(完整版)期望与分布列高考试题精选

(完整版)期望与分布列高考试题精选
(完整版)期望与分布列高考试题精选

期望与分布列高考试题精选

一.解答题(共20小题)

1.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的

同时购买的易损零件数.

(Ⅰ)求X的分布列;

(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;

(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?

2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.

(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;

(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).3.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;

(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).

4.在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:

300500

作物产

量(kg)

概率0.50.5

610

作物市

场价格

(元

/kg)

概率0.40.6

(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;

(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

5.现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;

(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.

6.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;

白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).

(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.

(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.

7.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率分布直方图.

(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率;

(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.

(i)求日需求量X的分布列;

(ii)该经销商计划每日进货300公斤或400公斤,以每日利润Y的数学期望值为决策依据,他应该选择每日进货300公斤还是400公斤?

8.已知一个口袋中有3个白球,2个黑球,这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,4,5的抽屉内,其中第k次取出的球放入编号为k的抽屉.

(1)试求编号为2的抽屉内放的是黑球的概率p;

(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,求分布列.9.自2016年底,共享单车日渐火爆起来,逐渐融入大家的日常生活中,某市针对18岁到80岁之间的不同年龄段的城市市民使用共享单车情况进行了抽样调查,结果如表所示:

性别

年龄

性别女性合计

[18,25)18040220

[25,35)360240600

[35,50)40100140

[50,80)202040

合计6004001000

(1)采用分层抽样的方式从年龄在[25,35)内的人中抽取10人,求其中男性、女性的使用人数各为多少?

(2)在(1)中选出10人中随机抽取4人,求其中恰有2人是女性的概率;(3)用样本估计总体,在全市18岁到80岁的市民中抽4人其中男性使用的人数记为ξ,求ξ的分布列.

10.某中超足球队的后卫线上一共有7名球员,其中3人只能打中后卫,2人只能打边后卫,2人既能打中后卫又能打边后卫,主教练决定选派4名后卫上场比赛,假设可以随机选派球员.

(1)在选派的4人中至少有2人能打边后卫的概率;

(2)在选派的4人中既能打中后卫又能打边后卫的人数ξ的分布列与期望.11.由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:

组别候车时间(单位:

min)

一[0,5)1

二[5,10)5

三[10,15)3

四[15,20)1

(Ⅰ)估计这60名乘客中候车时间少于10分钟的人数;

(Ⅱ)现从这10人中随机取3人,求至少有一人来自第二组的概率;

(Ⅲ)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

12.数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:

中学甲乙丙丁

人数30402010

为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.

(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?

(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;

(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

13.某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障需要维修的概率为.

(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?

(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人.求该厂每月获利的均值.14.甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响.现由甲先投.

(1)求甲获胜的概率;

(2)求投篮结束时甲的投篮次数X的分布列与期望.

15.某公司的两个部门招聘工作人员,应聘者从T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两

人选择使用试题T1,且表示只要成绩合格就签约;丙、丁两人选择使用试题T2,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是,丙、丁考试合格的概率都是,且考试是否合格互不影响.

(I)求丙、丁未签约的概率;

(II)记签约人数为X,求X的分布列和数学期望EX.

16.在公园游园活动中有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同;每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)

(1)在一次游戏中:①求摸出3个白球的概率;②求获奖的概率;

(2)在两次游戏中,记获奖次数为X:①求X的分布列;②求X的数学期望.17.一个箱中原来装有大小相同的5个球,其中3个红球,2个白球.规定:进行一次操作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白球,则该球不放回,并另补一个红球放到箱中.”

(1)求进行第二次操作后,箱中红球个数为4的概率;

(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.

18.袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.

(1)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;(2)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分.求得分ξ的分布列和数学期望.

19.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.

(1)分别求甲队以3:0,3:1,3:2胜利的概率;

(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分.求乙队得分X的分布列.

20.医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H和V.现有..三种不同配方的药剂,根据分析,A,B,C三种药剂能控制H 指标的概率分别为0.5,0.6,0.75,能控制V指标的概率分别是0.6,0.5,0.4,

能否控制H指标与能否控制V指标之间相互没有影响.

(Ⅰ)求A,B,C三种药剂中恰有一种能控制H指标的概率;

(Ⅱ)某种药剂能使两项指标H和V都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X的分布列.

期望与分布列高考试题精选

参考答案与试题解析

一.解答题(共20小题)

1.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的

同时购买的易损零件数.

(Ⅰ)求X的分布列;

(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;

(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?

【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,

P(X=17)=,

P(X=18)=()2+2()2=,

P(X=19)==,

P(X=20)===,

P(X=21)==,

P(X=22)=,

∴X的分布列为:

X16171819202122 P

(Ⅱ)由(Ⅰ)知:

P(X≤18)=P(X=16)+P(X=17)+P(X=18)

==.

P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)

=+=.

∴P(X≤n)≥0.5中,n的最小值为19.

(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.

买19个所需费用期望:

EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,

买20个所需费用期望:

EX2=+(200×20+500)×+(200×20+2×500)×=4080,

∵EX1<EX2,

∴买19个更合适.

解法二:购买零件所用费用含两部分,一部分为购买零件的费用,

另一部分为备件不足时额外购买的费用,

当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,

∴买19个更合适.

2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.

(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;

(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).【解答】解:用A表示甲在4局以内(含4局)赢得比赛的是事件,A k表示第k 局甲获胜,B k表示第k局乙获胜,

则P(A k)=,P(B k)=,k=1,2,3,4,5

(Ⅰ)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=()2+×()2+××()2=.

(Ⅱ)X的可能取值为2,3,4,5.

P(X=2)=P(A1A2)+P(B1B2)=,

P(X=3)=P(B1A2A3)+P(A1B2B3)=,

P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=,

P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)==,或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)=,

故分布列为:

X2345

P

E(X)=2×+3×+4×+5×=.

3.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;

(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).

【解答】解:(Ⅰ)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”

B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,

因此P(A1)=(0.006+0.004+0.002)×50=0.6,

P(A2)=0.003×50=0.15,

P(B)=0.6×0.6×0.15×2=0.108,

(Ⅱ)X可能取的值为0,1,2,3,相应的概率为:

随机变量X的分布列为

X0123

P0.0640.2880.4320.216

因为X~B(3,0.6),

所以期望E(X)=3×0.6=1.8,

方差D(X)=3×0.6×(1﹣0.6)=0.72.

4.在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:

300500

作物产

量(kg)

概率0.50.5

610

作物市

场价格

(元

/kg)

概率0.40.6

(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;

(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

【解答】解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,

则P(A)=0.5,P(B)=0.4,

∵利润=产量×市场价格﹣成本,

∴X的所有值为:

500×10﹣1000=4000,500×6﹣1000=2000,

300×10﹣1000=2000,300×6﹣1000=800,

则P(X=4000)=P ()P ()=(1﹣0.5)×(1﹣0.4)=0.3,

P(X=2000)=P ()P(B)+P(A)P ()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,

则X的分布列为:

X4000 2000 800

P0.30.50.2

(Ⅱ)设C i表示事件“第i季利润不少于2000元”(i=1,2,3),

则C1,C2,C3相互独立,

由(Ⅰ)知,P(C i)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),

3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,3季的利润有2季不少于2000的概率为P(C 2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,

综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.

5.现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;

(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.

【解答】解:(I)设事件A=“张同学至少取到1道乙类题”

则=张同学至少取到的全为甲类题

∴P(A)=1﹣P()=1﹣=

(II)X的所有可能取值为0,1,2,3

P (X=0)==

P(X=1)==

P(X=2)=+=

P(X=3)==

X的分布列为

X0123

P

EX=

6.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何

一张卡片的可能性相同).

(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.

(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.

【解答】解:(I)设取出的4张卡片中,含有编号为3的卡片为事件A,则

P(A)==

所以,取出的4张卡片中,含有编号为3的卡片的概率为

(II)随机变量X的所有可能取值为1,2,3,4

P(X=1)=

P(X=2)=

P(X=3)==

P(X=4)==

X的分布列为

EX==

x1234

P

7.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率分布直方图.

(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率;

(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.

(i)求日需求量X的分布列;

(ii)该经销商计划每日进货300公斤或400公斤,以每日利润Y的数学期望值为决策依据,他应该选择每日进货300公斤还是400公斤?

【解答】解:(1)由频率分布直方图可知,

日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,

则未来连续三天内,有连续两天的日销售量不低于350公斤,

而另一天日销售量低于350公斤的概率P=0.4×0.4×(1﹣0.4)+(1﹣0.4)×0.4×0.4=0.192.…(3分)

(2)(ⅰ)X可取100,200,300,400,500,

P(X=100)=0.0010×10=0.1;P(X=200)=0.0020×10=0.2;

P(X=300)=0.0030×10=0.3;P(X=400)=0.0025×10=0.25;

P(X=500)=0.0015×10=0.15;

所以X的分布列为:

X100200300400500

P0.10.20.30.250.15

…(6分)

(ⅱ)当每日进货300公斤时,利润Y1可取﹣100,700,1500,

此时Y1的分布列为:

Y1﹣

7001500

100

P0.10.20.7

此时利润的期望值E(Y1)=﹣100×0.1+700×0.2+1500×0.7=1180;…(8分)当每日进货400公斤时,利润Y2可取﹣400,400,1200,2000,

此时Y2的分布列为:

40012002000

Y2﹣

400

P0.10.20.30.4

此时利润的期望值E(Y2)=﹣400×0.1+400×0.2+1200×0.3+2000×0.4

=1200;…(10分)

因为E(Y1)<E(Y2),

所以该经销商应该选择每日进货400公斤.…(12分)

8.已知一个口袋中有3个白球,2个黑球,这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,4,5的抽屉内,其中第k次取出的球放入编号为k的抽屉.

(1)试求编号为2的抽屉内放的是黑球的概率p;

(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,求分布列.【解答】解:(1)编号为2的抽屉内放的是黑球的概率为:

(2)由题意得X 的可能取值为,,,

=,

=,

=,

=,

∴X的分布列为:

X

P

9.自2016年底,共享单车日渐火爆起来,逐渐融入大家的日常生活中,某市针对18岁到80岁之间的不同年龄段的城市市民使用共享单车情况进行了抽样调查,结果如表所示:

性别女性合计

性别

年龄

[18,25)18040220

[25,35)360240600

[35,50)40100140

[50,80)202040

合计6004001000

(1)采用分层抽样的方式从年龄在[25,35)内的人中抽取10人,求其中男性、女性的使用人数各为多少?

(2)在(1)中选出10人中随机抽取4人,求其中恰有2人是女性的概率;(3)用样本估计总体,在全市18岁到80岁的市民中抽4人其中男性使用的人数记为ξ,求ξ的分布列.

【解答】解:(1)因为年龄在[25,35)人中男性,女性使用人数占总体的比例分别为,

所以抽取的10人中男性,女性人数分别为.

(2)由题意知,在(1)中选出的10人中,女性使用者人数为4,

所以4人中恰有2女性使用者的概率为.

(3)由题知,ξ的可能取值为0,1,2,3,4,

因为用样本估计总体,任取1人,是男性使用者的概率为,

所以随机变量ξ服从二项分布,即,

所以ξ的分布列为:

ξ01234

P

10.某中超足球队的后卫线上一共有7名球员,其中3人只能打中后卫,2人只能打边后卫,2人既能打中后卫又能打边后卫,主教练决定选派4名后卫上场比赛,假设可以随机选派球员.

(1)在选派的4人中至少有2人能打边后卫的概率;

(2)在选派的4人中既能打中后卫又能打边后卫的人数ξ的分布列与期望.【解答】解:(1)设事件A表示“选派的4人中至多有1人能打边后卫”,

则P(A)==,

事件B表示“选派的4人中至少有2人能打边后卫”,

∴P(B)=1﹣P(A)=1﹣=.

(2)ξ的可能取值为0,1,2,

P(ξ=0)===,

P(ξ=1)===,

P(ξ=2)===,

∴ξ的分布列为:

ξ012

P

Eξ=1×+2×=.

11.由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成

资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:

组别候车时间(单位:

min)

一[0,5)1

二[5,10)5

三[10,15)3

四[15,20)1

(Ⅰ)估计这60名乘客中候车时间少于10分钟的人数;

(Ⅱ)现从这10人中随机取3人,求至少有一人来自第二组的概率;

(Ⅲ)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

【解答】解:(Ⅰ)候车时间少于10分钟的人数为60×(+)=36(人).(Ⅱ)设“至少有一人来自第二组为事件A”,则P(A)=1﹣=.

(Ⅲ)X的可能值为1,2,3,P(X=1)==,

P(X=2)==,

P(X=3)==,

所以X的分布列为

X123

P

∴EX=+2+3×=.

12.数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、

丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:

中学甲乙丙丁

人数30402010

为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.

(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?

(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;

(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

【解答】(本小题共14分)

解:(Ⅰ)由题意知,四所中学报名参加数独比赛的学生总人数为100名,

抽取的样本容量与总体个数的比值为,

所以甲、乙、丙、丁四所中学各抽取的学生人数分别为9,12,6,3.…(3分)(Ⅱ)设“从30名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件A,

从30名学生中随机抽取两名学生的取法共有种,…(5分)

来自同一所中学的取法共有.…(7分)

所以.

答:从30名学生中随机抽取两名学生来自同一所中学的概率为.…(8分)

(Ⅲ)由(Ⅰ)知,30名学生中,来自甲、丙两所中学的学生人数分别为9,6.依题意得,X的可能取值为0,1,2,…(9分)

历届成人高考数学分类试题

历届成人高考分类试题 第1讲集合与简易逻辑 【最近七年考题选】 2001 年 1、设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则(M T) N 是( ) (A) {2,4,5,6} (B) {4,5,6} (C) {1,2,3,4,5,6} (D) {2,4,6} 2、命题甲:A=B,命题乙:sinA=sinB.贝9( ) (A) 甲是乙的充分条件但不是必要条件 (B) 甲是乙的必要条件但不是充分条件 (C) 甲是乙的充分必要条件 (D) 甲不是乙的充分条件也不是乙的必要条件 2002 年 1、设集合A {1,2},集合B {2,3,5},则A B等于() A. {2} B ? {1,2,3,5} C .{1,3} D .{2,5} 2、设甲:x 3,乙:x 5,则() A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C. 甲是乙的充分必要条件 D. 甲不是乙的充分条件也不是乙的必要条件 2003 年 1、设集合M { x, y | x2 y21},集合N 2 2 { x, y |x y 2},则集合M与集合N的关系是() A. M N M B . M N C . N M D .M N 9、设甲:k 1且b 1,乙:直线y kx b与y x平行,则() A.甲是乙的必要条件但不是乙的充分条件 B ?甲是乙的充分条件但不是乙的必要条件 C. 甲不是乙的必要条件也不是乙的充分条件 D. 甲是乙的充分必要条件 2004 年 1、设集合M a,b,c,d , N a,b,c ,则集合M N=() A. a, b, c B . d C a,b, c, d D 2、设甲:四边形ABCD是平行四边形,乙:四边形ABCD是正方形,则( ) A.甲是乙的充分不必要条件 B ?甲是乙的必要不充分条件 C.甲是乙的充分必要条件 D .甲不是乙的充分条件也不是乙的必要条件 2005 年 1、设集合P= {1 , 2,3 , 4,5},集合Q= {2,4 , 6,8 , 10},贝U PA Q= A、{2,4} B {1,2 , 3,4 , 5,6 , 8, 10} C、{2} D 、{4} 7、设命题甲:k=1 , 命题乙:直线y=kx与直线y=x+1平行,则 A、甲是乙的必要条件但不是乙的充分条件 B甲是乙的充分条件但不是乙的必要条件 C甲不是乙的充分条件也不是乙的必要条件

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

历届数学高考试题精选——等比数列

历届高考中的“等比数列”试题精选 一、选择题:(每小题5分,计50分) 1.(2008福建理)设{a n}是公比为正数的等比数列,若,a5=16, 则数列{a n}前7项的和为() A.63 B.64 C.127 D.128 2.(2007福建文)等比数列{a n}中,a4=4,则a2·a6等于() A.4 B.8 C.16 D.32 3.(2007重庆文)在等比数列{a n}中,a2=8,a5=64,则公比q为() (A)2 (B)3 (C)4 (D)8 4.(2005江苏)在各项都为正数的等比数列中,首项,前三项和为21,则=() A.84 B.72 C.33 D.189 5. (2008海南、宁夏文、理)设等比数列的公比,前n项和为,则() A. 2 B. 4 C. D. 6.(2004全国Ⅲ卷文)等比数列中,,则的前4项和为() A.81 B.120 C.168 D.192 7.(2004春招安徽文、理)已知数列满足, (),则当时,=() (A)2n(B)(C)(D) 8.(2006辽宁理)在等比数列中,,前项和为,若数列也是等比数列,则等于( ) (A)(B) (C) (D)

9.(2006湖北理)若互不相等的实数成等差数列,成等比数列,且,则( ) A.4 B.2 C.-2 D.-4 10.(2007海南、宁夏文)已知成等比数列,且曲线 的顶点是,则等于() A.3 B.2 C.1 D. 二、填空题:(每小题5分,计20分) 11.(2006湖南文)若数列满足:,2,3….则 . 12.(2004全国Ⅰ卷文)已知等比数列{则该数列的通 项= . 13.(2005湖北理)设等比数列的公比为q,前n项和为S n,若S n+1,S n,S n+2成等差数列,则q的值为. 14.(2002北京文、理)等差数列中,a1=2,公差不为零,且a1, a3,a11 恰好是某等比数列的前三项,那么该等比数列公比的值等于_____________. 三、解答题:(15、16题各12分,其余题目各14分) 15.(2006全国Ⅰ卷文)已知为等比数列,,求 的通项式。

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

高三数学分布列和期望

课时考点19 统计-----随机变量的分布列和期望 高考考纲透析: 等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差 高考风向标: 离散型随机变量的分布列、期望和方差 热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4 比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=33 0.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。因而 P (ξ=4)=2230.60.40.6C ???+22 30.40.60.40.3744C ???= 比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。因而 P (ξ=5)=222 40.60.40.6C ???+22240.40.60.40.3456C ???= 所以ξ的概率分布为 ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656 变式新题型1.(2005年高考·卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中 摸出一个红球的概率是3 1 . (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ. 解:(Ⅰ) 33 35 12140333243 C ???????= ? ?????

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

概率分布与数学期望

概率分布与数学期望

例谈离数型随机变量概率分布与数学期望 数学期望=每个个数X每个它的概率,再相加从2008年全国各省市高考数学试题中,概率统计考题,可谓“军书十二卷,卷卷有爷名”,显然它是高考的必考内容,特别是离散型随机变量概率分布与数学期望内容的考题分布极为广泛,确实是一个重要考点,但纵观其解法,可以归纳为定义法、公式法、分析法与变量推理法四种,2009年考生务必对上述四种解题方法引起高度重视,本文就其命题特点,解题规律作专题阐述,以飨读者。 一、定义法求解概率分布与数学期望 定义法即根据随机事件的概率、随机变量、概率分布、数学期望的定义求解概率分布与数学期望的方法。 可使用本法解题的考题,一般以古典离散型概率为特征,它可直接利用排列组合的加法原理与乘法原理写出离散型随机变量概率的计算式,进而求得随机变量各值条件下的概率分布与数学期望。此类题型解题思路明确,利用定义法求解,其方法容易掌握。

例1,(08浙江理)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1 ;从袋中任意摸出2个球,得到黑球的概率是2 5 . 个球,至少得到1个白球的概率是7 9 (1)若袋中共有10个球,(1)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ. (2)求证:从袋中任意摸出2个球,至少得到1 .并指出袋中哪种颜色的个黑球的概率不大于7 10 球个数最少. 分析:本题是以古典概率为题材的高考题,由于从袋中摸球是有回放地摸球,且每次摸球都是互相独立的,系互不影响事件,所发生的概率是等可能的。故可根据概率定义,利用排列组合计算方法求解随机变量各值的概率。 解:袋中共有10个球,且至少得到1个白球7,设其中有X个白球,我们将至少得到的概率为 9 7,又∵P(A)一个白球的事件为A,则P(A)= 9

分布列和数学期望教师版

分布列和数学期望教师版 随机变量的分布列和期望 高考考纲透析: 等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差 高考风向标: 离散型随机变量的分布列、期望和方差 热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4 比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=33 0.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。因而 P (ξ=4)=2230.60.40.6C ???+2230.40.60.40.3744C ???= 比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。因而 P (ξ=5)=22240.60.40.6C ???+22240.40.60.40.3456C ???= 所以ξ的概率分布为 ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656 变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是3 1. (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ. 解:(Ⅰ) 33 3512140333243C ???????= ? ????? (Ⅱ)(i )222 4121833381C ???????= ? ????? (ii)随机变量ξ的取值为0,1,2,3,; 由n 次独立重复试验概率公式()()1n k k k n n P k C p p -=-,得

历年高考数学真题精选45 排列组合

历年高考数学真题精选(按考点分类) 专题45 排列组合(学生版) 一.选择题(共20小题) 1.(2009?全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种B.180种C.300种D.345种2.(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是() A.1205秒B.1200秒C.1195秒D.1190秒3.(2007?全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有() A.10种B.20种C.25种D.32种4.(2006?湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是() A.6B.12C.24D.18 5.(2009?陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为() A.432B.288C.216D.108 6.(2014?辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012?浙江)若从1,2,3,?,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有() A.60种B.63种C.65种D.66种8.(2012?北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位

高考数学分布列专题及复习资料

分布列 1.(本小题满分14分) 为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表: 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5. (1)请将上面的列联表补充完整(不用写计算过程); (2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由; (3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望. (参考公式: 2 2 () ()()()() n ad bc K a b c d a c b d - = ++++ ,其中n a b c d =+++)

2.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产 (Ⅰ)该同学为了求出y 关于x 的线性回归方程???y bx a =+,根据表中数据已经正确计算出?0.6b =,试求出?a 的值,并估计该厂6月份生产的甲胶囊产量数; (Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.

某商场准备在节日期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动。 (1)试求选出的3种商品中至少有一种日用商品的概率; (2)商场对选出的商品采用有奖促销,即在该商品现价的基础上价格提高180元,同时允许顾客每购买1件促销商品有3次抽奖的机会,若中奖,则每次中奖都可获得奖金100元,假设顾客每次抽奖时中奖与否是等可能的,试分析此种有奖促销方案对商场是否有利。

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

数学期望与分布列专题

离散型随机变量的数学期望 称E(X)= 切七+…曲+…7竹为随机变帚K 的均 侑或数学期犁,它反映了离散型随机变最取值的士均 水平. A.丄 B. 1 C. — D.— 18 9 9 20 鱸析由分布列的件质, 可得2x+3x+7x+2x+3r^x=l f 几芹=/. A E(X)=0X2xHX 3E 2 X 7x+3 X 2工+4 X 3JT +5JC 20 =40x= — 9 2.已知某一随机变量占的槪率分布列如F, M 日门= 电3, !(|陆的值为 (C ) J B.6 C. 7 D.B 解析 由分布列性虞知,0?&+O.1+U 0. 4. :? E? 4X0.5+aX0. 1+9X0, 4-6,3, :,a-l. 某中学组建了 A 、B 、C 、D 、E 五个不同 的社团组织,为培养学生的兴趣爱好 必须参加,且只能参加一个社团 ?假定某班级的甲、乙、丙三名学生对这五个社团的选择是 ,要求每个学生

等可能的. (1) 求甲、乙、丙三名学生参加五个社团 的所有选法种数; (2) 求甲、乙、丙三人中至少有两人参加同一社团的 概率; (3) 设随机变量E为甲、乙、丙这三名学生参加A社 团的人数,求E的分布列与数学期望. 有一批产品,其中有12件正品和4件次品,从中任取3件,若E表示取到次品的个 数 E(E )=_ 某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量E 选出的志 表示愿者中女生的人数,则数学期望E(E)=_ 袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当 两种颜色的球都被摸到时,即停止摸球,记随机变量E为此时已摸球的次数,求: (1)随机变量E的概率分布列; (2)随机变量E的数学期望与方差

最新高中数学历届数学高考试题精选 (39)

历届高考中的“集合”试题精选(自我检测) 选择题:(将正确答案代号填写在下表中,每小题5分,计150分。) 1.(2021模拟湖南文)已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( ) A .{}6,4=?N M B. M ∪N=U C .U M N C u = )( D.N N M C u = )( 2.(2021模拟天津文)设集合{}08U x x =∈4},则集合A∩B 等于( ) (A ){x|x≤3或x>4} (B ){x|-1

高中数学--历年高考真题精选一(附答案)

高中数学--历年高考真题精选 题号 一 二 三 总分 得分 一 、选择题(本大题共10小题,每小题4分,共40分) 1.若A 为不等式组002x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从2-变化到1时,动直线x y a +=扫过A 中的那部 分区域的面积为; A . 34 B .1 C .7 4 D .2 2.(2012年高考(天津理))设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆2 2 (1)+(y 1)=1x --相切,则 +m n 的取值范围是( ) A .[13,1+3]- B .(,13][1+3,+)-∞-∞ C .[222,2+22]- D .(,222][2+22,+)-∞-∞ 3.如图,在三棱柱ABC-A 1B 1C 1中,∠ACB=900 ,∠ACC 1=600 ,∠ BCC 1=450 ,侧棱 CC 1的长为1,则该三棱柱的高等于 A.21 B.2 2 C. 2 3 D. 3 3 4.某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女 生中任意抽取20人进行调查.这种抽样方法是 (A)简单随机抽样法(B)抽签法 (C)随机数表法 (D)分层抽样法 5.如图,已知六棱锥ABCDEF P -的底面是正六边形, AB PA ABC PA 2,=⊥平面则下列结论正确的是 A. AD PB ⊥ B. PAB 平面PBC 平面⊥ C. 直线BC ∥PAE 平面 D. 直线ABC PD 与平面所成的角为45° 6.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( ) (A )150种 (B)180种 (C)200种 (D)280种 7.对于函数f(x),若存在常数0≠a ,使得x 取定义域内的每一个值,都有a-x)f(f(x)2=,则称f(x)为准偶 函数。下列函数中是准偶函数的是 (A )x x f =)((B )2)(x x f =(C )x x f tan )(=(D ))1cos()(+=x x f 8.设a 是实数,且 112 a i i ++ +是实数,则a = A . 12 B .1 C .3 2 D .2 9.设12F F ,分别是椭圆22 221x y a b +=(0a b >>)的左、右焦点,P 是其右准线上纵坐标为3c (c 为半焦 距)的点,且122||||F F F P =,则椭圆的离心率是( ) A . 312- B .1 2 C .512- D .22 10.生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序, 第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有( ) A.24种 B.36种 C.48种 D.72种 二 、填空题(本大题共8小题,每小题3分,共24分) 11.已知1F 、2F 分别为双曲线C : 22 1927 x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线.则2||AF = . 12.计算:∞→n lim 1 6) 1(32++n n n = . 13.设函数()113,1,,1, x e x f x x x -?

高三数学分布列和期望精选

高三数学分布列和期望 高考考纲透析: 等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差 高考风向标: 离散型随机变量的分布列、期望和方差 热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力.解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4 比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=3 3 0.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜.因而 P (ξ=4)=2230.60.40.6C ???+2230.40.60.40.3744C ???= 比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜.因而 P (ξ=5)=22240.60.40.6C ???+22240.40.60.40.3456C ???= 所以ξ的概率分布为 ξ 3 4 5 P 0.28 0.3744 0.3456 ξ 的期望 E ξ =3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656 变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中摸出一个红

历年高考数学真题精选22 线性规划

历年高考数学真题精选(按考点分类) 专题22 线性规划(学生版) 一.选择题(共14小题) 1.(2019?浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+?? --??+? 则32z x y =+的最大值是( ) A .1- B .1 C .10 D .12 2.(2019?北京)若x ,y 满足||1x y -,且1y -,则3x y +的最大值为( ) A .7- B .1 C .5 D .7 3.(2018?北京)设集合{(,)|1A x y x y =-,4ax y +>,2}x ay -,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ? C .当且仅当0a <时,(2,1)A ? D .当且仅当3 2 a 时,(2,1)A ? 4.(2016?浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域20 0340x x y x y -?? +??-+? 中的点在直线20x y +-=上的投影构成的线段记为AB ,则||(AB = ) A .B .4 C .D .6 5.(2016?浙江)若平面区域30230230x y x y x y +-?? --??-+? ,夹在两条斜率为1的平行直线之间,则这两条 平行直线间的距离的最小值是( ) A B C . 2 D 6.(2016?山东)若变量x ,y 满足22390x y x y x +?? -??? ,则22x y +的最大值是( ) A .4 B .9 C .10 D .12

7.(2016?北京)已知(2,5)A ,(4,1)B .若点(,)P x y 在线段AB 上,则2x y -的最大值为( ) A .1- B .3 C .7 D .8 8.(2015?福建)变量x ,y 满足约束条件0 2200x y x y mx y +?? -+??-? ,若2z x y =-的最大值为2,则实 数m 等于( ) A .2- B .1- C .1 D .2 9.(2014?安徽)x ,y 满足约束条件20220220x y x y x y +-?? --??-+? ,若z y ax =-取得最大值的最优解不唯 一,则实数a 的值为( ) A . 1 2 或1- B .2或 12 C .2或1- D .2或1 10.(2014?福建)已知圆22:()()1C x a y b -+-=,设平面区域70300x y x y y +-?? Ω=-+??? ,若圆心C ∈Ω, 且圆C 与x 轴相切,则22a b +的最大值为( ) A .49 B .37 C .29 D .5 11.(2013?北京)设关于x ,y 的不等式组210,0,0x y x m y m -+>?? +? 表示的平面区域内存在点0(P x , 0)y ,满足0022x y -=,求得m 的取值范围是( ) A .4(, )3 -∞ B .1(, )3-∞ C .2 (,)3-∞- D .5 (,)3 -∞- 12.(2012?新课标)已知正三角形ABC 的顶点(1,1)A ,(1,3)B ,顶点C 在第一象限,若点(,)x y 在ABC ?内部,则z x y =-+的取值范围是( ) A .(1,2) B .(0,2) C .1-,2) D .(0,1+ 13.(2011?福建)已知O 是坐标原点,点(1,1)A -,若点(,)M x y 为平面区域2 12x y x y +?? ??? ,上的

随机变量的分布列与数学期望

随机变量的分布列与数学期望 1.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立. (I)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.红队队员甲、乙、丙与蓝队队员A、B、C 进行围棋比赛,甲对A、乙对B、丙对C各一盘。已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ。 3.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量; (2)当产品中的微量元素x,y满足x≥175且y≥75时,该产品为优等品,用上述 样本数据估计乙厂生产的优等品的数 量; (3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品 数 的分布列及其均值(即数学期望). 4.本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小 ;两小时以上且不超时还车的概率分别为11, 42 ;两人租车时过三小时还车的概率分别为11, 24 间都不会超过四小时。

历届数学高考试题精选等差数列

1.(2007n n 432 (A )12 (B )10 (C )8 (D )6 2. (2008重庆文)已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) (A)4 (B)5 (C)6 (D)7 3.(2006全国Ⅰ卷文)设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( ) A .8 B .7 C .6 D .5 4.(2008广东文)记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 2 5.(2003全国、天津文,辽宁、广东)等差数列{}n a 中,已知3 1 a 1= ,4a a 52=+,33a n =, 则n 为( ) (A )48 (B )49 (C )50 (D )51 6.(2007四川文)等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) (A)9 (B)10 (C)11 (D)12 7.(2004福建文)设S n 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) A .1 B .-1 C .2 D . 2 1 8.(2000春招北京、安徽文、理)已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( ) A .α1+α101>0 B .α2+α100<0 C .α3+α99=0 D .α51=51 9.(2005全国卷II 理)如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10.(2002春招北京文、理)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和 为390,则这个数列有( ) (A )13项 (B )12项 (C )11项 (D )10项 二、填空题:(每小题5分,计20分) 11(2001上海文)设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则

期望与分布列高考试题精选

期望与分布列高考试题精选 一.解答题(共20小题) 1.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件 数. (Ⅰ)求X的分布列; (Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值; (Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个? 2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立. (Ⅰ)求甲在4局以内(含4局)赢得比赛的概率; (Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望). 3.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; (Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E (X)及方差D(X).

4.在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表: 300500 作物产量 (kg) 概率0.50.5 610 作物市场 价格(元 /kg) 概率0.40.6 (Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列; (Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.5.现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (Ⅰ)求张同学至少取到1道乙类题的概率; (Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X 的分布列和数学期望. 6.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率. (Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望. 7.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率分布直方图.

相关文档
最新文档