初二数学一次函数单元测试题

合集下载

北师大版八年级数学上册 第4章 一次函数 单元基础卷 (含详解)

北师大版八年级数学上册   第4章  一次函数    单元基础卷 (含详解)

第4章《一次函数》(单元基础卷)一、单选题(本大题共10小题,每小题3分,共30分)1.若点在函数的图象上,则的值是( )A .1B .-1C.D .2.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .B .C .D .3.已知点(-1,y 1),(4,y 2)在一次函数y=3x-2的图象上,则,,0的大小关系是( )A .B .C .D .4.已知一次函数不经过第三象限,则的取值范围是( )A .B .C .D .5.将一次函数y=kx+2的图象向下平移3个单位长度后经过点(-4,3),则k 的值为( )A .-1B .2C .1D .-26.一次函数与的图象如图,则下列结论:①;②;③当时,,其中正确的结论有( )A .0个B .1个C .2个D .3个7.对于一次函数,下列结论错误的是( )A .函数值随自变量的增大而减小()2,A m -12y x =-m 1414-24y x =+31y x =-31y x =-+24y x =-+1y 2y 120y y <<120y y <<120y y <<210y y <<()2y k x k =-+k 2k ≠2k >02k <<02k ≤<1y kx b =+2y x a =+0k <0a >3x <12y y <24y x =-+B .函数的图象不经过第三象限C .函数的图象与x 轴的交点坐标为(0,4)D .函数的图象向下平移4个单位长度得到的图象8.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b 的解是( )A .x=20B .x=5C .x=25D .x=159.如图,直线y 1=x+3分别与x 轴、y 轴交于点A 和点C ,直线y 2=﹣x+3分别与x 轴、y 轴交于点B 和点C ,点P (m ,2)是△ABC 内部(包括边上)的一点,则m 的最大值与最小值之差为( )A .1B .2C .4D .610.如图,函数的图象分别与x 轴、y 轴交于A ,B 两点,线段绕点A 顺时针旋转得到线段,则点C 的坐标为( )A .B .C .D .二、填空题(本大题共8小题,每小题4分,共32分)2y x =-22y x =-+AB 90︒AC (2,1)(1,2)(3,1)(1,3)11.函数x 的取值范围是________.12.已知点,都在直线上,则______.13.若点在直线上,则代数式的值为______.14.一次函数y=x+m+2的图象不经过第二象限,则m 的取值范围是 _______.15.若一次函数________.16.若一次函数y =kx+2的图象,y 随x 的增大而增大,并与x 轴、y 轴所围成的三角形的面积为2,则k =_____.17.如图,把放在平面直角坐标系内,其中,,点,的坐标分别为,,将沿轴向右平移,当点落在直线上时,线段扫过的面积为______.18.如图,已知点,,直线经过点.试探究:直线与线段有交点时的变化情况,猜想的取值范围是______.三、解答题(本大题共6小题,共58分)19.(8分)已知关于的函数,当,为何值时,它是正比例函数?20.(8分)一次函数(为常数,且).y =()1,A m y ()21,B m y +23y x =-21y y -=(),P a b 21y x =-842a b -+y ax b =+=Rt ABC △90CAB а=5cm =BC A B ()1,0()4,0ABC V x C 26y x =-BC 2cm ()2,3A -()2,1B y kx k =+()1,0P -AB k k x ||1(2)5m y m x n -=++-m n 1=-+y ax a a 0a <(1)若点在一次函数的图象上,求的值;(2)当时,函数有最大值2,求的值.21.(10分)如图,已知正比例函数的表达式为y=﹣x ,过正比例函数在第四象限图象上的一点A 作x 轴的垂线,交x 轴于点H ,AH =2,求线段OA 的长.22.(10分)如图,已知点A(6,4),直线l 1经过点B(0,2)、点C(3,−3),且与x 轴交于点D ,连接AD 、AC ,AC 与x 轴交于点P .()2,3-1=-+y ax a a 12x -≤≤a 12(1) 求直线l1的表达式,并求出点D的坐标;(2) 在线段AD上存在一点Q.使S△PDQ=S△PDC,请求出点Q的坐标;(3) 一次函数y=kx+k+5的图象为l2,若点A,D到l2的图象的距离相等,直接写出k的值.23.(10分)某快递公司为提高快递分拣的速度,决定购买甲、乙两种型号的机器人共20台来代替人工分拣,两种型号机器人的工作效率和价格如下表:型号甲乙每台每小时分拣快递件数/件800600每台价格/万元3 2.5设购买甲种型号的机器人x 台,购买这20台机器人所花的费用为y 万元.(1)求y 与x 之间的函数关系式;(2)若要求这20台机器人每小时分拣快递件数总和不少于12700件,则该公司至少需要购买几台甲种型号的机器人?此时所花费的费用为多少万元?24.(12分)如图,一次函数的图象与轴,轴分别交于,两点,在轴上有一点,动点从点以每秒2个单位长度的速度向左移动,y kx b =+x y (30)A ,(01)B ,y (03)C ,P A(1)求直线的表达式;(2)求的面积与移动时间之间的函数关系式;(3)当为何值时,≌,求出此时点的坐标.参考答案一、单选题1.AAB COP ∆S t t COP ∆AOB ∆P【分析】将x=-2代入一次函数解析式中求出m 值,此题得解.解:当x=-2时,y=-×(-2)=1,∴m=1.故选A .2.D【分析】设一次函数关系式为y=kx+b ,y 随x 增大而减小,则k<0;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.解:设一次函数关系式为y=kx+b ,∵图象经过点(1,2),∴k+b=2;∵y 随x 增大而减小,∴k<0.即k 取负数,满足k+b=2的k 、b 的取值都可以故选:D.3.B【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出、的值,将其与0比较大小后即可得出结论.解:∵点(-1,),(4,)在一次函数y=3x-2的图象上,∴=-5,=10,∵10>0>-5,∴<0<.故选:B .4.D【分析】根据一次函数的图象与k 、b 的关系列不等式组求解即可.解:∵一次函数的图象不经过第三象限,∴,,∴,故选:D .5.A121y 2y 1y 2y 1y 2y 1y 2y ()2y k x k =-+20k -<0k ≥02k ≤<【分析】根据平移的规律得到y=kx+2-3,然后根据待定系数法即可求得k 的值,从而求得正比例函数的表达式.解:将一次函数y=kx+2的图象向下平移3个单位长度后得到y=kx+2-3=kx-1,∵平移后的函数图象经过点(-4,3),∴3=-4k-1,解得k=-1,故选:A .6.B【分析】根据一次函数的增减性可得,再根据一次函数与轴的交点位于轴负半轴可得,然后根据当时,一次函数的图象位于一次函数的图象的上方可得,由此即可得出答案.解:对于一次函数而言,随的增大而减小,,结论①正确;一次函数与轴的交点位于轴负半轴,,结论②错误;由函数图象可知,当时,一次函数的图象位于一次函数的图象的上方,则,结论③错误;综上,正确的结论有1个,故选:B .7.C【分析】根据一次函数的图象和性质,平移的规律以及函数图象与坐标轴的交点的求法即可判断.解:A 、∵k=-2<0,∴函数值随自变量的增大而减小,故选项不符合题意;B 、∵k=-2<0,b=4>0,函数经过第一、二、四象限,不经过第三象限,故选项不符合题意;C 、当y=0时,x=2,则函数图象与x 轴交点坐标是(2,0),故选项符合题意;D 、函数的图象向下平移4个单位长度得y=-2x+4-4=-2x ,故选项不符合题1y kx b =+0k <2y x a =+y y 0a <3x <1y kx b =+2y x a =+12y y > 1y kx b =+1y x 0k ∴< 2y x a =+y y 0a ∴<3x <1y kx b =+2y x a =+12y y >意;故选:C.8.A【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故选:A.9.B【分析】由于P的纵坐标为2,故点P在直线y= 2上,要求符合题意的m 值,则P点为直线y= 2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.解:∵点P (m, 2)是△ABC内部(包括边上)的点.∴点P在直线y= 2上,如图所示,,当P为直线y= 2与直线y2的交点时,m取最大值,当P为直线y= 2与直线y1的交点时,m取最小值,∵y2 =-x+ 3中令y=2,则x= 1,∵y1 =x+ 3中令y=2,则x= -1,∴m的最大值为1, m的最小值为- 1.则m的最大值与最小值之差为:1- (-1)= 2.故选:B.10.C【分析】过C点作CD⊥x轴于D,如图,先利用一次函数图象上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=OA=1,则C点坐标可求.解:过C 点作CD ⊥x 轴于D ,如图.∵y =−2x +2的图象分别与x 轴、y 轴交于A ,B 两点,∴当x =0时,y =2,则B (0,2),当y =0时,−2x +2=0,解得x =1,则A (1,0).∵线段AB 绕A 点顺时针旋转90°,∴AB =AC ,∠BAC =90°,∴∠BAO +∠CAD =90°,而∠BAO +∠ABO =90°,∴∠ABO =∠CAD .在△ABO 和△CAD 中,∴△ABO ≌△CAD ,∴AD =OB =2,CD =OA =1,∴OD =OA +AD =1+2=3,∴C 点坐标为(3,1).故选:C .二、填空题11.且【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.解:由题意可知:,解得:且,故答案为:且.AOB CDA ABO CAD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩0x ≥2x ≠020x x ≥⎧⎨-≠⎩0x ≥2x ≠0x ≥2x ≠【分析】分别把A 、B 的坐标代入,求得、再计算即可.解:把代入得=2m -3,把代入得=2(m +1)-3=2m -1,∴=(2m -1)-(2m -3)=2m -1-2m +3=2故答案为:213.6【分析】把点P 代入一次函数解析式,可得,化简带值可求出结论.解:∵点在直线上,∴,变形得:,代数式;故答案为:6.14.m ≤-2【分析】由一次函数y=x+m+2的图象不经过第二象限,可得k >0,b ≤0,列不等式求解即可.解:∵一次函数y=x+m+2的图象不经过第二象限,∴m+2≤0,解得m ≤-2,故答案为:m ≤-2.15.【分析】首先根据一次函数的位置确定a 和b 的值,然后化简二次根式求23y x =-1y 2y 21y y -()1,A m y 23y x =-1y ()21,B m y +23y x =-2y 21y y -21b a =-(),P a b 21y x =-21b a =-21a b -=()8428228216a b a b -+=--=-⨯=b-解:∵若一次函数y=ax+b 的图象经过第一、二、四象限,∴a <0,b >0,∴b-a >0,,故答案为-b .16.1【分析】如图,根据题意可求出OA .根据一次函数y =kx+2的图象,y 随x 增大而增大,即可利用k 表示出OB 的长,再根据三角形面积公式,即可求出k 的值.解:如图,令x=0,则y=2,∴A(0,2),∴OA=2.令y=0,则,∴B(,0).∵一次函数y =kx+2的图象,y 随x 增大而增大,∴k >0,∴OB=,∵一次函数y =kx+2的图象与两坐标轴围成的三角形面积为2,∴,即,a a b a b -=--+=-2x k=-2k -2k 122OA OB ⋅=12222k ⨯⨯=解得:.故答案为:1.17.16【分析】先根据勾股定理求出C 点的坐标,得到C 点平移后的对应点C 1的纵坐标为4,与直线 相交,可得C 1坐标,由此推出CC 1距离,再求出四边形BCC 1B 1的面积即可.解:∵A (1,0),B (4,0)∴AB=3∵,∠CAB=90°,∴∴C (1,4),∴C 点平移后对应点C 1的纵坐标为4,∴把代入解得,∴CC 1=4,∴,故答案为:16.18.或【分析】根据题意,画出图象,可得当x=2时,y ≥1,当x=-2时,y ≥3,即可求解.解:如图,1k =26y x =-5BC =4AC ==4y =26y x =-5x =11116BCC B S CC AC =⨯=13k ≥3k ≤-观察图象得:当x=2时,y ≥1,即,解得:,当x=-2时,y ≥3,即,解得:,∴的取值范围是或.故答案为:或三、解答题19.解:是正比例函数,且且,解得,.即当,时,函数是正比例函数.20.解:(1)把(2,-3)代入得,解得;(2)∵a <0时,y 随x 的增大而减小,则当x=-1时,y 有最大值2,把x=-1代入函数关系式得 2=-a-a+1,解得,所以.21.解:∵AH ⊥x 轴,AH =2,点A 在第四象限,∴A 点的纵坐标为﹣2,21k k +≥13k ≥23k k -+≥3k ≤-k 13k ≥3k ≤-13k ≥3k ≤-||1(2)5m y m x n -=++- 20m ∴+≠||11m -=50n -=2m =5n =2m =5n =||1(2)5m y m x n -=++-1=-+y ax a 213a a -+=-4a =-12a =-12a =-代入得,解得x =4,∴A (4,﹣2),∴OH =4,∴OA.22.(1)解:设l 1的表达式为y=kx+b(k≠0),∵l 1经过点B(0,2)、点C(3,−3),∴,解得,∴l 1的函数表达式:y=x+2.∵点D 为l 1与x 轴的交点,故令y=0,x+2=0,解得x=,∴点D 坐标为,0);(2)解:由(1)同理可得AD 所在直线的一次函数表达式为:,∵点Q 在线段上,∴设点Q 坐标为,其中.∵,∴,即,解得,满足题意.∴点Q 坐标为;(3)解:∵y=kx+k+5=(k+1)x+5,∴直线l 2过定点(-1,5),12y x =-122x -=-==233b k b =⎧⎨-=+⎩532k b ⎧=-⎪⎨⎪=⎩53-53-6565516y x =-AD 516m m ⎛⎫- ⎪⎝⎭,665m ≤≤PDQ PDC S S =V V Q C y y =-5136m -=245=m 2435⎛⎫⎪⎝⎭∵点A ,D 到l 2的图像的距离相等,∴当l 2与线段AD 平行或过线段AD 中点,当l 2与线段AD 平行时,k=;当l 2过线段AD 中点(,2)时,∴2=k+k+5,解得:k=;综上,k 的值为或.23.(1)解:y 与x 之间的函数关系式为:y=3x+2.5(20-x ),=3x+50-2.5x=0.5x+50(0≤x ≤20);(2)解:由题可得:800x+600(20-x )≥12700,解得x ≥3.5,∴当x=4时,y 取得最小值,∴y 最小=0.5×4+50=52.∴该公司至少需要购买4台甲种型号的机器人;此时所花费的费用为52万元.24.解:解(1)设直线AB 的表达式为将,两点代入得解得 ∴AB 的表达式为(2) 561851851523-561523-(0)y kx b k =+≠(30)A ,(01)B ,301k b b +=⎧⎨=⎩131k b ⎧=-⎪⎨⎪=⎩113y x =-+3322÷=当时当时(3)若≌时当 时, ,此时P 的坐标为;当 时, ,此时P 的坐标为;302t <≤13(32)22S OP OC t =⋅=-32t >13(23)22S OP OC t =⋅=-COP ∆AOB ∆OP OB=(0,1)B 1OB =∴1OP ∴=321t -=1t =(1,0)231t -=2t =(1,0)-。

初二数学一次函数单元测试题

初二数学一次函数单元测试题

初二数学一次函数单元测试题初二数学一次函数单元测试题函数表示每个输入值对应唯一输出值的一种对应关系。

下面是小编为你带来的初二数学一次函数单元测试题,欢迎阅读。

一、选择题(每题3分,共30分)1、下列函数关系中表示一次函数的有()①②③④⑤A.1个B.2个C.3个D.4个2、下列函数中,图象经过原点的为( )A.y=5x+1B.y=-5x-1C.y=-D.y=3、一水池蓄水20m3,打开阀门后每小时流出5m3,放水后池内剩下的水的立方数Q(m3)与放水时间t(时)的函数关系用图表示为( )4、已知点(-4,y1),(2,y2)都在直线y=-12x+b上,则y1、y2大小关系是()(A)y1>y2(B)y1=y2(C)y15、每上5个台阶升高1米,升高米数h是台阶数S的函数关系式是()A.h=5SB.h=S+5C.h=D.h=S-56、直线,,共同具有的特征是()A.经过原点B.与轴交于负半轴C.随增大而增大D.随增大而减小7、如果直线经过一、二、四象限,则有()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<08、直线经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()(A)(B)(C)(D)9、下面哪个点不在函数的图像上()A、(-5,13)B.(0.5,2)C(3,0)D(1,1)10、星期天晚饭后,小红从家里出发去散步,图描述了她散步过程中离家s(米)与散步所用的时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是()(A)从家出发,到了一个公共阅报栏,看了一会报后,就回家了.(B)从家出发,一直散步(没有停留),然后回家了.(C)从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一会,然后回家了.(D)从家出发,散了一会步,就找同学去了,18分钟后才开始返回.二、填空题(每空3分,共30分)1、圆的周长公式,其中常量是_______,变量是_________。

一次函数综合测试题及答案

一次函数综合测试题及答案

八 年 级 一 次 函 数 测 试 题姓名 一、填空 (10×3´=30´)1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

2、若函数y= -2x m+2是正比例函数,则m 的值是 。

3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

7、已知点A(-1,a), B(2,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。

8、地面气温是20℃,如果每升高1000m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

(1)y 随着x 的增大而减小, (2)图象经过点(2,-3)。

二、选择题 (10×3´=30´)11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 12、下面哪个点不在函数32+-=x y 的图像上( ) (A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)13、直线y=kx+b 在坐标系中的位置如图,则(A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==- (D )1,12k b == 14、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y 15、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( ) (A )34m <(B )314m -<< (C )1m <- (D )1m >-17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t(时)的函数关系的图象是( )(A) (B) (C ) (D )18、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( ).19.一次函数y =ax +1与y =bx -2的图象交于x 轴上一点,那么a :b 等于A.21B.21-C.23D.以上答案都不对20.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示.由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.28021、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;22、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值23、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

初二《一次函数》单元测试

初二《一次函数》单元测试

初二《一次函数》单元测试同学们,预备好了吗?让我们一起对前面学过的数学知识做个小结吧!老师期望通过这次测试,了解你对知识的把握程度,相信你能认真作答好。

一、选一选,慧眼识金(每小题3分,共24分)1.下列函数关系式:①,2x y -= ② xy 2-= , ③22x y -=, ④y=2 , ⑤y=2x-1.其中是一次函数的是 ( ) (A)①⑤ (B)①④⑤ (C)②⑤ (D)②④⑤ 2.一个正比例函数的图象通过点(2,-1),那么那个正比例函数的表达式为 ( ) (A)y=2x (B)y=-2x (C)x y 21=(D)x y 21-= 3.函数y=-3x-6中,当自变量x 增加1时,函数值y 就 ( )(A)增加3 (B)减少3 (C)增加1 (D)减少1 4.在同一直角坐标系中,关于函数:①y=-x-1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的图象,下列说法正确的是 ( ) (A)通过点(-1,0)的是①和③ (B)交点在y 轴上的是②和④ (C)互相平行的是 ①和③ (D)关于x 轴平行的是②和③5.一次函数y=-3x+6的图象不通过 ( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限6.已知一次函数y=ax+4与y =bx-2的图象在x 轴上交于同一点,则a b的值为 ( ) (A)4 (B)-2 (C)21- (D)217.小明、小强两人进行百米赛跑,小明比小强跑得快,假如两人同时跑,小明确信赢,现在小明让小强先跑若 干米,图中的射线a 、b 分别表示两人跑的路程与小明 追赶时刻的关系,依照图象判定:小明的速度比小强的 速度每秒快A 、1米B 、1.5米C 、2米D 、2.5米8.如图中的图象(折线ABCDE )描述了一汽车在某一直线 上的行驶过程中,汽车离动身地的距离s (千米)和行驶时 间t (小时)之间的函数关系,依照图中提供的信息,给出 下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380 千米/时;④汽车自动身后3小时至4.5小时之间行驶的速度 在逐步减少.其中正确的说法共有( ) A 、1个 B 、2个 C 、3个 D 、4个 二、填一填,画龙点睛(每小题 4分,共32分)1.某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 .2. 一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 与坐标轴围成的三角形面积是 。

人教版八年级下册数学《一次函数》单元测试卷合集(含答案)

人教版八年级下册数学《一次函数》单元测试卷合集(含答案)

人教版八年级下册数学《一次函数》单元测试卷(一)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.函数y =的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<2.下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =(0x >) D.y(x <3.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里. 图中表示小红爷爷离家的时间与外出的距离之间的关系是 ( )A B C D4.甲、乙两个工程队完成某项工程,首先是甲队单独做10天,然后是乙队加入合作,完成剩下的全部工程,设工程总量是1,工程进度满足如图所示的函数图象,那么实际完成这项工程比甲单独完成这项工程的时间少( ) A.12天 B.13天 C.14天 D.15天分)分)分)分)5.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s (km )与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如图所示,你认为正确的是( )6.如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A.4B.4-C.14D.14-7.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是( )A B C D8.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )9.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,10.如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D→→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )二 、填空题(本大题共5小题,每小题3分,共15分)11.函数2113y x =+的自变量x 的取值范围是 .12.已知一次函数的图象过点与,则这个一次函数随的增大而 .13.函数1x y x-=的自变量x 的取值范围是 .14.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <()0,3()2,1y x D C P BAO31 1 3 Sx A .O1 1 3 Sx O3 Sx 3O1 1 3 SxB .C .D .2BAOA .B .C .D .S t S tS tStOOOO15.已知直线123141535y x y x y x ==+=+,,的图象如图所示,若无论x 取何值,y 总取12y y ,,3y ,中的最小值,则y 的最大值为 .三 、解答题(本大题共7小题,共55分)16.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x .⑴写出y 关于x 的函数关系式; ⑵求x 的取值范围; ⑶求y 的取值范围.17.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.18.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点. ②a 为何值时,一次函数的图象与y 轴交于点()0,9.19.右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.20.判断下列式子中y是否是x的函数.⑴22(35)y x=-⑵y=⑶12y x=-⑷8y x=-21.等腰三角形的周长为30,写出它的底边长y与腰长x之间的函数关系,并写出自变量的取值范围?22.甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物X元.(X>300)试比较顾客到哪家超市购物更实惠?说明理由人教版八年级下册数学《一次函数》单元测试卷答案解析一、选择题1.A2.A3.D4.A5.C6.B;由题意得:16(4)y k x-=+,将y kx=带入等式,即16(4)kx k x-=+,所以解出4k=-7.B8.C9.B10.B;【解析】了解P点的运动路线,根据已知矩形的长和宽求出当点P运动到C点时的S值为1,即当x为1时的S值为1,之后面积保持不变.二、填空题11.x为任意实数12.减小13.0x>14.16;【解析】分别将点()8m,代入两个一次函数解析式,得8m a=-+和8m b=+,联立方程得88m a m b+=-+++,所以16a b+=15.3717;【解析】如图,分别求出123y y y,,交点的坐标3322A⎛⎫⎪⎝⎭,;252599B⎛⎫⎪⎝⎭,;60371717C ⎛⎫ ⎪⎝⎭, 当32x <,1y y =;当232529x y y =,;当2560917x <,2y y = 当36017x y y =,.看图象可得到C 点最高, ∴6017x =,16037=+1=31717y ⨯最大.三 、解答题16.⑴102y x =-;⑵2.55x <<;⑶05y <<【解析】⑴由题意,得10x x y ++=,即102y x =-⑵因为x 、y 为线段,所以0x >,0y >.所以1020x ->,即05x <<;又因为x 、y 为三角形的边长,所以x x y +>,即2102x x >-,所以 2.5x >.所以2.55x << ⑶由2.55x <<,得5210x <<,所以1025x -<-<-,所以01025x <-<.因此y 的取值范围是05y <<.17.①2a =-;②a =18.①2a =-;②a =19.⑴4/min 3km ;⑵7分钟;⑶()3022016t S t =-≤≤. 20.⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”.21.⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 22.设在甲超市所付的购物费用为y 甲元,在乙超市所付的购物费用为y 乙元,由题意可得,y 甲=300+0.8(x-300)=60+0.8x ,y 乙=20090%200)0.920(300)x x x +⨯-=+>(当y 甲=y 乙时0.9200.860x x +=+,解得400x =; 当y 甲<y 乙,时0.9200.860x x +<+,解得400x >;当y甲>y乙,时0.9200.860x x+>+,解得400x<.所以当购买多于300元而少于400元的商品时,选择乙超市比较优惠,当购买400元的商品时,两个超市费用相同,选择哪个都可以,当购买商品大于400元时,选择甲超市比较优惠.人教版八年级下册数学《一次函数》单元测试卷(二)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

初二数学下《一次函数》单元测试题含答案

初二数学下《一次函数》单元测试题含答案

人教版八年级数学 《一次函数》 单元测试完成时光:120分钟满分:150分姓名成绩一.选择题(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是相符题意的,请将该选项的标号填入表格内)1.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值规模是( )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)1.函数y =1x -3+2.x -1的自变量x 的取值规模是( )A .x ≥1B .x ≥1且x ≠3C .x ≠3D .1≤x ≤33.下列各曲线中暗示y 是x 的函数的是( ) A B C D4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD 的面积为24平方米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数解析式为( )A .y =24xB .y =-2x +24C .y =2x -24D .y =12x -12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能准确反应y 与x 之间函数关系的图象是( )A B C D6.已知一次函数y =kx +b,y 跟着x 的增大而减小,且kb <0,则在平面直角坐标系内它的大致图象是( )A B C D7.若正比例函数y =(1-2m)x 的图象经由点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值规模是( )A .m <0B .m >0C .m <12D .m >128.若点M(-7,m),N(-8,n)都在函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是( )A .m >nB .m <nC .m =nD .不克不及肯定9.如图,函数y 1=-2x 与y 2=ax +3的图象订交于点A(m,2),则关于x 的不等式-2x >ax +3的解集是( ) A .x >2 B .x <2C .x >-1 D .x <-110.如图是当地区一种产品30天的发卖图象,图1是产品日发卖量y(单位:件)与时光t(单位:天)的函数关系,图2是一件产品的发卖利润z(单位:元)与时光t(单位:天)的函数关系,已知日发卖利润=日发卖量×每件产品的发卖利润,下列结论错误的是( )A.第24天的发卖量为200件B.第10天发卖一件产品的利润是15元C.第12天与第30天这两天的日发卖利润相等D.第30天的日发卖利润是750元二.填空题(每题5分,共20分)11.在函数y=x-1x-2中,自变量x的取值规模是.12.如图,点A的坐标为(-1,0),点B在直线y=x上活动,当线段AB 最短时,点B的坐标为.第12题图第13题图第14题图13.有甲.乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲.乙两个蓄水池中水的高度y(米)与灌水时光x(小时)之间的函数图象如图所示,若要使甲.乙两个蓄水池的蓄水深度雷同,则灌水的时光应为小时.14.如图,经由点B(-2,0)的直线y=kx+b与直线y=4x+2订交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为.三.解答题(共90分)15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?16.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)断定点(-7,-10)是否是函数图象上的点.17.(8分)已知正比例函数y=kx经由点A,点A在第四象限,过点A 作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上可否找到一点P,使△AOP的面积为5?若消失,求点P的坐标;若不消失,请解释来由.18.(8分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x =1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并解释此函数是什么函数;(2)当x=3时,求y的值.19.(10分)某灵活车动身前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时光t(时)之间的函数关系如图所示,答复下列问题.(1)灵活车行驶几小时后加油?(2)求加油前油箱残剩油量Q与行驶时光t的函数关系,并求自变量t的取值规模;(3)半途加油若干升?(4)假如加油站距目标地还有230千米,车速为40千米/时,要到达目标地,油箱中的油是否够用?请解释来由.20.(10分)两摞雷同规格的饭碗整洁地叠放在桌面上,如图,请依据图中给出的数据信息,解答问题:(1)求整洁叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不请求写出自变量x的取值规模);(2)若桌面上有12个饭碗,整洁叠放成一摞,求出它的高度.21.(12分)为更新果树品种,某果园筹划购进A,B两个品种的果树苗栽植培养.若筹划购进这两种果树苗共45棵,个中A种树苗的单价为7元/棵,购置B种树苗所需费用y(元)与购置数目x(棵)之间消失如图所示的函数关系.求y与x的函数解析式.22.(12分)如图,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.23.(14分)为响应绿色出行号令,越来越多市平易近选择租用共享单车出行,已知某共享单车公司为市平易近供给了手机付出和会员卡付出两种付出方法,如图描写了两种方法应付出金额y(元)与骑行时光x(时)之间的函数关系,依据图象答复下列问题:(1)求手机付出金额y(元)与骑行时光x(时)的函数关系式;(2)李先生经常骑行共享单车,请依据不合的骑行时光帮他肯定选择哪种付出方法比较合算.参考答案姓名成绩一.选择题(本大题10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是相符题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10 答案 B D D A D D A B D C 1.函数y=1x-3+x-1的自变量x的取值规模是( B )A.x≥1 B.x≥1且x≠3 C.x≠3D.1≤x≤32.下列各曲线中暗示y是x的函数的是(D)A B C D3.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y 得分评卷人关于x 的函数解析式及自变量x 的取值规模是( D )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60)D .y =12(60-x)(0<x<30)4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD 的面积为24平方米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数解析式为( A )A .y =24xB .y =-2x +24C .y =2x -24D .y =12x -12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能准确反应y 与x 之间函数关系的图象是( D )A B C D6.若正比例函数y =(1-2m)x 的图象经由点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值规模是( D )A .m <0B .m >0C .m <12D .m >127.已知一次函数y =kx +b,y 跟着x 的增大而减小,且kb <0,则在平面直角坐标系内它的大致图象是( A )A B C D8.若点M(-7,m),N(-8,n)都在函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是( B )A .m >nB .m <nC .m =nD .不克不及肯定9.如图,函数y 1=-2x 与y 2=ax +3的图象订交于点A(m,2),则关于x 的不等式-2x >ax +3的解集是( D ) A .x >2 B .x <2C .x >-1 D .x <-110.如图是当地区一种产品30天的发卖图象,图1是产品日发卖量y(单位:件)与时光t(单位:天)的函数关系,图2是一件产品的发卖利润z(单位:元)与时光t(单位:天)的函数关系,已知日发卖利润=日发卖量×每件产品的发卖利润,下列结论错误的是( C )A .第24天的发卖量为200件B .第10天发卖一件产品的利润是15元C .第12天与第30天这两天的日发卖利润相等D .第30天的日发卖利润是750元二.填空题(每题5分,共20分)11.在函数y =x -1x -2中,自变量x 的取值规模是x ≥1且x≠2.12.如图,点A 的坐标为(-1,0),点B 在直线y =x 上活动,当线段AB 最短时,点B 的坐标为(-12,-12).第12题图第13题图第14题图13.有甲.乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲.乙两个蓄水池中水的高度y(米)与灌水时光x(小时)之间的函数图象如图所示,若要使甲.乙两个蓄水池的蓄水深度雷同,则灌水的时光应为3 5小时.14.如图,经由点B(-2,0)的直线y=kx+b与直线y=4x+2订交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为-2<x<-1.得分评卷人三.解答题(共90分)15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?解:(1)依据一次函数的界说,有m+1≠0且2-|m|=1,解得m=1.∴m=1,n为随意率性实数时,这个函数是一次函数.(2)依据正比例函数的界说,有m+1≠0且2-|m|=1,n+4=0,解得m=1,n=-4.∴当m=1,n=-4时,这个函数是正比例函数.16.(8分)已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)断定点(-7,-10)是否是函数图象上的点.解:(1)设y=k(x+2).∵x=4,y=12,∴6k=12.解得k=2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10,∴点(-7,-10)是函数图象上的点.17.(8分)已知正比例函数y=kx经由点A,点A在第四象限,过点A 作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上可否找到一点P,使△AOP的面积为5?若消失,求点P的坐标;若不消失,请解释来由.解:(1)∵点A的横坐标为3,且△AOH的面积为3,∴点A的纵坐标为-2,∴点A的坐标为(3,-2).∵正比例函数y=kx经由点A,∴3k=-2,解得k=-23.∴正比例函数的解析式为y=-23x.(2)消失.∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5.∴点P的坐标为(5,0)或(-5,0).18.(8分)某灵活车动身前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时光t(时)之间的函数关系如图所示,答复下列问题.(1)灵活车行驶几小时后加油?(2)求加油前油箱残剩油量Q与行驶时光t的函数关系,并求自变量t的取值规模;(3)半途加油若干升?(4)假如加油站距目标地还有230千米,车速为40千米/时,要到达目标地,油箱中的油是否够用?请解释来由.解:(1)不雅察函数图象可知:灵活车行驶5小时后加油.(2)灵活车每小时的耗油量为(42-12)÷5=6(升),∴加油前油箱残剩油量Q与行驶时光t的函数关系为Q=42-6t(0≤t≤5).(3)36-12=24(升).∴半途加油24升.(4)油箱中的油够用.来由:∵加油后油箱里的油可供行驶11-5=6(小时),∴剩下的油可行驶6×40=240(千米).∵240>230,∴油箱中的油够用.19.(10分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并解释此函数是什么函数;(2)当x=3时,求y的值.解:(1)设y1=k1x,y2=k2(x-2),则y=k1x+k2(x-2),依题意,得⎩⎪⎨⎪⎧k1-k2=0-3k1-5k2=4解得⎩⎪⎨⎪⎧k1=-12k2=-12.∴y=-12x-12(x-2),即y=-x+1.∴y是x的一次函数.(2)把x=3代入y=-x+1,得y=-2.∴当x=3时,y的值为-2.20.(10分)两摞雷同规格的饭碗整洁地叠放在桌面上,如图,请依据图中给出的数据信息,解答问题:(1)求整洁叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不请求写出自变量x 的取值规模);(2)若桌面上有12个饭碗,整洁叠放成一摞,求出它的高度. 解:(1)设函数解析式为y =kx +b ,依据题意,得⎩⎪⎨⎪⎧4k +b =10.57k +b =15. 解得⎩⎪⎨⎪⎧k =1.5b =4.5.∴y 与x 之间的函数解析式为yx +4.5. (2)当x =12时,y =1.5×12+4.5=22.5.答:它的高度是22.5 cm.21.(12分)为更新果树品种,某果园筹划购进A,B 两个品种的果树苗栽植培养.若筹划购进这两种果树苗共45棵,个中A 种树苗的单价为7元/棵,购置B 种树苗所需费用y(元)与购置数目x(棵)之间消失如图所示的函数关系.求y 与x 的函数解析式.解:∵当0≤x<20时,图象经由(0,0)和(20,160),∴设y =k 1x.把(20,160)代入,得160=20k 1,解得k 1=8.∴y =8x. 当x≥20时,设y =k 2x +b, 把(20,160)和(40,288)代入,得⎩⎪⎨⎪⎧20k2+b =16040k2+b =288.解得⎩⎪⎨⎪⎧k2=6.4b =32.∴y =6.4x +32.∴y =⎩⎪⎨⎪⎧8x (0≤x<20)6.4x +32(x≥20).(个中x 为整数)22.(12分)如图,直线y =2x +3与直线y =-2x -1. (1)求两直线与y 轴交点A,B 的坐标; (2)求两直线交点C 的坐标; (3)求△ABC 的面积.解:(1)对于y =2x +3,令x =0,则y =3,∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1,∴点B 的坐标为(0,-1).(2)联立⎩⎪⎨⎪⎧y =2x +3y =-2x -1解得⎩⎪⎨⎪⎧x =-1y =1.∴点C 的坐标为(-1,1). (3)S △ABC =12AB·|x c |=12×4×1=2.23.(14分)为响应绿色出行号令,越来越多市平易近选择租用共享单车出行,已知某共享单车公司为市平易近供给了手机付出和会员卡付出两种付出方法,如图描写了两种方法应付出金额y(元)与骑行时光x(时)之间的函数关系,依据图象答复下列问题:(1)求手机付出金额y(元)与骑行时光x(时)的函数关系式;(2)李先生经常骑行共享单车,请依据不合的骑行时光帮 他肯定选择哪种付出方法比较合算. 解:(1)由图象知:当0≤x,y =0;当x≥,设y =kx +b,⎩⎪⎨⎪⎧0.5k +b =01×k+b =0.5 解得⎩⎪⎨⎪⎧k =1b =-0.5., y =x -0.5.∴手机付出金额y(元)与骑行时光x(时)的函数关系式是y =⎩⎪⎨⎪⎧0(0≤x<0.5)x -0.5(x≥0.5).(2)设会员卡付出对应的函数解析式为y =ax, 则0.75=a×1,, ,,解得x =2,由图象可知,当x =2时,李先生选择两种付出方法一样; 当x >2时,会员卡付出比较合算;当0<x <2时,李先生选择手机付出比较合算.。

初二一次函数单元测试题(含答案)

初二一次函数单元测试题(含答案)

初二 一次函数测试题班级: 姓名: (时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3x C .y=2x 2 D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).y 1234CA 43O22.(12分)一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y 的值是多少?(3)当y=12时,•x 的值是多少? 566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)(2)(1)写出y与t•之间的函数关系式.与通话时间t(分钟)之间的函数关系的图象.通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B 种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 、12.y=3x 、13.y=2x+1 、14.<2 、15.1616.<;< 、17.58xy=-⎧⎨=-⎩、 18.0;7 、 19.±6 、20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

一次函数单元测试卷

一次函数单元测试卷

初二数学一次函数单元复习题 2010-12-24班级 姓名 分数一、填空(30分)1. 已知函数y=(k –3)x k -8是正比例函数,则k=________.2. 若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n .3. 已知一次函数经过点(–1 , 2)且y 随x 增大而减小,请写出一个满足上述条件的函数关系式_________________.4. 已知y+2和x 成正比例,当x=2时,y=4,则y 与x 的函数关系式是_________________.5. 直线y=3x+b 与y 轴交点(0 ,–2),则这条直线不经过第____象限.6. 直线y=x –1和y=x+3的位置关系是_________,由此可知方程组y =x -1y =x +3⎧⎨⎩解的情况为________.7. 已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a 、b 的大小关系是a____b.8.一次函数y= 2x -4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 . 9.从A 地向B 地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间为t 分钟(t ≥3且t 是整数),则付话费y 元与t 分钟函数关系式是__________________.10.某商店出售货物时,要在进价的基础上增加一定的利润,下表体现了其数量x (个)与售价y (元)的对应关系,根据表中提供的信息可知y 与x 之间的关系式是____________ ___。

二、 选择(30分)11. 下列各图给出了变量x 与y 之间的函数是:( )12.下列函数,y 随x 增大而减小的是()A .y=x B .y=x–1 C .y=x+1D .y=–x+113.y=kx+b 图象如图则( )A .k>0 , b>0B .k>0 , b<0C .k<0 , b<0D .k<0 , b>014.已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<215.y=kx+k 的大致图象是( )A B C D16.函数y=kx+2,经过点(1 , 3),则y=0时,x=( )A .–2B .2C .0D .±217.直线y=x+1与y=–2x –4交点在( )A .第一象限B .第二象限C .第三象限D .第四象限18.函数y=2x+1的图象经过( )A .(2 , 0)B .(0 , 1) C. (1 , 0)D .(12, 0)19.正确反映,龟兔赛跑的图象是( )ABDCABCD20、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )三、 解答题(60分)21.(10分)已知函数y=(2m –2)x+m+1 (1)m 为何值时,图象过原点.(2)已知y 随x 增大而增大,函数图象与y 轴交点在x 轴上方,求m 取值范围.22.(10分)已知一次函数图象经过点(3 , 5) , (–4,–9)两点. (1)求一次函数解析式.(2)求图象和坐标轴围成三角形面积.23、.已知,直线y =2x +3与直线y =-2x -1. (1) 求两直线与y 轴交点A ,B 的坐标; (2) 求两直线交点C 的坐标; (3) 求△ABC 的面积.24、(10分)甲、乙两人分别骑自行车和摩托车从甲地到乙地 (1)谁出发较早,早多长时间?谁到达乙地早?早多长时间? (2)两人行驶速度分别是多少?(3)分别求出自行车和摩托车行驶过程的函数解析式?。

人教版八年级数学一次函数章检测卷

人教版八年级数学一次函数章检测卷

第1页 共8页 ◎ 第2页 共8页人教版八年级数学一次函数章检测卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.一次函数()0y kx b k =+<的图像过点()2,0,则不等式()10k x b ++<的解集是( ) A .2x >B .1x <C .3x >D .1x >2.下图中表示一次函数y =ax +b 与正比例函数y =abx (a ,b 是常数,且ab <0)图像的是( ).A .B .C .D .3.如图,在平面直角坐标系中,点()3,A a 是直线2y x =与直线y x b =+的交点,点B 是直线y x b =+与y 轴的交点,点P 是x 轴上的一个动点,连接P A ,PB ,则PA PB +的最小值是( )A .6B.C .9D.4.在同一坐标系中,函数y =2kx 与y =x ﹣k 的图象大致是( )A .B .C .D .5.若点()1,1A x -,()2,2B x -,()3,3C x 在一次函数2y x m =-+(m 是常数)的图象上,则1x ,2x ,3x 的大小关系是( ) A .123x x x >>B .213x x x >>C .132x x x >>D .321x x x >>6.直线y kx k =+(k 为正整数)与坐标轴所构成的直角三角形的面积为k S ,当k 分别为1,2,3,…,199,200时,则123199200S S S S S +++++=( )A .10000B .10050C .10100D .101507.如果一次函数y =﹣2x +1的图象经过点(﹣1,m ),则m 的值是( ) A .﹣3B .﹣1C .1D .38.将直线22y x =--向右平移1个单位长度,可得直线的表达式为( ) A .2y x =B .y x =--24C .2y x =-D .24y x =-+9.在平面直角坐标系中,已知A 、B 、C 三点的坐标分别为(8,0)、(9,6)、(0,6),若一次函数y =kx ﹣8k 的图象将△ABC 分成面积为1△2的两个部分,则k 的值为( )A .﹣3B .﹣2C .﹣3或65-D .﹣2或﹣310.某学校用100元钱买乒乓球,所购买球的个数w 与单价n (元)之间的关系是w =100n,其中( ) A .100是常量,w ,n 是变量 B .100,w 是常量,n 是变量C .100,n 是常量,w 是变量D .无法确定哪个是常量,哪个是变量二、填空题11.已知函数f (x )=5x+x ,则f_____.12.如图,在平面直角坐标系中,一次函数y=-2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(-8,0).(1)k的值为___;(2)点M为直线BC上一点,若△MAB=△ABO,则点M的坐标是___.13.一个有进水管与出水管的容器已装水10L,开始4min内只进水不出水,在随后的时间内既进水又出水,其出水的速度为154L/min.容器内的水量(单位:L)与时间x(单位:min)之间的关系如图所示,若一开始同时开进水管和出水管,则比原来多_____min将该容器灌满30L.14.已知A,B两地相距80km,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲、乙离开A地的路程s(km)与时间(h)的函数关系的图象,则甲与乙的速度之差为______,甲出发后经过______小时追上乙.15.甲、乙两车从A地出发,沿同一条笔直的公路匀速驶向B地,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.已知两车到A地的距离y()km与甲车出发的时间t()h之间的函数关系分别如图中线段OC和折线D E F C---所示,则图中点C的坐标为_______________.16.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量y (微克)随时间x(小时)而变化的情况如图所示.研究表明,当血液中含药量5y≥(微克)时,对治疗疾病有效,则有效时间是__________小时.17.快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离()kms与行驶时间()ht之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是______km/h.18⻆坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为____.第3页共8页◎第4页共8页三、解答题19.某试验室在0:00﹣10:00保持20△的恒温,在10:00﹣20:00匀速升温,每小时升高1△.(1)写出试验室温度T(单位:△)关于时间t(单位:h)的函数解析式;(2)在题给坐标系中画出函数图象.20.如图1,在矩形OACB中,点A,B分别在x轴、y轴正半轴上,点C在第一象限,OA=8,OB =6.(1)请直接写出点C的坐标;(2)如图△,点F在BC上,连接AF,把△ACF沿着AF折叠,点C刚好与线段AB上一点C′重合,求线段CF的长度;(3)如图3,动点P(x,y)在第一象限,且点P在直线y=2x﹣4上,点D在线段AC上,是否存在直角顶点为P的等腰直角三角形BDP,若存在,请求出直线PD的的解析式;若不存在,请说明理由.21.已知直线3y kx=+与x轴、y轴分别交于点E、F,点E的坐标为()4,0-,点A的坐标为()3,0-,点(),P x y是第二象限内直线上的一个动点.(1)求k的值,并在坐标系中直接作出该直线图象;(2)若点(),P x y是第二象限内直线上的一个动点,当点P运动过程中,试写出OPA∆的面积S与x的函数关系式,并根据已知条件写出自变量x的取值范围;(3)探究:当点P运动到什么位置时,OPA∆的面积为3?求出此时点P的坐标.22.若y与2x+1成正比例,且函数图像经过A(-3,1),求y与x的函数解析式.23.如图,在平面直角坐标系中,直线AB的解析式为132y x=+,它与x轴交于点B,与y轴交于点A,直线y=-x与直线AB交于点C.动点P从点C出发,以每秒1个单位长度的速度沿射线CO运动,运动时间为t秒.第5页共8页◎第6页共8页(1)求△AOC的面积;(2)设△P AO的面积为S,求S与t的函数关系式,并写出自变量的取值范围;(3)M是直线OC上一点,在平面内是否存在点N,使以A,O,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.24.如图,直线y=kx+4(k≠0)与x轴、y轴分别交于点B,A,直线y=-2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积是3 2 .(1)求直线AB的表达式;(2)设点E在直线AB上,当△ACE是直角三角形时,求出点E的坐标.25.如图,直线:l122y x=+与y轴交于点A,与x轴于点B.(1)求AOB的面积;(2)若直线1l经过点A,且与x轴相交于点C,并将ABO的面积分成相等的两部分,求直线1l的解析式.26.某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价)(1)销售单价x=元时,日销售利润w最大,最大值是元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?第7页共8页◎第8页共8页参考答案:1.D【分析】根据平移的性质得出一次函数y=k(x+1)+b过点(1,0),然后根据一次函数的性质即可求得.【详解】解:△一次函数y=kx+b(k<0)的图像过点(2,0),△一次函数y=kx+b向左平移一个单位过(1,0),即一次函数y=k(x+1)+b图像经过点(1,0),△k<0,△y随x的增大而减小,△一次函数y=k(x+1)+b(k<0)的图像过点(1,0),△当x>1时,y<0,△不等式k(x+1)+b>0的解集是x>1,故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,平移的性质,根据平移的性质求得一次函数y=k(x+1)+b(k<0)的图像过点(1,0)是解题的关键.2.A【分析】根据每个一次函数及正比例函数的图像依次分析a及b的符号,然后再确定其所在的象限即可解答.=+中a<0,b>0,正比例函数y=abx中ab<0,故该项符合【详解】解:A、一次函数y ax b题意;=+中a>0,b<0,正比例函数y=abx中ab>0,故该项不符合题意;B、一次函数y ax b=+中a>0,b>0,正比例函数y=abx中ab<0,故该项不符合题意;C、一次函数y ax b=+中a<0,b>0,正比例函数y=abx中ab>0,故该项不符合题意;D、一次函数y ax b故选:A.【点睛】本题主要考查一次函数与正比例函数的图像,熟记一次函数与正比例函数图像与各字母系数的关系是解题的关键.3.D【分析】作点A关于x轴的对称点A',连接A'B,则P A+PB的最小值即为A'B的长,先求出点A坐标,再待定系数法求出b的值,根据轴对称的性质可得点A'的坐标,进一步求出A'B 的长,即可确定P A+PB的最小值.【详解】解:作点A 关于x 轴的对称点A ',连接A B ',如图所示:则P A +PB 的最小值即为A B '的长, 将点A (3,a )代入y =2x , 得a =2×3=6,△点A 坐标为(3,6), 将点A (3,6)代入y =x +b , 得3+b =6, 解得b =3,△点B 坐标为(0,3),根据轴对称的性质,可得点A '坐标为(3,-6)△A B '=△P A +PB 的最小值为 故选:D .【点睛】本题考查了一次函数的综合应用,涉及两直线的交点问题,一次函数的性质,利用轴对称解决最短路径问题,熟练掌握轴对称的性质以及一次函数的性质是解题的关键. 4.C【分析】根据正比例函数和一次函数的图象与性质逐项判断即可得.【详解】解:A 、由函数2y kx =的图象可知0k <,由函数y x k =-的图象可知0k >,两者不一致,则此项不符合题意;B 、函数y x k =-的函数值y 随x 的增大而增大,函数2y kx =的图象经过原点,则此项不符合题意;C 、由函数2y kx =的图象可知0k <,由函数y x k =-的图象可知0k <,且y 随x 的增大而增大,两者一致,则此项符合题意;D 、函数2y kx =的图象经过原点,则此项不符合题意; 故选:C .【点睛】本题考查了正比例函数和一次函数的图象与性质,熟练掌握正比例函数和一次函数的图象与性质是解题关键. 5.B【分析】利用一次函数的增减性判定即可.【详解】解:由2y x m =-+知,函数值y 随x 的增大而减小, △3>-1>-2,()1,1A x -,()2,2B x -,()3,3C x , △213x x x >>. 故选:B .【点睛】本题考查了一次函数的增减性,解题的关键是通过k =-2<0得知函数值y 随x 的增大而减小,反之x 随y 的增大也减小. 6.B【分析】画出直线y kx k =+,然后求出该直线与x 轴、y 轴的交点坐标,即可求出k S ,从而求出123200S S S S 、、,然后代入即可.【详解】解:如下图所示:直线AB 即为直线y kx k =+当x=0时,解得y=k ;当y=0时,解得x=-1△点A 的坐标为(-1,0),点B 的坐标为(0,k ) △k 为正整数 △OA=11-=,OB=k△直线y kx k =+(k 为正整数)与坐标轴所构成的直角三角形的面积为122k k S OA OB =•=()12319920012319920022222123200212002002210050S S S S S ∴+++++=+++++++++=+⨯÷== 故选B.【点睛】此题考查的是求一次函数图象与坐标轴围成的三角形的面积,根据一次函数解析式求出与坐标轴的交点坐标,探索出一次函数图象与坐标轴围成的三角形的面积公式是解决此题的关键. 7.D【分析】将点(1,)m -代入函数解析式,列出关于m 的一元一次方程,再解方程即可求出m 的值.【详解】解:一次函数21y x =-+的图象经过点(1,)m -,1(2)1m ∴-⨯-+=, 3m ∴=.故选:D .【点评】本题考查了一次函数图象上点的坐标特征,经过函数图象上所有点的坐标均满足该函数解析式. 8.C【分析】根据平移性质可由已知的解析式写出新的解析式. 【详解】解:△直线向右平移1个单位,△根据“左加右减,上加下减”可得解析式是2(1)2y x =---. △2y x =-; 故选C .【点睛】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式;牢记函数平移口诀“左加右减,上加下减”是解题关键.9.C【分析】先找出一次函数经过顶点,再根据题意将△ABC分成面积为1:2的两个部分,求出E、F两点的坐标,用待定系数法代入一次函数解析式即可.【详解】解:△一次函数y=kx-8k,当x=8时,y=0,△一次函数y=kx-8k过定点(8,0),由题意可知,如图,直线AE或AF将△ABC分成面积之比为1:2的两个部分,△B、C三点的坐标分别为(9,6)、(0,6),△BC//OA,△此时两三角形的高相等,面积之比等于底之比,即CE:BE=1:2或CF:BF=2:1,△119333CE BC==⨯=或2963CF=⨯=,△E(3,6),F(6,6),将E(3,6)代入y=kx-8k得,3k-8k=6,△k=-65;将F(6,6)代入y=kx-8k得,6k-8k=6,△k=-3;综上可知:k=-3或k=-65.故选:C.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题关键是发现直线过顶点,并用待定系数法解决问题.10.A【详解】试题解析:根据函数的意义可知:变量是改变的量,常量是不变的量,据此得: 学校计划用100元钱买乒乓球,所购买球的个数W (个)与单价n (元)的关系式W=100n, 100是常量,W ,n 是变量. 故选A . 11.【分析】根据题意直接把x【详解】解:△函数f (x )=5x+x ,△f故答案为:【点睛】本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式. 12.12(-2,3),(2,5)【分析】(1)由y =-2x +4求得点,A B 的坐标,根据,B C 的坐标待定系数法求解析式即可求解;(2)根据题意画出图形,分M 在B 点左边与右边两种情况分类讨论即可求解. 【详解】(1)解:△一次函数y =-2x +4的图象与x 轴、y 轴分别交于点A 和点B , 令0y =,得2x =,则()2,0A ,令0x =,得4y =,则()0,4B , 将()0,4B ,()8,0C -代入y =kx +b ,得480b k b =⎧⎨-+=⎩, 解得124k b ⎧=⎪⎨⎪=⎩, △直线BC 得到解析式为142y x =+, 故答案为:12;(2)△()2,0A ,()0,4B ,()8,0C -,△10 AB BC AC==,△222AB BC AC+=,△90ABC∠=︒,如图,△MAB=△ABO,点M为直线BC上△当M在B点右侧时,△△MAB=△ABO,点M为直线BC上∴AM OB∥,所以M的横坐标为2,代入142y x=+,得5y=,所以M()2,5,△当M在B点左侧时,如果,设AM交y轴于点N,△△MAB=△ABO,△AN NB=,设()0,N n,所以4BN n AN=-=,在Rt AON△中,222AN AO ON=+,△()22242n n-=+,解得32n=,△30,2N⎛⎫⎪⎝⎭,设AN解析式为y sx t=+,2032s tt+=⎧⎪⎨=⎪⎩,解得3432s t ⎧=-⎪⎪⎨⎪=⎪⎩, △AN 的解析式为3342y x =-+, 联立,AB BC 解析式得1423342y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得:23x y =-⎧⎨=⎩, △M ()2,3-,综上,M ()2,5,()2,3-,故答案为:M ()2,5或()2,3-【点睛】本题考查了一次函数综合问题,求一次函数解析式,等角对等边,勾股定理及其逆定理,待定系数法求解析式是解题的关键.13.12【分析】由图象可知进水的速度为:(30﹣10)÷4=5(L/min ),根据“蓄水量=(进水速度﹣出水速度)×时间”列式计算即可.【详解】解:水的速度为:(30﹣10)÷4=5(L/min ),(30﹣10)÷(5﹣154)﹣4=12(min ), 所以,若一开始同时开进水管和出水管,则比原来多12min 将该容器灌满.故答案为:12.【点睛】本题主要考查了利用函数图像解决实际问题,解题的关键在于能够熟练掌握相关知识进行求解.14. 1003km /h 1.8 【分析】根据题意和函数图象中的数据可以计算出甲乙的速度,从而可以解答本题.【详解】解:由题意和图象可得,乙到达B 地时甲距A 地120km ,甲的速度是:120÷(3-1)=60km /h ,乙的速度是:80÷3=803km /h ,△甲与乙的速度之差为60-803=1003km /h , 设乙出发后被甲追上的时间为x h ,△60(x -1)=803x ,解得x =1.8, 故答案为:1003km /h ,1.8. 【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.()8.4,672【分析】根据函数图象,先求出甲乙车的速度以及A ,B 两地之间的距离,进而求出乙从B 地返回与甲相遇所花的时间,进而即可得到答案.【详解】根据图象得:甲车的速度为:240÷3=80(km/h ),乙车的速度为:240÷2=120(km/h ),A ,B 两地之间的距离为:120×(7-1)=720(km ),乙从B 地返回与甲相遇所花的时间为:(720-8×80)÷(80+120)=0.4(h ),此时,距A 地的距离为:(8+0.4)×80=672(km ),△点C 的坐标为:()8.4,672.【点睛】本题主要考查一次函数的图象与行程问题的综合,通过函数图象,得到速度,时间,距离之间的联系,是解题的关键.16.3【分析】当2x ≤时,设1y k x =,把(2,6)代入计算即可得3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入计算即可得82734y x =-+,把5y =代入3y x =中得53x =,把5y =代入82734y x =-+中得143x =,进行计算即可得. 【详解】解:当2x ≤时,设1y k x =,把(2,6)代入得,162k =,解得,13k =,△当2x ≤,3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入得,2226103k b k b +=⎧⎨+=⎩ 解得,283274k b ⎧=-⎪⎪⎨⎪=⎪⎩, △当2x >时,82734y x =-+, 把5y =代入3y x =中,得53x =, 把5y =代入82734y x =-+中,得143x =, 则145333-=(小时), 即该药治疗的有效时间是3小时,故答案为:3.【点睛】本题考查了一次函数的应用,解题的关键是掌握一次函数的性质.17.35【分析】根据图象求出快递员往返的时间为2(0.35﹣0.2)h ,然后再根据速度=路程÷时间.【详解】解:△快递员始终匀速行驶,△快递员的行驶速度是()8.750.5520.350.2=--35(km /h ). 故答案为:35.【点睛】本题考查一次函数的应用,关键是结合图象掌握快递员往返的时间.18.58y x = 【分析】过P 作PB △OB 于B ,过P 作PC △OC 于C ,易知OB=式和已知条件求出D 的坐标即可得到该直线l 的解析式.【详解】解: 过P 作PB △OB 于B ,设直线l 与y 轴的交点为D△△OBPB =△(P△经过P 点的一条直线l 将这8个正方形分成面积相等的两部分,△两边面积都为分别是8,△△PBA的面积为10,△1102BP AB⋅=,△AB=△OA OB AB=-==△A⎛⎝⎭设直线l的解析式为y kx b=+△bb⎧+=⎪⎨=⎪⎩,解得58kb⎧=⎪⎪⎨⎪=⎪⎩△直线l的解析式为58y x=故答案为:58y x=+.【点睛】此题考查的是用待定系数法求一次函数的解析式,坐标与图形,正方形的性质,解题的关键是作PB△y轴,利用三角形的面积公式求出BD的长.19.(1)T=()()20010201020tt t⎧≤≤⎪⎨+<≤⎪⎩;(2)见解析【分析】(1)根据试验室温度T=20+每小时升高的温度×时间即可得到函数解析式;(2)根据函数图象的画法画出图象即可.【详解】解:(1)试验室温度T(单位:△)关于时间t(单位:h)的函数解析式为:当0≤t≤10时,T=20;当10<t ≤20时,T =t +20,△T =()()20010201020t t t ⎧≤≤⎪⎨+<≤⎪⎩; (2)函数图象如图所示:【点睛】本题考查列一次函数关系式及画函数图象;注意此题的函数图象为两条线段. 20.(1)(8,6)(2)CF =3(3)存在,y =-3x+26【分析】(1)根据矩形性质和坐标与图形性质可求解;(2)由折叠性质得CF C F '=,AC AC '=,90C AC F '∠=∠=,利用勾股定理求解AB 、CF 即可;(3)分两种情况:点P 在BC 上方和点P 在BC 下方两种情况,利用全等三角形的判定与性质求得PF =BE ,EP =DF 即可求解.【详解】(1)解:△四边形OACB 是矩形,OA =8,OB =6,△AC =OB =6,BC =OA =8,△OAC =90°,△点C 坐标为(8,6);(2)解:由折叠性质得:CF C F '=,6AC AC '==,90C AC F BC F ''∠=∠=∠=, △OA =8,OB =6,△AOB =90°,△AB =10,则BC '=10-6=4,在Rt△BC F '中,BF =8-CF ,由勾股定理得()22248CF CF +=-,解得:CF =3;(3)解:存在,设P(a,2a-4),当点P在BC上方时,如图,过点P作EF BC交y轴于E,交DC延长线于F,则△BEP=△PFD=90°,EF=BC=8,△△BPE+△EBP=90°,△BPE+△DPF=90°,△△EBP=△DPF,又BP=PD,△△BEP△△PFD(AAS),△BE=PF=2a-4-6=2a-10,DF=PE=a,△EF=PE+PF=3a-10=8,解得:a=6,△P(6,8),D(8,2),设直线PD的解析式为y=kx+b,则6882k bk b+=⎧⎨+=⎩,解得:326kb=-⎧⎨=⎩,△直线PD的解析式为y=-3x+26;当点P在BC下方时,如图,过点P作EF BC交y轴于E,交AC于F,则△BEP=△PFD=90°,EF=BC=8,同理可得△BEP△△PFD(AAS),△BE=6-(2a-4)=10-2a,DF=PE=a,△EF=PE+PF=10-a=8,解得:a=2,△P(2,0),这与点P在第一象限不符,故舍去,综上,直线PD的解析式为y=-3x+26.【点睛】本题考查求一次函数的解析式、矩形的性质、全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形、勾股定理等知识,熟练掌握相关知识的联系与运用,利用数形结合和分类讨论思想解决问题是解答的关键.21.(1)34k =,见解析;(2)9982OPA S x ∆=+()40x -<<;(3)当点P 运动到点423,⎛⎫- ⎪⎝⎭时,OPA ∆的面积为3【分析】(1)将点E 坐标()4,0-代入直线3y kx =+就可以求出k 值,从而求出直线的解析式;(2)由点A 的坐标为()3,0-可以求出3OA =,求OPA 的面积时,可看作以OA 为底边,高是P 点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出OPA .从而求出其关系式;根据P 点的移动范围就可以求出x 的取值范围.(3)OPA ∆的面积为3代(2)的解析式求出x 的值,再求出y 的值就可以求出P 点的位置.【详解】解:(1)△点()4,0E -在直线3y kx =+上,△430k -+=.△34k =. 作图:(2)由(1)得334y x =+,3OA =,点P 到OA 的距离是334x + △133324OPA S x ∆⎛⎫=⨯⨯+ ⎪⎝⎭ 9982x =+()40x -<< (3)由题意得,OPA ∆的面积为3得99382x +=, 解得43x =-, 则343243y ⎛⎫=⨯-+= ⎪⎝⎭, △4,23P ⎛⎫- ⎪⎝⎭. △当点P 运动到点423,⎛⎫- ⎪⎝⎭时,OPA ∆的面积为3. 【点睛】本题考查的是一次函数综合题,解题关键在于对面积的表达式得求法.22.2155y x =-- 【分析】先根据y 与2x+1成正比例,假设函数解析式,再根据已知的一对对应值,求得系数k 即可.【详解】设()()210y k x k =+≠,把A(-3,1)代入()()210y k x k =+≠左右两边,得:()1-61k =+, 解得15k =-, 故y 与x 的函数解析式是()12121555y x x =-+=--. 【点睛】本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.23.(1)△AOC 的面积=3(2)3,03,t S t ⎧≤≤⎪⎪=-> (3)存在,133,22N ⎛⎫ ⎪⎝⎭,()23,0N -,3N ⎝⎭,4N ⎛+ ⎝⎭【分析】(1)由y =12x +3可求得A (0,3),联立y =﹣x 得C (﹣2,2),根据三角形的面积公式即可得△AOC 的面积;(2)设点P 的坐标为(m ,﹣m ),由题意得CP =t ,根据两点的距离公式可得m﹣2,根据三角形的面积公式得出S =12OA •PE ,根据t 的取值范围即可求解;(3)分两种情况:①当OA 为菱形的边时,②当OA 为菱形的对角线时,分别根据菱形的性质即可求得答案.(1)解:把x =0代入132y x =+中,y =3, △ 点A 的坐标为(0,3),即OA =3. 联立132y x y x =-⎧⎪⎨=+⎪⎩解得22x y =-⎧⎨=⎩ △点C 的坐标为(-2,2).△△AOC 的面积1=23=32⨯⨯; (2)解:如图,过点C 作CF △y 轴于点F ,过点P 作PE △y 轴于点E .△点C 的坐标为(-2,2),△△AOC =45°.△CO =由题意,得CP =t .当0t ≤≤OP t =,sin PE AOC OP ∠==△2PE =.△132S AO PE =⋅=;同理可得当t >132S AO PE =⋅-.综上,3,03,4t S t ⎧≤≤⎪⎪=⎨⎪-⎪⎩>(3)解:∵A (0,3),∴AO =3,①当OA 为菱形的边时,如图,∵四边形AOMN 是菱形,∴MN ∥OA ,MN =OA =OM =3,∵直线OC :y =﹣x ,∴∠MOB =45°,∴M,∴N);同理N′3;②当OA为菱形边时,如图AM MN此时菱形AMNO是正方形,△OA=ON,点N的坐标为(-3,0);③当OA为菱形的对角线时,如图,连接MN,∵四边形AOMN是菱形,∴MN⊥OA,MN、OA互相平分,∴MN∥x轴,∴点M、N的纵坐标为32,∵直线OC:y=﹣x,M是直线OC上一点,∴M(﹣32,32),∴N(32,32),综上所述,存在点N,使以A,O,M,N为顶点的四边形是菱形,点N的坐标为+3332,32)或(-3,0).【点睛】本题是一次函数综合题,考查了一次函数与坐标轴的交点,三角形的面积公式,菱形的性质等,解本题的关键是用分类讨论的思想解决问题.24.(1)y=x+4;(2)点E的坐标为(-3,1)或(-32,52).【分析】(1)将x=0分别代入两个一次函数表达式中求出点A、C的坐标,进而即可得出AC的长度,再根据三角形的面积公式结合△ACD的面积即可求出点D的横坐标,利用一次函数图象上点的坐标特即可求出点D的坐标,由点D的坐标利用待定系数法即可求出直线AB的表达式;(2)由直线AB的表达式即可得出△ACE为等腰直角三角形,分△ACE=90°和△AEC=90°两种情况考虑,根据点A、C的坐标利用等腰直角三角形的性质即可得出点E的坐标,此题得解.【详解】解:(1)当x=0时,y=kx+4=4,y=-2x+1=1,△A(0,4),C(0,1),△AC=3.△S△ACD=13 22DAC x•=,△1Dx=,△点D在第二象限,点D的横坐标为1-.当x=1-时,y=-2x+1=3,△D(-1,3).将D(-1,3)代入y=kx+4,-k+4=3,解得:k=1.△直线AB的表达式为:y=x+4.(2)△直线AB的表达式为y=x+4,△△ACE为等腰直角三角形.当△ACE=90°时,△A (0,4),C (0,1),AC=3,△E 1(-3,1);当△AEC=90°时,△A (0,4),C (0,1),AC=3,△E 2(-32,52). 综上所述:当△ACE 是直角三角形时,点E 的坐标为(-3,1)或(-32,52). 【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及等腰直角三角形的性质,解题的关键是:(1)根据△ACD 的面积找出点D 的坐标;(2)分△ACE=90°和△AEC=90°两种情况,利用等腰直角三角形的性质找出点E 的坐标.25.(1)4;(2)2y x =+【分析】(1)求得AB 、两点坐标,即可求得AOB 的面积; (2)由题意可得点C 为线段OB 的中点,因此可求得点C 坐标,直线1l 经过点A 、点C ,即可求解.【详解】解:(1)令0x =,求得2y =,即(0,2)A ,△2OA =令0y =,求得4x =-,即(4,0)B -,△4OB =142OAB S OA OB =⨯=△ (2)由题意可知点C 为线段OB 的中点,则点(2,0)C -设直线1l 的解析式为y kx b =+将(0,2)A ,(2,0)C -代入得,220b k b =⎧⎨-+=⎩,解得21b k =⎧⎨=⎩直线1l 的解析式为2y x =+【点睛】此题考查了一次函数与几何的综合问题问题,涉及了三角形面积的求解和待定系数法求解直线解析式,熟练掌握一次函数的有关性质是解题的关键.26.(1)100,2000;(2)该产品的成本单价应不超过65元【分析】(1)根据题意列出有关利润w与销售单价x之间的二次函数,配方后即可确定最值;(2)根据销售利润不低于3750元列出不等式即可确定正确的答案.【详解】解:(1)w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,△﹣5<0,△当x=100时,w取得最大值,最大值是2000;故答案为:100,2000;(2)设成本单价为a圆,当x=100时,w=(﹣5×90+600)(90﹣a)≥3750,解得,a≤65,答:该产品的成本单价应不超过65元.【点睛】此题主要考查一次函数的应用,解题的关键是熟知一次函数的性质特点.。

八年级数学一次函数单元测试题

八年级数学一次函数单元测试题

八年级数学一次函数单元测试题又到了单元检测的时刻了,教师们要如何准备测试题呢?下面是店铺带来的关于八年级数学一次函数单元测试题的内容,希望会给大家带来帮助!八年级数学一次函数单元测试题::1、请你写出一个经过点(1,1)的函数解析式 .2、在函数中,当自变量满足时,图象在第一象限.3、中国电信宣布,从某天起,县城和农村电话收费标准一样,在县内通话3分钟内的收费是0.2元,每超1分钟加收0.1元,则电话费(元)与通话时间 ( 分,为正整数)的函数关系是 ;4、老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象经过第一象限; 乙:函数的图象经过第三象限;丙:在每个象限内,y随x的增大而减小.请你根据他们的叙述构造满足上述性质的一个函数:5、一个函数的图象经过点(1,2),且y随x的增大而增大而这个函数的解析式是(只需写一个)6、如果点A(—2,a)在函数y= x+3的图象上,那么a的值等于A、—7B、3C、—1D、47、小明、小强两人进行百米赛跑,小明比小强跑得快,如果两人同时跑,小明肯定赢,现在小明让小强先跑若干米,图中的射线a、b 分别表示两人跑的路程与小明追赶时间的关系,根据图象判断:小明的速度比小强的速度每秒快A、1米B、1.5米C、2米D、2.5米8、某日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水立方米,水费为元,则与的函数关系用图象表示正确的是9、如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量()A 小于3吨B 大于3吨C 小于4吨D 大于4吨10、如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )A、1个B、2个C、3个D、4个11、某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y1(元)与租碟数量x(张)之间的函数关系式:(2)写出会员卡租碟方式应付金额y2(元)与租碟数量x(张)之间的函数关系式:(3)小彬选取哪种租碟方式更合算?12、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元) 15 20 30 …y(件) 25 20 10 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式:(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?13、图9是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是(2)汽车在中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式.14、如图15—1和15—2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图15—1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图15—2,在Rt△ABC向下平移的过程中,请你求出y与x 的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?15、在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

初二数学第十九章《一次函数》单元测试卷

初二数学第十九章《一次函数》单元测试卷

/天t /万米3V 20040060080010001200O 5040302010初二数学第十九章《一次函数》单元测试卷班级 姓名 座号 评分一.选择题:(每题3分,共30分)1.下列各曲线中不能表示y 是x 的函数是( )。

2.函数2y x =+中,自变量x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤ 3.若把直线y=2x -3向上平移3个单位长度,得到直线( ) A .y=2x B.y=2x -6 C. y=5x -3 D.y=-x -3 4.直线y=2x+2与x 轴的交点坐标是( ) A .(0,2) B .(2,0) C.(-1,0) D.(0,-1) 5.若正比例函数的图像经过点(-1,2),则这个正比例函数的解析式是( )A .x y 21-=B .x y 2-=C .x y 21= D .x y 2= 6. 下列函数中,y 随x 的增大而减小的有( )A. 1个B. 2个C. 3个D. 4个7.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y=-0.4x 图象上的两点,则下列判断正确的是( ) A .y 1>y 2 B .y 1<y 2 C .当x 1<x 2时,y 1>y 2 D .当x 1<x 2时,y 1<y 28.如图,直线与y 轴的交点是(0,-3),则当x<0时,y 的取值范围( ) A. y<0 B. y<-3 C. y>0 D. y>-39.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( )A.干旱第50天时,蓄水量为1 200万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱开始后,蓄水量每天减少20万米3第8题 第9题Oxy O xy Oxy Oxy x y )21(-=31x y +-=xy -=612+-=x y 第10题1610.小高从家门口骑车去单位上班,先走平路到达A 地,再上坡到达B 地,最后下坡到达工作单位,所用的时间与路程的关系如图所示.那么, 小高上班时下坡的速度是( ) A .21千米/分 B .2千米/分 C .1千米/分 D .31千米/分 二.填空题:(每空4分,共28分)11.在432-=x y 中,当y=-6时,x = 12. 若点(3,a )在一次函数13+=x y 的图像上,则=a 。

(完整)人教版数学八年级上册第6章一次函数单元测试题(含答案),推荐文档

(完整)人教版数学八年级上册第6章一次函数单元测试题(含答案),推荐文档

2 1 初二数学第六单元测试题一、选择题:(本题共 10 小题,每小题 3 分,共 30 分)1.如果 y = (m -1)x 2-m 2+ 3 是一次函数,那么 m 的值是…………………………( )A. 1 ;B. -1;C. ±1 ;D. ± ;2. (2015•南平)直线 y=2x+2 沿 y 轴向下平移 6 个单位后与 x 轴的交点坐标是 ............... ( ) A .(-4,0);B .(-1,0);C .(0,2);D .(2,0);13. 若点 A (-2,m )在正比例函数 y = - 2x 的图象上,则 m 的值是………………()A . ;B . - 1; C .1; D .-1;4 44. 若一次函数 y=(2-m )x-2 的函数值 y 随 x 的增大而减小,则 m 的取值范围是 …………( )A .m <0;B .m >0;C .m <2 ;D .m >2; 5. 直线 y=kx+b 不经过第四象限,则…………………………………………………()A .k >0,b >0;B .k <0,b >0;C .k≥0,b≥0;D .k <0,b≥0; 6. (2014.深圳)已知函数 y=ax+b 经过(1,3),(0,-2),则 a-b=… .......... ( )A .-1;B .-3;C .3;D .7;7. 如图,直线 y=-x+m 与 y=nx+4n (n≠0)的交点的横坐标为-2,则关于 x 的不等式- x+m >nx+4n >0 的整数解为……………………………………………………………( ) A .-1; B .-5; C .-4; D .-3;第 7 题图第 9 题 图 第 10 题 图8.已知直线l 经过点 A (1,0),且与直线 y = x 垂直,则直线l 的函数表达式为 ......................................... ( )A. y = -x +1 ;B. y = -x -1;C. y = x +1 ;D. y = x -1;9. 小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间, 然后回家,如图描述了小明在散步过程汇总离家的距离 s (米)与散步所用时间 t (分)之间的函数关系,根据图象,下列信息错误的是 ............................................................... ( )A. 小明看报用时 8 分钟;B .公共阅报栏距小明家 200 米;5. (2015•无锡)一次函数标为 .与两坐标 6.如图,已 x - y = 2 的解是 2x + y = 1 值, C .小明离家最远的距离为 400 米; D .小明从出发到回家共用时 16 分钟;10. (2014•黑龙江)如图,在平面直角坐标系中,边长为 1 的正方形 ABCD 中,AD 边的中点处有一动点 P ,动点 P 沿 P→D→C→B→A→P 运动一周,则 P 点的纵坐标 y 与点 P 走过的路程 s 之间的函数关系用图象表示大致是……………………………………( )A.B. C. D.二、填空题:(本题共 8 小题,每小题 3 分,共 24 分)211.函数 y =x -1中自变量 x 的取值范围是 .12.已知 m 是整数,且一次函数 y = (m + 4)x + m + 2 的图像不经过第二象限,则 m =.13.已知一次函数 y = kx + k - 3 的图像经过点(2,3),则 k 的值为.14.请你写出一个图像过点(0,2),且 y 随 x 的增大而减小的一次函数的解析式 .1 y=2x-6 的图象与 x 轴的交点坐标为 .与 y 轴的交点坐 轴围成的三角形面积为 . 1 知函数 y=x-2 和 y=-2x+1 的图象交于点 P ,根据图象可得方程组⎧⎨.⎩第 16 题图第 17 题图17. (2013 春•玉田县期中)在矩形 ABCD 中,动点 P 从点 B 出发,沿 BC 、CD 、DA 运动至点 A 停止,设点 P 运动的路程为 x ,△ABP 的面积是 . 18.如图,点 Q 在直线 y=-x 上运动,点 A 的坐标为(1,0),当线段 AQ 最短时,点 Q 的坐标为 .三、解答题:(本大题共 10 题,满分 76 分)19.(本题满分 8 分)已知一次函数 y = (1- 2m )x + m +1 ,求当 m 为何时 (1) y 随着 x 的增大而增大?(2)图像经过一、二、四象限? (3)图像经过一、三象限? (4)图像与 y 轴的交点在 x 轴上方?第 18 题图20.(本题满分 6 分)已知一次函数y=kx+b的图像经过 A(1,1),B(2,-1)两点,求这个函数的表达式.21.(本题满分 7 分)在平面直角坐标系中,点 O 是坐标原点,过点 A(1,2)的直线y=kx+b 与x 轴交于点 B,且S AOB=4,求k 的值.22.(本题满分 7 分)如图,直线 y=2x+3 与x 轴交于点 A,与y 轴交于点 B.(1)求A、B 两点的坐标;(2)过B 点作直线 BP 与x 轴交于点 P,且使 OP=2OA,求△ABP的面积.23.(本题满分 7 分)已知:y+2 与3x 成正比例,且当 x=1 时,y 的值为 4.(1)求y 与x 之间的函数关系式;(2)若点(-1,a)、点(2,b)是该函数图象上的两点,试比较 a、b 的大小,并说明理由.24.(本题满分 8 分)如图,在平面直角坐标系中,点 A(0,4),B(3,0),连接 AB,将△AOB沿过点 B 的直线折叠,使点 A 落在x 轴上的点A′处,折痕所在的直线交 y 轴正半轴于点 C,求直线 BC 的解析式.25.(本题满分 7 分)如图,直线l1:y =x +1与直线l2:y =mx +n 相交于点P(1,b).(1)求b 的值;⎧y =x +1(2)不解关于 x,y 的方程组⎨y =mx +n ,请你直接写出它的解;⎩(3)直线l3:y =nx +m 是否也经过点 P?请说明理由.26.(本题满分 6 分)已知直线 y=kx+b 经过点 A(5,0),B(1,4).(1)求直线 AB 的解析式;(2)若直线 y=2x-4 与直线 AB 相交于点 C,求点 C 的坐标;(3)根据图象,写出关于 x 的不等式 2x-4>kx+b 的解集.27.(本题满分 10 分)某社区活动中心为鼓励居民加强体育锻炼,准备购买 10 副某种品牌的羽毛球拍,每副球拍配 x(x≥2)个羽毛球,供社区居民免费借用.该社区附近 A、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为 30 元,每个羽毛球的标价为 3 元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的 90%)销售;B 超市:买一副羽毛球拍送 2 个羽毛球.设在 A 超市购买羽毛球拍和羽毛球的费用为 yA(元),在 B 超市购买羽毛球拍和羽毛球的费用为 yB(元).请解答下列问题:(1)分别写出 yA、yB 与x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配 15 个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.28.(本题满分 10 分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发 1 小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成 2 小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的 2.5 倍,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间 x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?4 ⎩2017-2018 学年第一学期初二数学第六单元测试题参考答案一 、 选 择 题 : 1.B ;2.D ;3.C ;4.D ;5.A ;6.D ;7.D ;8.A ;9.A ;10.D ; 二、填空题:11.x ≠ 1;12.-3 或-2;13.2;14. y = -x + 2 (答案不唯一);15.(3,0),⎧x = 1 ⎛ 1 1 ⎫(0,-6,9;16. ⎨ y = -1;17.10;18. 2 , - ; ⎩⎝ ⎭ 三、解答题:19.(1) m < 1 ;(2) m > 1 ;(3) m = -1;(4) m > -1且m ≠ 1;20.2y = -2x + 3 ;21. 2 2 k = - 2 或 2 ; 3 522.(1)A ⎛ -2 3 ,⎪0 ⎫ ;B (0, 3);(24) 27 或 9 ; ⎝ ⎭ 23.(1) y = 6x - 2 ;(2) a < b ; 24. y = - 1 x + 3;2 2⎧x = 125. (1) b = 2 ;(2) ⎨ y = 2 ;(3)直线 y=nx+m 也经过点 P .理由如下: ∵当 x=1 时,y=nx+m=m+n=2,∴(1,2)满足函数 y=nx+m 的解析式,则直线经过点 P . 26. (1) y = -x + 5 ;(2) (3, 2);(3)x > 3 ; 27. 解:(1)由题意,得 yA=(10×30+3×10x)×0.9=27x+270; yB=10×30+3(10x-20)=30x+240;(2)当 yA=yB 时,27x+270=30x+240,得 x=10; 当 yA >yB 时,27x+270>30x+240,得 x <10; 当 yA <yB 时,27x+270<30x+240,得 x >10∴当2≤x<10 时,到B 超市购买划算,当 x=10 时,两家超市一样划算, 当 x >10 时在 A 超市购买划算.(3)由题意知 x=15,15>10,∴选择 A 超市,yA=27×15+270=675(元), 先选择 B 超市购买 10 副羽毛球拍,送 20 个羽毛球,然后在 A 超市购买剩下的 羽毛球:(10×15-20)×3×0.9=351(元),共需要费用 10×30+351=651(元) .∵651 元<675 元,∴最佳方案是先选择 B 超市购买 10 副羽毛球拍,然后在 A 超市购买 130 个羽毛球.28. 解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h. 故答案为:24;(2) 由题意得邮政车的速度为:24×2.5=60km/h .2设邮政车出发 a 小时两车相遇,由题意得 24(a+1)=60a ,解得:a= .32答:邮政车出发 小时与自行车队首次相遇;39(3) 由题意,得邮政车到达丙地的时间为:135÷60= ,4∴邮政车从丙地出发的时间为: 9 + 2 +1 = 21,∴B4 49 + 2 +1 = 21,C (7.5,0). 4 445 49 ,∴D⎛ 49 ⎫ 自行车队到达丙地的时间为:135÷24+0.5= +0.5= 888 ,135⎪ . ⎝ ⎭⎪⎧135 = 21 k + b设 BC 的解析式为 y = k x + b ,由题意得 1 1 1 ⎨4 1 1 ,∴ k 1 =−60, b 1 =450, ∴ y 1 = -60x + 450 ,⎩0 = 7.5k 1 + b 1设 ED 的解析式为 y 2 = k 2 x + b 2 ,由题意得⎧72 = 3.5k 2 + b 2 ,解得: ⎧k 2 = 24 ,∴ y = 24x -12 .当 y = y 时 , ⎨⎪ 49 ⎨ 135 = ⎩b = -122 1 2 ⎩⎪8 k 2 + b 2 2 -60x+450=24x-12,解得:x=5.5. y 1 =-60×5.5+450=120. 答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地 120km .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

八年级数学:一次函数单元测试题(含解析)

八年级数学:一次函数单元测试题(含解析)

八年级数学:一次函数单元测试题(含解析)(时间:90分钟 分值:100分)一、选择题(每小题2分,共24分)1.若正比例函数的图像经过点(-1,2),则这个函数的图像必经过点( D ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)解析:设正比例函数的表达式为y =kx (k ≠0),因为正比例函数y =kx 的图像经过点(-1,2),所以2=-k ,解得k =-2,所以y =-2x .把这四个选项分别代入y =-2x 中验证,易得这个图像必经过点(1,-2).故选D.2.已知点(-4,y 1),(2,y 2)都在直线y =-x +2上,则y 1,y 2的大小关系是( A ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能比较 解析:-1<0,∴函数值y 随x 的增大而减小. 又∵-4<2,∴y 1>y 2.故选A.3.若k ≠0,b <0,则y =kx +b 的图像可能是下图中的( B )解析:b <0时,直线与y 轴交于负半轴.故选B.4.若一次函数y =2mx +(m 2-2m )的图像经过坐标原点,则m 的值为( A ) A .2 B .0 C .0或2 D .无法确定 解析:由2m ×0+(m 2-2m )=0,得m =0或m =2.由2m ≠0,得m ≠0.故m =2.故选A.5.已知直线y =kx +b 经过点(k,3)和(1,k ),则k 的值为( B ) A. 3 B .± 3 C. 2 D .± 2 解析:由⎩⎨⎧k 2+b =3,k +b =k ,得⎩⎨⎧k 2=3,b =0,∴k =± 3.故选B.6.下列各点中,在函数y =-12x +5的图像上的点是( C )A .(2,5)B .(-2,4)C .(4,3)D .(-4,9)解析:当x=4时,y=-12×4+5=3,故点(4,3)在图像上.故选C.7.在平面直角坐标系中,函数y=-x+1的图像经过( D )A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限解析:根据题意有a<0,c>0,∴函数y=ax+c的图像经过第一、二、四象限.故选D.8.(2017·大庆)对于函数y=2x-1,下列说法正确的是( D )A.它的图像过点(1,0) B.y值随着x值增大而减小C.它的图像经过第二象限D.当x>1时,y>0解析:把x=1代入关系式得到y=1,即函数图像经过(1,1),不经过点(1,0),故A选项错误;函数y=2x-1中,k=2>0,则该函数图像y值随着x值增大而增大,故B选项错误;函数y =2x-1中,k=2>0,b=-1<0,则该函数图像经过第一、三、四象限,故C选项错误;当x>1时,2x -1>1,则y>1,故y>0正确,故D选项正确.故选D.9.直线y=43x+4与x轴交于点A,与y轴交于点B,则△AOB的面积为( B )A.12 B.6 C.3 D.4解析:A(-3,0),B(0,4),S△AOB=12×3×4=6.故选B.10.已知一次函数y1=kx+b与y2=x+a的图像如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2,其中正确的有( B )A.0个 B.1个 C.2个 D.3个解析:因为y1=kx+b的图像从左到右是下降的,所以k<0.因为y2=x+a的图像与y轴的交点在x轴的下方,所以a<0.因为当x<3时,y2的图像在y1的下方,所以y2<y1,所以正确的只有①.故选B.11.一次函数y=kx+2过点(1,1),那么这个一次函数是( B )A.y随x的增大而增大B.y随x的增大而减小C.图像经过原点D.图像不经过第二象限解析:由k+2=1,得k=-1.∵-1<0,∴y随x的增大而减小.故选B.12.在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( A )A.将l1向右平移3个单位长度 B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度 D.将l1向上平移4个单位长度解析:∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,∴-2(x+a)-2=-2x+4,解得:a=-3,故将l1向右平移3个单位长度.故选A.二、填空题(每小题3分,共18分)13.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是x=2.解析:2×2+b=0,b=-4.∵2x+b=0,∴2x-4=0,∴x=2.14.一次函数y=12x+5的图像经过第一、二、三象限.解析:图像过(0,5),且从左到右上升,∴图像经过第一、二、三象限.15.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线y=kx+3上,则k的值为-2.解析:∵点A (-1,1),正方形ABCD 的对称中心与原点重合,由对称点,可知B (1,1). ∵点B 在直线y =kx +3上,∴1=k +3.解得k =-2.16.直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是-1<m <1.解析:解⎩⎨⎧y =-2x +m ,y =2x -1,得⎩⎪⎨⎪⎧x =m +14,y =m -12.解⎩⎪⎨⎪⎧m +14>0,m -12<0.得-1<m <1.17.已知一次函数y =2x +a 与y =-x +b 的图像都经过点A (-3,0),且与y 轴分别交于B ,C 两点,则△ABC 的面积为272.解析:将A (-3,0)代入y =2x +a ,得a =6,∴B (0,6);将A (-3,0)代入y =-x +b ,得b =-3,∴C (0,-3),∴S △ABC =12×9×3=272.18.如图所示,直线m 的函数关系式为y =x ,点A 的坐标是(-1,0),点B 是直线m 上的一个动点,连接AB ,当线段AB 最短时,点B 的坐标是⎝ ⎛⎭⎪⎫-12,-12.解析:当线段AB 最短时,AB ⊥m ,垂足为B ,过点B 作BC ⊥x 轴,垂足为C ,则△AOB 与△BOC 都是等腰直角三角形,则OC =BC =12OA =12,所以点B ⎝ ⎛⎭⎪⎫-12,-12.三、解答题(共58分)19.(6分)已知函数y =(m -1)x +m +2,则当m 为何值时,这个函数是一次函数,并且图像经过第二、三、四象限?解:由y =(m -1)x +m +2是一次函数,并且图像经过第二、三、四象限,得⎩⎨⎧m -1<0,m +2<0,解得m <-2.20.(7分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y (米)和所经过的时间x (分钟)之间的函数图像如图所示.请根据图像回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间? (2)小敏几点几分返回到家?解:(1)速度为3 00010=300(米/分钟),逗留时间为30分钟. (2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得 ⎩⎨⎧3 000=40k +b ,2 000=45k +b ,解得⎩⎨⎧k =-200,b =11 000,∴函数表达式为y =-200x +11 000,当y =0时,x =55,∴返回到家的时间为8:55. 21.(7分)如果用x 表示鞋子的“码数”,用y 表示厘米数,那么y 是x 的一次函数.已知34码的鞋厘米数为22,40码的鞋厘米数为25.(1)求y 与x 的函数表达式;(2)一个人的鞋子为38码时,厘米数为多少? 解:(1)设y 与x 的函数表达式为y =kx +b ,∴⎩⎨⎧34k +b =22,40k +b =25.解得⎩⎨⎧k =12,b =5.∴y 与x 的函数表达式为y =12x +5.(2)当x =38时,y =12×38+5=24.22.(8分)小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段y 1,y 2分别表示小东、小明离B 地的距离y (km)与所用时间x (h)的关系.(1)试用文字说明:交点P 所表示的实际意义; (2)试求出A ,B 两地之间的距离.解:(1)交点P 所表示的实际意义是:经过2.5 h 后,小东与小明在距离B 地7.5 km 处相遇.(2)设y 1=kx +b ,又∵y 1经过点P (2.5,7.5),(4,0), ∴⎩⎨⎧2.5k +b =7.5,4k +b =0,解得⎩⎨⎧b =20,k =-5,∴y 1=-5x +20, 当x =0时,y 1=20.故A ,B 两地之间的距离为20 km.23.(8分)如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13.(1)求点B 的坐标.(2)若△ABC 的面积为4,求直线l 2的关系式.解:(1)在Rt △AOB 中,OA 2+OB 2=AB 2,∴22+OB 2=(13)2. ∴OB =3.∴点B 的坐标是(0,3).(2)∵S △ABC =12BC ·OA ,∴12BC ×2=4.∴BC =4.∴C (0,-1).设l 2:y =kx +b .把A (2,0),C (0,-1)代入,得⎩⎨⎧2k +b =0,b =-1,∴⎩⎨⎧k =12,b =-1.∴直线l 2的关系式是y =12x -1.24.(10分)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的数量为y 甲(棵),乙班植树的数量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (小时).y 甲、y 乙关于x 的部分函数图像如图所示.(1)当0≤x ≤6时,分别求y 甲、y 乙与x 之间的函数关系式;(2)如果甲、乙两班均保持前6个小时的工作效率,那么当x =8时,甲、乙两班植树的总数量能否超过260棵?(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x =8时,两班植树的总数量相差20棵,求乙班增加人数后平均每小时植树多少棵?解:(1)设y 甲=k 1x ,把(6,120)代入y 甲=k 1x , 解得k 1=20,∴y 甲=20x . 当x =3时,y 甲=y 乙=60.设y 乙=k 2x +b ,把(0,30),(3,60)代入y 乙=k 2x +b , 得⎩⎨⎧ b =30,3k 2+b =60.解得⎩⎨⎧k 2=10,b =30.∴y 乙=10x +30.(2)当x =8时,y 甲=8×20=160,y 乙=8×10+30=110. ∵160+110=270>260,∴当x =8时,甲、乙两班植树的总数量能超过260棵. (3)设乙班增加人数后平均每小时植树a 棵.当乙班比甲班多植树20棵时,有6×10+30+2a -20×8=20. 解得a =45.当甲班比乙班多植树20棵时,有20×8-(6×10+30+2a )=20. 解得a =25.∴乙班增加人数后平均每小时植树45棵或25棵.25.(12分)(2017·衡阳)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y (元)与骑行时间x (小时)之间的函数关系,根据图像回答下列问题:(1)求手机支付金额y (元)与骑行时间x (小时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算?解:(1)当0≤x <0.5时,y =0,当x ≥0.5时,设手机支付金额y (元)与骑行时间x (时)的函数关系式是y =kx +b , ⎩⎨⎧0.5k +b =0,1×k +b =0.5,计算得出⎩⎨⎧k =1,b =-0.5.即当x ≥0.5时,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =x -0.5, 由上可得,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =⎩⎨⎧0≤x <0.5,x -0.5x ≥0.5.(2)设会员卡支付对应的函数关系式为y =ax , 则0.75=a ×1,得a =0.75,即会员卡支付对应的函数关系式为:y =0.75x , 令0.75x =x -0.5,得x =2,由图像可以知道,当x >2时,会员卡支付便宜. 答:当0<x <2时,李老师选择手机支付比较合算, 当x =2时,李老师选择两种支付一样, 当x >2时,李老师选择会员卡支付比较合算.。

八年级数学一次函数单元测试卷含详细解析

八年级数学一次函数单元测试卷含详细解析

八年级数学一次函数单元测试卷一.选择题(每题3分,共10小题,30分)1.下列函数中,一次函数是()A.y=8x 2B.y=x+1 C.;D.2.(2015?十堰)函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤13.已知正比例函数y=kx的图象经过点(1,2),则k的值为()A.B.1 C.2 D.44.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.(2013?巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.6.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是()A.B.C.D.7.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A?B?C?M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A.B.C.D.8.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣9.一次函数y=﹣3x﹣2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个二.填空题(每题3分,共6小题,18分)11.函数y=中,自变量x的取值范围是.12.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是折.13.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)14.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.15.(2015?枣庄)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.16.已知函数y=2x 2a+b+a+2b是正比例函数,则a=,b=.三.解答题(17题、23题每题11分,18、19、20、21、22题每题10分,共7小题,72分)17.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.18.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?19.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.21.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地A村(元/辆)B村(元/辆)车型大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?23.某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池修建费(万元/个)可供用户数(户/个)占地面积(m2/个)A型 3 20 48B型 2 3 6政府相关部门批给该村沼气池修建用地708m2.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.八年级数学一次函数单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列函数中,一次函数是()A.y=8x 2B.y=x+1 C.;D.【分析】一次函数y=kx+b的定义条件逐一分析即可.【解答】解:A、自变量次数不为1;B、是一次函数;C、不符合一次函数的形式;D、分母中含有未知数不是一次函数.故选B.【点评】解题关键是掌握一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.已知正比例函数y=kx的图象经过点(1,2),则k的值为()A.B.1 C.2 D.4【分析】本题较为简单,把坐标代入解析式即可求出k的值.【解答】解:把(1,2)代入y=kx解得:k=2.故选C.【点评】利用待定系数法直接代入求出未知系数k,比较简单.4.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限【分析】根据正比例函数的性质解答.【解答】解:根据题意,函数值随x的增大而增大,k值大于0,图象经过第一、三象限.故选B.【点评】本题主要考查正比例函数的性质,当k>0时,函数图象经过第一三象限,y随x 的增大而增大.5.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.【分析】露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.【解答】解:因为小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.故选:C.【点评】本题考查函数值随时间的变化问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.6.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是()A.B.C.D.【分析】因为正比例函数y=kx(k≠0)的函数值y随x的增大而减小,可以判断k<0;再根据k<0判断出y=kx+k的图象的大致位置.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∴一次函数y=kx+k的图象经过一、三、二象限.故选:D.【点评】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第二、三象、四象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A?B?C?M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A. B.C.D.【分析】根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.【解答】解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个图象.故选:A.【点评】本题考查了分段函数的画法,是难点,要细心认真.8.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.9.一次函数y=﹣3x﹣2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据一次函数的性质容易得出结论.【解答】解:∵解析式y=﹣3x﹣2中,﹣3<0,﹣2<0,∴图象过二、三、四象限.故选A.【点评】在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.10.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;所以正确的结论有三个:①②④,故选:B.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二.填空题(共6小题)11.函数y=中,自变量x的取值范围是x≠2.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.12.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是七折.【分析】根据函数图象求出打折前后的单价,然后解答即可.【解答】解:打折前,每本练习本价格:20÷10=2元,打折后,每本练习本价格:(27﹣20)÷(15﹣10)=1.4元,=0.7,所以,在这个超市买10本以上的练习本优惠折扣是七折.故答案为:七.【点评】本题考查了一次函数的应用,比较简单,准确识图并求出打折前后每本练习本的价格是解题的关键.13.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是①③④.(把你认为正确说法的序号都填上)【分析】结合函数图象及选项说法进行判断即可.【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.【点评】本题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,有一定难度.14.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发或小时时,行进中的两车相距8千米.【分析】根据图象求出小明和父亲的速度,然后设小明的父亲出发x小时两车相距8千米,再分相遇前和相遇后两种情况列出方程求解即可.【解答】解:由图可知,小聪及父亲的速度为:36÷3=12千米/时,小明的父亲速度为:36÷(3﹣2)=36千米/时设小明的父亲出发x小时两车相距8千米,则小聪及父亲出发的时间为(x+2)小时根据题意得,12(x+2)﹣36x=8或36x﹣12(x+2)=8,解得x=或x=,所以,出发或小时时,行进中的两车相距8千米.故答案为:或.【点评】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,从图中准确获取信息求出两人的速度是解题的关键,易错点在于要分两种情况求解.15.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为(﹣1,2).【分析】先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=﹣1,即可得到C′的坐标为(﹣1,2).【解答】解:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣1.故答案为:(﹣1,2).【点评】本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为2是解题的关键.16.已知函数y=2x 2a+b+a+2b是正比例函数,则a=,b=﹣.【分析】根据正比例函数的定义可得关于a和b的方程,解出即可.【解答】解:根据题意可得:2a+b=1,a+2b=0,解得:a=,b=﹣.故答案为:;﹣.【点评】此题考查正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.三.解答题(共7小题)17.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点评】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.18.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=6,b=8;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【分析】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.【解答】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.19.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?【分析】(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小黄家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1元,市场调节价为 2.5元.(2)∵当0≤x≤12时,y=x;当x>12时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y=.(3)∵x=26>12,∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).答:小黄家三月份应交水费47元.【点评】本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围.20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.【分析】(1)利用待定系数法解答解析式即可;(2)得出直线与y轴相交于点D的坐标,再利用三角形面积公式解答即可.【解答】解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.【点评】此题考查一次函数问题,关键是根据待定系数法解解析式.21.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地A村(元/辆)B村(元/辆)车型大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x 为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.【点评】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是7元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?【分析】(1)根据函数图象可以得出出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(3)将x=18代入(2)的解析式就可以求出y的值.【解答】解:(1)该地出租车的起步价是7元;。

新北师大版八年级上册一次函数单元测试试题以及答案

新北师大版八年级上册一次函数单元测试试题以及答案

八年级上册一次函数练习试题1、一次函数的图象过点M(3,2),N(—1,—6)两点.(1)求函数的表达式;⑵画出该函数的图象•(3)与x、y交点坐标分别是多少?(4)与坐标轴围成三角形面积是多少?2、在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.3、已知一次函数的图象过点A(2,—1)和点B,其中点B是另一条直线y=—x+3与y轴的交点,求这个一次函数的表达式4、已知直线I与直线y=2x+1的交点的横坐标为2,与直线y=—x+8的交点的纵坐标为—7,求直线的表达式。

5、某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)(2)当x>2时,求y与x之间的函数关系式;((3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?6、小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?7、已知y与x+1成正比例关系,当x=2时,y=1,求当x=-3时y的值?8、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.9、某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?10、已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.11、已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=﹣x?(4)k为何值时,y随x的增大而减小?12、判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.13、一次函数y=kx+b的自变量x的取值范围是﹣3≤x≤6,相应函数值的取值范围是﹣5≤y≤﹣2,确定这个函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学单元测试题(一)
一、填空题(每小题5分,共25分) 1、若函数2
8
(3)m
y m x -=-是正比例函数,则常数m 的值是 。

2、已知一次函数2y kx =-,请你补充一个条件 ,使y 随x 的增大而减小。

3、从A 地向B 地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t 分钟(t ≥3),则需付电话费y (元)与t (分钟)之间的函数关系式是 。

4、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y (元)与水量x (吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为 元/吨;若用水超过5吨,超过部分的水费为 元/吨。

5、学校阅览室有能坐4 人的方桌,如果多于4 人,就把方桌拼成一行,2张方桌拼成一行能坐6 人,如图所示,请你结合这个规律,填写下表:
拼成一行的桌子数
1 2 3 4 …… n 人 数
4
6
8
……
二、选择题(每小题5分,共25分,每小题只有一个正确答案)
6、下列各曲线中不能表示y 是x 的函数的是………………………………………( )
7、若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( ) A .(0,-2) B .(32,0) C .(8,20) D .(12,1
2

8、右图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y (°F )与摄氏温度(°C )x 之间的函数关系式为………( )
A .9325y x =
+ B .40y x =+ C .5329y x =+ D .5
319
y x =+
9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。

用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是………( )
A .
B .
C .
D . 10、如图OA 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8 秒钟后,甲超过了乙,其中正确的说法是……………………………………( ) A .①② B .②③④ C .②③ D .①③④ 三、解答题(此大题满分50分)
11、(8分)已知一次函数图象经过(3,5)和(-4,-9)两点,(1)求此一次函数解析式;(2)若点在(a ,2)函数图象上,求a 的值。

12、(8分)画出函数26y x =+的图象,利用图象:(1)求方程260x +=的解;(2)求不等式26x +>0的解;(3)若13y -≤≤,求x 的取值范围。

13、(10分)小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小
强9点离开家,15点回家,根据这个图象,请你回答下列问题:
(1)小强到离家最远的地方需要几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长?
(3)小强何时距家21km?(写出计算过程)
14、(8分)网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网的两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网)。

此外B种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式。

(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
15、(12分)某服装厂现有A 种布料70m ,B 种布料52m ,现计划用这两种布料生产M 、N 两种型号的时装80套。

已知做一套M 型号的时装需要A 种布料0.6m ,B 种布料0.9m,可获利45元;做一套N 型号的时装需要A 种布料1.1m ,B 种布料0.4 m ,可获利50元。

若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获的总利润为y 元。

(1)求y 与x 的函数关系式,并求出x 的取值范围;
(2)该服装厂在生产这批时装中,当生产N 型号的时装多少套时,所获利润最大?最大利润是多少?
四、附加题(此大题满分20分)
16、如图,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。

(1)求k 的值;
(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,
试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当点P 运动到什么位置时,△OPA 的面积为27
8,并说明理
由。

测试题答案
1.3-. 2.0k <.
3.0.6(3,)y t t t =-≥是整数. 4.0.72;0.9. 5.10;22n +. 6.B . 7.A . 8.A . 9.D . 10.B . 11.
321;2
y x a =-=
. 12.(1)3x =-;(2)3x ->;(3)7322
x -
≤≤-. 13.(1)3小时,30千米;(2)10点半;半小时;(3)小强在11:24时和13:36时距家21km .
14.(1)123, 1.254y x y x ==+;(2)当用户某月上网时间超过30小时时,选择B 种上网方式更省钱; 当上网时间为30小时时,两种上网方式费用一样; 当上网时间少于30小时时,选择A 种上网方式更省钱 .
15.(1)53600(4044)y x x =+≤≤;(2)当生产N 型号的时装44套时,所获利润最大,最大利润是3820元.
16.(1)34k =
;(2)918(80)4S x x =+-<<(3)当P 点的坐标为139,28⎛⎫- ⎪⎝⎭
时,△OPA 的面积为278.。

相关文档
最新文档