.. 335
C D
4.如图.两条宽度为l的带子以角交叉重叠,则重叠部分(阴影部分)的面积是
A、sinα B.
1
sinα
C.
1
1cosα
-
D.
2
1
sinα
5.有一拦水坝的横断面是等腰梯形,它的上底长为6 m,下底长为10 m,高为23m,那么此拦水坝斜坡的坡度和坡角分别是 ( )
A.3
,60° B.3,30° C.3,60° D.
3
,30°
解答题:
1.Rt△ABC中,∠C=90°,AC=12,∠A的平分线AD=83,求BC,AB.
2.两建筑物AB和CD的水平距离为45m,从A点测得C点的俯角为30°,测得D•点的俯角为60°,求建筑物CD的高度.
3.如图,甲、乙两幢高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰
角α为30°,测得乙楼底部B点的仰角β为60°,求甲,乙两幢高楼各有多高?(计
算过程和结果不取近似值)
4.震泽中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB 的高度.如图所示,当从正西方向照射过来时,•旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m,DE=4m,BD=20m,DE与地面的夹角为α=30°.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.•根据这些数据求旗杆AB的高度.(可能用
到的数据:2≈1.414,3≈1.732,结果保留两个有效数字)。