古典概率模型习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.1 古典概型(第一课时)
[自我认知]:
1.在所有的两位数(10-99)中,任取一个数,则这个数能被2或3整除的概率是 ( )
A.1
3
B.
2
3
C.
1
2
D.
5
6
2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为 ( )
A. 60%
B. 30%
C. 10%
D. 50%
3.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为 ( )
A. 0.65
B. 0.55
C. 0.35
D. 0.75
4.某射手射击一次,命中的环数可能为0,1,2,…10共11种,设事件A:“命中环数大于8”,事件B:“命中环数大于5”,事件C:“命中环数小于4”,事件D:“命中环数小于6”,由事件A、B、C、D中,互斥事件有 ( )
A. 1对
B. 2对
C. 3对
D.4对
5.产品中有正品4件,次品3件,从中任取2件,其中事件:①恰有一件次品和恰有2件次品;
②至少有1件次品和全都是次品;③至少有1件正品和至少有一件次品;④至少有1件
次品和全是正品.4组中互斥事件的组数是 ( )
A. 1组
B. 2组
C. 3组
D. 4组
6.某人在打靶中连续射击2次,事件“至少有一次中靶”的互斥事件是 ( )
A.至多有一次中靶
B. 两次都中靶
C.两次都不中靶
D.只有一次中靶
7.对飞机连续射击两次,每次发射一枚炮弹,设A=﹛两次都击中﹜,B=﹛两次都没击中﹜,C=﹛恰有一次击中﹜,D=﹛至少有一次击中﹜,其中彼此互斥的事_____________________,互为对立事件的是__________________。
8.从甲口袋中摸出1个白球的概率是1
2
,从乙口袋中摸出一个白球的概率是
1
3
,那么从两个
口袋中各摸1个球,2个球都不是白球的概率是___________。
9.袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率各是0.40和0.35,那么黑球共有______________个
[课后练习]
10.在下列试验中,哪些试验给出的随机事件是等可能的?
①投掷一枚均匀的硬币,“出现正面”与“出现反面”。
②一个盘子中有三个大小完全相同的球,其中红球、黄球、黑球各一个,从中任取一个球,“取
出的是红球”,“取出的是黄球”,“取出的是黑球”。
③一个盒子中有四个大小完全相同的球,其中红球、黄球各一个,黑球两个,从中任取一球,
“取出的是红球”,“取出的是黄球”,“取出的是黑球”。
班次姓名
11.随意安排甲、乙、丙三人在三天节日里值班,每人值一天,请计算:
①这三人的值班顺序共有多少种不同的安排方法?
②甲在乙之前的排法有多少种?
③甲排在乙之前的概率是多少?……
12.假如小猫在如图所示的地板上自由的走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?(图中每一块方砖除了颜色外完全相同)
13.从一个装有2黄2绿的袋子里有放回的两次摸球,两次摸到的都是绿球的概率是多少?
3.2.1 古典概型(第二课时)
[自我认知]:
1.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概
率为 ( )
A. 1
2
B.
7
18
C.
13
18
D.
11
18
2.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率( )
A.
7
15
B.
8
15
C.
3
5
D. 1
3.在下列结论中,正确的为( )
A.若A与B是两互斥事件,则A+B是必然事件.
B.若A与B是对立事件,则A+B是必然事件 .
C.若A与B是互斥事件,则A+B是不可能事件.
D.若A与B是对立事件,则A+B不可能是必然事件.
4.下列每对事件是互斥事件的个数是:()(1)将一枚均匀的硬币抛2次,记事件A:两次出现正面;事件B:只有一次出现正面.(2)某人射击一次,记事件A:中靶,事件B:射中9环.
(3)某人射击一次,记事件A:射中环数大于5;事件B:射中环数小于5.
A.0个
B.1个
C.2个
D.3个
5.12个同类产品中,有10个正品,任意抽取3个产品概率是1的事件是 ( )
A. 3个都是正品
B.至少有一个是次品
C.3个都是次品
D.至少有一个是正品
班次姓名
6.一批零件共有10个,其中8个正品,2个次品,每次任取一个零件装配机器,若第二次取到
合格品的概率为1P ,第三次取到合格品的概率为2P ,则 ( )
A. 2P >1P
B. 2P =1P
C. 2P <1P
D. 1P 与2P 的大小关系不确定
7.从一个不透明的口袋中摸出红球的概率为15
,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为 A. 5 B. 8 C. 10 D.15
8.同时掷两枚骰子,所得点数之和为5的概率为 ( ) A. 112 B.121 C. 19 D.111
[课后练习]:
9.从一副扑克牌(54张)中抽到牌“K ”的概率是 ( ) A. 227 B. 154 C. 127 D. 19
10.将一枚硬币抛两次,恰好出现一次正面的概率是 ( ) A.
14 B. 13 C. 12 D. 23 11.在10张奖券中,有两张二等奖,现有10个人先后随机地从中各抽一张,那么第7个人中奖
的概率是 ( ) A. 710 B. 15 C. 110 D. 12
12.在由1、2、3组成的不多于三位的自然数(可以有重复数字)中任意取一个,正好抽出两位
自然数的概率是 ( ) A. 313 B. 100299 C. 100999 D. 23
13.一个口袋里装有2个白球和2个黑球,这4 个球除颜色外完全相同,从中摸出2个球,则1
个是白球,1个是黑球的概率是 ( ) A. 23 B. 14 C. 34 D. 116
14.先后抛3枚均匀的硬币,至少出现一次正面的概率为 ( ) A.
18 B.13 C. 78 D. 23 15.掷两个面上分别记有数字1至6的正方体玩具,设事件A 为“点数之和恰好为6”,则A
所基本事件个数为 ( )
A. 2个
B. 3个
C. 4个
D. 5个
16.从1,2,3,4中任取两个数,组成没有重复数字的两位数,则这个两位数大于21的概率是
______。
17.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。
18.袋中放有6个白球、4个黑球,试求出:
(1)“现从中取出3个球”的所有结果;
(2)“2个白球、1个黑球”的所有结果.