4-第一章命题逻辑PPT课件
合集下载
逻辑学第一章 逻辑、命题、推理ppt课件

二、逻辑学的研究对象 逻辑学是一门古老的科学,至今已有2000多年的
历史。它有三个发源地,这就是古代的中国、印度和 希腊。
其研究对象主要是思维的形式结构及其规律的简 单操作的逻辑方法。
表一:三种原创哲学的比较
印度哲学 中国哲学 古希腊哲学
研究内容 人生哲学 社会伦理哲学 自然哲学和认识论
研究及思维方式 说教
“如果……那么……”是不变的部分,是这一类命题所共同 具有的,不变部分是“p”和“q”所表示的各不相同的具体 思维内容间共同的联系方式。
[例7] 所有违法行为都是要受法律追究的, 所有偷税行为都是违法行为, 所以,所有偷税行为都是要受法律追究的。
[例8] 所有公民都是民事权利的主体, 超计划生育的孩子是公民, 所以,超计划生育的孩子是民事权利的主体。
思维形式结构本身无所谓真假,但其中的变项代入具体内容后,
便形成了逻辑上有真有假的具体思想。
同一思维形式结构在不同的代入下,成为有不同内容的具体思
想。这些具体思想事实上是真是假,即是否符合客观事物情况,逻
辑学并不能解决。
逻辑学关心的是,当变项代入具体内容时,基于思维形式结构
的不同,其真假情况所表现出的规律性。
例如“所有S是P”、“如果P,那么q”等。 逻辑学便是论证逻辑规律,分析逻辑矛盾,说明什么样的思维
具有形式结构上的正确性或可靠性,是合乎逻辑的。
综上所述,逻辑学是研究思维的形式结构及其规律和
简单的逻辑方法的学说。推理形式及其有效性的判定是它 的核心内容。
第二节 逻辑学的渊源
一、感性认识
Heraclitus(约前540年—前480年) 古希腊哲学家、爱非斯派的创始人
引论
逻辑
逻辑学 性质意义
法律逻辑学PPT课件

若甲命题与乙命题为反对关系,乙命题与丙命题为差 等关系,当丙为真时,甲命题的真假情况怎样?
•23
当SIP真时,S与P外延之间的关系是( ) ①真包含于 ②真包含 ③交叉 ④
全异 性质命题中,如果SAP真,那么SEP
( ),SIP( ),SOP( )。 在性质命题对当关系推理中,根据反对
关系,由SEP真可推出( );根据矛 盾关系,由SAP真可推出( )。
逻辑方法
司法工作离不开逻辑 法律逻辑——适用法律的逻辑
返回目录
•5
第二章 概 念
定义 1、概念是通过反映客观对象的特有属性来
指称对象的思维形式 2、语言中的词或词组就被称为概念的表达
式
•6
概念与语词的关系: 1、概念往往通过语词来表达,但不是所有 的语词都表达概念。必须有内涵和外延。虚 词就不能表达概念。如:“的”、“啊”、 “因为……所以”等。 2、概念和词有时也不是一一对应的关系。
ˉPOS √5、违反逻辑的理论都是非科学的理论
PA ˉS
•32
关系命题 1、定义 关系命题就是断定客观对象之间具有或者不具 有某种关系的命题。它断定的是作为词项的概 念所反映的客观对象之间是否存在某种事实下 的关系。 “张三和李四是同学” “张三和李四是三好学生”
2、组成 关系命题由三个部分组成,即关系主项、关系 项和关系量项。 在关系命题中至少有两个以上的关系主项。
•18
逻辑特征
周延性:是否断定其全部外延
命题类型 A E I O
主项S 周延 周延 不周延 不周延
谓项P 不周延
周延 不周延
周延
•19
2.性质命题的真假判定
性质命题判定的主项和谓项的外延关系与两个概念
•23
当SIP真时,S与P外延之间的关系是( ) ①真包含于 ②真包含 ③交叉 ④
全异 性质命题中,如果SAP真,那么SEP
( ),SIP( ),SOP( )。 在性质命题对当关系推理中,根据反对
关系,由SEP真可推出( );根据矛 盾关系,由SAP真可推出( )。
逻辑方法
司法工作离不开逻辑 法律逻辑——适用法律的逻辑
返回目录
•5
第二章 概 念
定义 1、概念是通过反映客观对象的特有属性来
指称对象的思维形式 2、语言中的词或词组就被称为概念的表达
式
•6
概念与语词的关系: 1、概念往往通过语词来表达,但不是所有 的语词都表达概念。必须有内涵和外延。虚 词就不能表达概念。如:“的”、“啊”、 “因为……所以”等。 2、概念和词有时也不是一一对应的关系。
ˉPOS √5、违反逻辑的理论都是非科学的理论
PA ˉS
•32
关系命题 1、定义 关系命题就是断定客观对象之间具有或者不具 有某种关系的命题。它断定的是作为词项的概 念所反映的客观对象之间是否存在某种事实下 的关系。 “张三和李四是同学” “张三和李四是三好学生”
2、组成 关系命题由三个部分组成,即关系主项、关系 项和关系量项。 在关系命题中至少有两个以上的关系主项。
•18
逻辑特征
周延性:是否断定其全部外延
命题类型 A E I O
主项S 周延 周延 不周延 不周延
谓项P 不周延
周延 不周延
周延
•19
2.性质命题的真假判定
性质命题判定的主项和谓项的外延关系与两个概念
1命题逻辑

6
命题表示法:可用 • 字母a,b,c,…,p,q,r… • 或带下标的字母,如p1,q4…表示命题。 例:p:今天下雨。 q:今天是晴天。 r :雪是黑的。
命题标识符:表示命题的符号。 如上例中的p,q和r就是标识符。
7
命题分类 1. 简单命题:不能分解为更简单命题的命题, 又称为原子命题。 2. 复合命题:由原子命题、联结词和标点符 号复合构成的命题。 例:(1) 黄色和蓝色都是常用的颜色。 (2) 李冰选学英语或法语。 (3) 如果4是偶数,则5也是偶数。 (4) 小王虽然没上过大学,但他自学成才。 符号逻辑下,联结词也要符号化。
例:公式 p pq (p q) ∧r ((pq)( q p)) 的层次分别为 0、1、3、4
33
1.4
真值表与等值公式
赋值/指派:设p1,p2,…,pn是出现在公 式A中的全部命题变元,给p1,p2,…,pn 各指定一个真值,称为对公式A的一个赋值。 若指定的一组值使A的真值为1,则称这组 值为A的成真赋值/指派,若使A的真值为0, 则称这组值为A的成假赋值/指派。 真值表:在命题公式中,对于分量指派真 值的各种可能组合,就确定了这个命题公 式的各种真值情况,把它汇列成表,就是 命题公式的真值表。
18
如:R:张三或者李四考了90分。 S:第一节课上数学或者上英语。
对于R,张三和李四可能都考了90分。张三和 李四中只要有一个考了90分,则命题R为真, 若张三和李四都考了90分,R当然也为真。
而对于S,第一节课不能既上数学又上英语, 因此,若p表示“第一节课上数学”,q表示“ 第一节课上英语”,当两个命题都真,S就不 真了。在将命题进行形式化的时候,我们不能 简单的符号化为p∨q,而应采用其他形式。如 可以写为(p∧┐q)∨(┐p∧q)。
第1章 命题逻辑3

第1章 命题逻辑
定义1.6.3 设p和q是两个命题,复 合命题p↓q称作p和q的或非。定 义为:当且仅当p、q的真值都为 假时,p↓q的真值为真。联结词 “↓”称为或非联结词。
表1.20 p 0 0 q 0 1 p↓ q 1 0
1
1
0
1
0
0
由此定义可得到下面的公式: p↓q¬ (p∨q)
联结词↓还有下面的几个性质: ⑴ p↓p¬ (p∨p) ¬ p ⑵ (p↓q)↓(p↓q) ¬ (p↓q) ¬ ¬ (p∨q)p∨q ⑶ (p↓p)↓(q↓q) ¬ p↓¬q¬ (¬ p∨¬ q)p∧q
第1章 命题逻辑
蕴含式是逻辑推理的重要工具。下面是一些重要的蕴含 式。它们都可以用上述两种方法证明,其中A,B,C,D是 任意的命题公式。 1.附加律 AA∨B, BA∨B 2.化简律 A∧BA, A∧BB 3.假言推理 A∧(A→B)B 4.拒取式 ¬ B∧(A→B)¬ A 5.析取三段论 ¬ A∧(A∨B)B, ¬ B∧(A∨B)A 6.假言三段论 (A→B)∧(B→C)(A→C) 7.等价三段论 (A↔B)∧(B↔C)(A↔C) 8.构造性二难 (A∨C)∧(A→B)∧(C→D)B∨D (A∨¬ A)∧(A→B)∧(¬ A→B)B 9.破坏性二难 (¬ B∨¬ D)∧(A→B)∧(C→D)(¬ A∨¬ C)
第1章 命题逻辑
定义1.6.5 设S是全功能联结词集,如果去掉其中的任何 联结词后,就不是全功能联结词集,则称S是最小全功 能联结词集。 可以证明 ¬,∧ , ¬,∨ , ↑ , ↓ 是最小全 功能联结词集。
第1章 命题逻辑
讨论:n个命题变元可以构成多少个不等价的命题公式? 两个命题变元可以构成多少个不等价的命题公式? 由等价的概念知道,等价的命题公式有相同的真值表,所 以上述问题就转化为两个命题变元构成的命题公式有多少个不 同的真值表? 表1.21 两个命题变元构成的命题公式 p q 公式 的真值表的格式如表1.21所示。 0 0 1或0 真值表中每行公式的真值都 有1,0两种可能,所以命题公式 0 1 1或0 22 的真值有2×2×2×2=24= 2 =16 1 0 1或0 22 种可能,既有 2 个不同的真值表。 22 1 1 1或0 故有 种不等价的公式。 2 8= 23个不等价的命题公式,n个变元可 三个变元可构成 2 2 2n 构成 2 个不等价的命题公式。
逻辑学(完整)ppt课件

《新工具》 针对亚氏 的演绎逻 辑而提出 归纳和诉 诸自然和 经验。三 表法。
和推理
是计算
的思想
批判了形式
而成为 现代逻 辑的先 驱。
揭示了思维的辩
逻辑,研究 了辩证思维, 构造了辩证 逻辑的体系。
证矛盾。
现代归纳逻辑的发展有两个方向 : “经典”数理统计方向和 由J.M.凯因斯和F.P.拉姆齐开创,流行于50~80年代初期的 贝叶斯运动。20世纪中叶以来,美国的P.J.科恩用模态逻辑 作为处理归纳推理的工具。 科恩指出,支持度可列为不同 的等级,不同等级的支持度, 就是证据给予假设不同等级 的必然性, 一个被证明了的理论就是由较低级的必然性达 到较高级的必然性。
逻辑的研究对象
当 研究思维? 前 主 研究思维的逻辑形式? 流 研究语言? 观 点 研究推理?
思维的逻辑形式
结论:逻辑学 是研究思维的 形式结构及其 规律的科学, 中心任务是研 究推理及其有 效性标准。或 者最简单的: 逻辑学是研究 推理的科学。
逻辑形式:具有不同内容的思维(命题和推理)所共同具有的形式或结构
所有团员都不是青年 所有商品都不是劳动产品
但它们有共同的逻辑形式
所有S不是P
与这些逻辑形式属于同类的还有
有的S是P
有的S不是P
如:有的人是团员
还有另外一类命题
p
有的人不是大学生 q
如果一个物体摩擦, 那么这个物体生热 如果你能办成这件事,那么我从4楼跳下去
按照操作定义,得出它们的逻辑形式是 其中替换内容的字母用了小写的p、q等
要么p要么q要么p要么q要么p要么q要么p要么q这商品品质好而且价格低小张学习好而且品德高尚qq或者p或者q或者p或者q或者p或者q或者p或者q或者老张是导演或者老张是演员他或者吃米饭或者吃面条并非p并非p并非p并非p并非人是由石头变来的并非人人有自知之明推理的逻辑形式推理由命题组成如果用相同的字母替换相同的具体内容就可得到推理的逻辑形式所有团员是青年所以有的青年是团员所有m是p所有s是m所以所有s是p所有s是p所以有的p是s不同类型的命题可组成不同类型的推理如果一个人患肺炎p那么他发烧q小张不发烧非q所以他未患肺炎非p如果p那么q所以非p要么你交钱p要么你交命q你交了钱p所以你不用交命非q要么p要么q所以非q以上均为演绎推理的逻辑形式还有归纳推理形式可参阅教科书p9任何一个逻辑形式都包括
离散数学课件 4.1一阶逻辑命题符号化

说明: x yG(x, y) 和 x yG(x, y)表示的含义不同!
第 10 页
四、符号化
例2 在一阶逻辑中将下面命题符号化。
(1)人都爱美。
(2)有人用左手写字。
个体域分别为:
(a) D为人类集合 (b) D为全总个体域
解: (a)设F(x):x爱美,G(x):x用左手写字,则
(1) xF(x) (2) xG(x)
, L(x,y): x与y跑得同样快。 (5) ﹁ x y(F(x) G(y) H(x, y)) (6) ﹁ x y(F(x) F(y) L(x, y))
第 16 页
总结和作业
➢ 小结 ◆ 理解个体词、谓词、量词的含义 ◆ 掌握一阶逻辑命题的符号化
➢ 作业(做书上)
课本63-64页 4(1) (3), 5(1) (3),6 (1) (3) (5)
第1 页
第四章 一阶逻辑基本概念
➢ 命题逻辑的局限性
在命题逻辑中,研究的基本单位是简单命题,对简单 命题不再进行分解,并且不考虑命题之间的内在联系和数 量关系。
➢ 一阶逻辑所研究的内容
为了克服命题逻辑的局限性,将简单命题再细分,分 析出个体词、谓词和量词,以期达到表达出个体与总体的 内在联系和数量关系。 ◆ §4.1一阶逻辑命题符号化 ◆ §4.2一阶逻辑公式及解释 ◆ §5.1一阶逻辑等值式与置换规则 ◆ §5.2一阶逻辑前束范式
第四章 一阶逻辑基本概念
➢ 苏格拉底三段论
◆ 所有的人都是要死的。 ◆ 苏格拉底是人。 ◆ 所以,苏格拉底是要死的。 试证明此推理。 解:令p:所有的人都是要死的,q:苏格拉底是人,r:苏格拉底 是要死的,则 前提:p,q 结论:r 推理的形式结构: p Ù q ® r
第 10 页
四、符号化
例2 在一阶逻辑中将下面命题符号化。
(1)人都爱美。
(2)有人用左手写字。
个体域分别为:
(a) D为人类集合 (b) D为全总个体域
解: (a)设F(x):x爱美,G(x):x用左手写字,则
(1) xF(x) (2) xG(x)
, L(x,y): x与y跑得同样快。 (5) ﹁ x y(F(x) G(y) H(x, y)) (6) ﹁ x y(F(x) F(y) L(x, y))
第 16 页
总结和作业
➢ 小结 ◆ 理解个体词、谓词、量词的含义 ◆ 掌握一阶逻辑命题的符号化
➢ 作业(做书上)
课本63-64页 4(1) (3), 5(1) (3),6 (1) (3) (5)
第1 页
第四章 一阶逻辑基本概念
➢ 命题逻辑的局限性
在命题逻辑中,研究的基本单位是简单命题,对简单 命题不再进行分解,并且不考虑命题之间的内在联系和数 量关系。
➢ 一阶逻辑所研究的内容
为了克服命题逻辑的局限性,将简单命题再细分,分 析出个体词、谓词和量词,以期达到表达出个体与总体的 内在联系和数量关系。 ◆ §4.1一阶逻辑命题符号化 ◆ §4.2一阶逻辑公式及解释 ◆ §5.1一阶逻辑等值式与置换规则 ◆ §5.2一阶逻辑前束范式
第四章 一阶逻辑基本概念
➢ 苏格拉底三段论
◆ 所有的人都是要死的。 ◆ 苏格拉底是人。 ◆ 所以,苏格拉底是要死的。 试证明此推理。 解:令p:所有的人都是要死的,q:苏格拉底是人,r:苏格拉底 是要死的,则 前提:p,q 结论:r 推理的形式结构: p Ù q ® r
第一章 命题逻辑基本概念

第一部分 数理逻辑
传统逻辑与数理逻辑: 传统逻辑与数理逻辑: 逻辑一词源于希腊文,意思指: 逻辑一词源于希腊文,意思指:词、思 想、理性、规律等。 理性、规律等。 逻辑学研究的是:判别一个推理过程是 逻辑学研究的是: 否正确的标准。数理逻辑也叫符号逻辑, 否正确的标准。数理逻辑也叫符号逻辑,即 用人工符号来书写逻辑法则, 用人工符号来书写逻辑法则,它是一门涉及 数学、逻辑学、 数学、逻辑学、哲学等几门学科的横向交叉 学科。 学科。
数理逻辑是用数学方法来研究推理的 形式结构和推理规律的数学学科, 形式结构和推理规律的数学学科,它与数 学的其它分支、计算机科学、人工智能、 学的其它分支、计算机科学、人工智能、 语言学等学科均有密切的联系。 语言学等学科均有密切的联系。命题逻辑 一阶谓词逻辑是数理逻辑中最成熟的部 和一阶谓词逻辑是数理逻辑中最成熟的部 在计算机科学中应用最为广泛, 分,在计算机科学中应用最为广泛,其中 命题逻辑是数理逻辑的最基础部分, 命题逻辑是数理逻辑的最基础部分,谓词 逻辑是在它的基础上发展起来的。 逻辑是在它的基础上发展起来的。
将下列命题符号化: 例 将下列命题符号化: 吴颖既用功又聪明。 (1)吴颖既用功又聪明。 吴颖不仅用功而且聪明。 (2)吴颖不仅用功而且聪明。 吴颖虽然聪明,但不用功。 (3)吴颖虽然聪明,但不用功。 张辉与王丽都是三好生。 (4)张辉与王丽都是三好生。 张辉与王丽是同学。 (5)张辉与王丽是同学。 (1)-(3)说明描述合取式的灵活性与多样性 )( ) (4)-(5)要求分清联结词“与”联结的复合 ) ( )要求分清联结词“ 命题与简单命题
一、主要内容
命题逻辑基本概念 命题逻辑等值演算 命题逻辑推理理论 一阶逻辑基本概念 一阶逻辑等值演算与推理理论
二、学习要求 深刻理解命题、 联结词、 深刻理解命题 、 联结词 、 复合命 命题公式、 等值式、 题 、 命题公式 、 等值式 、 等值演 算、推理及证明等概念 熟练进行等值演算与构造证明
传统逻辑与数理逻辑: 传统逻辑与数理逻辑: 逻辑一词源于希腊文,意思指: 逻辑一词源于希腊文,意思指:词、思 想、理性、规律等。 理性、规律等。 逻辑学研究的是:判别一个推理过程是 逻辑学研究的是: 否正确的标准。数理逻辑也叫符号逻辑, 否正确的标准。数理逻辑也叫符号逻辑,即 用人工符号来书写逻辑法则, 用人工符号来书写逻辑法则,它是一门涉及 数学、逻辑学、 数学、逻辑学、哲学等几门学科的横向交叉 学科。 学科。
数理逻辑是用数学方法来研究推理的 形式结构和推理规律的数学学科, 形式结构和推理规律的数学学科,它与数 学的其它分支、计算机科学、人工智能、 学的其它分支、计算机科学、人工智能、 语言学等学科均有密切的联系。 语言学等学科均有密切的联系。命题逻辑 一阶谓词逻辑是数理逻辑中最成熟的部 和一阶谓词逻辑是数理逻辑中最成熟的部 在计算机科学中应用最为广泛, 分,在计算机科学中应用最为广泛,其中 命题逻辑是数理逻辑的最基础部分, 命题逻辑是数理逻辑的最基础部分,谓词 逻辑是在它的基础上发展起来的。 逻辑是在它的基础上发展起来的。
将下列命题符号化: 例 将下列命题符号化: 吴颖既用功又聪明。 (1)吴颖既用功又聪明。 吴颖不仅用功而且聪明。 (2)吴颖不仅用功而且聪明。 吴颖虽然聪明,但不用功。 (3)吴颖虽然聪明,但不用功。 张辉与王丽都是三好生。 (4)张辉与王丽都是三好生。 张辉与王丽是同学。 (5)张辉与王丽是同学。 (1)-(3)说明描述合取式的灵活性与多样性 )( ) (4)-(5)要求分清联结词“与”联结的复合 ) ( )要求分清联结词“ 命题与简单命题
一、主要内容
命题逻辑基本概念 命题逻辑等值演算 命题逻辑推理理论 一阶逻辑基本概念 一阶逻辑等值演算与推理理论
二、学习要求 深刻理解命题、 联结词、 深刻理解命题 、 联结词 、 复合命 命题公式、 等值式、 题 、 命题公式 、 等值式 、 等值演 算、推理及证明等概念 熟练进行等值演算与构造证明
第一章 命题逻辑

注: 1.虽然上例的P、Q之间并无实际联系,但只要P、Q可 分别确定真值,即可用“→”联结。 2.Q→P称为P→Q的逆命题; ┐P→┐Q称为P→Q的否命题; ┐Q→┐P称为P→Q的逆否命题。 3.前项P为F时,无论后项Q取何真值,P→Q的真值均为 T,这是所谓的“善意推定”。
定义5:给定两个命题P和Q,复合命题P↔Q称作 双条件命题,读作“P当且仅当Q”,当P和Q的真 值相同时,P↔Q的真值为T,否则P↔Q的真值为F。 注:双条件↔的其他表示法。 例: P: 1+1=3。 Q: 雪是白的。 P↔Q: 1+1=3当且仅当雪是白的。
5.只有睡觉才能恢复疲劳。 解:这个命题的实际含义是,能恢复疲劳必定是睡觉了, 令P:恢复疲劳,Q:睡觉,则此命题符号化为P→Q。 6.只要我还有口气,我就要战斗。 解:令P:我还有口气,Q:我要战斗,则此命题符号化为 P→Q。
二、合式公式的翻译成自然语言(略)
作业:P42 T3,T4
1-4真值表与等价公式
注:重言式一定是可满足式。
永真式也称重言式;永假式也称矛盾式。
关于重言式,有如下性质:
定理1:任何两个重言式的合取或析取,仍然是 重言式。 证明:设A、B为两个重言式,则A∧B和A∨B的真 值分别等于T∧T和T∨T。
定理2:对一个重言式的同一分量都用任何一个 命题公式置换,所得命题公式仍为一个重言式。 (即代入规则) 证明:由于重言式的真值与分量的真值指派无关, 故对同一分量以任何一个命题公式置换后,重言 式的真值不变。
例:符号化下列命题。 1.张明正在睡觉或游泳。 解:令P:张明在睡觉,Q:张明在游泳, 则此命题符号化为:(P∧┐Q)∨( Q∧┐P)。 2.他可能是100米或400米赛跑的冠军。 解:令P: 他可能是100米赛跑的冠军,Q: 他可能是100米 赛跑的冠军 ,则此命题符号化为:P∨Q。
1-4 命题逻辑

构造证明——附加前提证明法
欲证明 前提:A1, A2, … , Ak 结论:CB 等价地证明 前提:A1, A2, …, Ak, C 结论:B 理由: (A1 A2 … Ak) (C B) (A1 A2 … Ak) ( C B) ( (A1 A2 … Ak ) C) B) (A1 A2 … Ak C) B (A1A2…Ak C) B
复习思考题3
由p、q构成的重言式的主析取范式为____.
矛盾式的主析取范式为_________。
已知由三个变量构成的公式A的主合取范式
为:A (1,2,4,7),则
① 公式A的类型是___________;
② 公式A的成假赋值是____________; ③ 公式A的主析取范式是_____________。
(1)若天气凉快,小王就不去游泳。天气凉快,所 以小王没去游泳。
③判断 ((pq) p) q 是否为重言式 方法2:等值演算法
((pq) p) q ((pq)p)q (pq) p q
(pq) (pq)
1
例:判断下面推理是否正确?
如果今天是星期二,则要进行英语或离散数学 考试,如果英语老师有会,则不考英语。今天是星期 二,英语老师有会,所以进行离散数学考试。 解:设 ① p (q r) 前提 p:今天是星期二。 ②p 前提 q:进行英语考试。 ①②假言推理 r:进行离散数学考试。 ③ q r s:英语老师有会。 ④ sq 前提 前提: ⑤ s 前提 p(qr),sq,p,s ⑥q ⑤④假言推理 结论:r ⑦ r ⑥③ 析取三段论
常用的推理定律(续)
(9) 析取三段论规则 AB B \A (10) 构 造 性 二 难 推 理 规则 AB CD AC \BD (11) 破坏性二难推理 规则 AB CD BD \AC (12) 合取引入规则 A B \AB
离散数学 命题逻辑

(2) S∧R:李平与张明在吃饭.
“∧”与自然语言中“与”“和”的不同之处:
(1)逻辑学中允许两个相互独立无关的,甚至互为否定的
原子命题生成一个新的命题.(如上例的(1)).
(2)自然语言中有时在各种不同意义上使用联结词"与",
"和",不能一概用 去翻译(如:我与你是兄弟.)
2020/5/11
25
1-2 命题联结词(Logical Connectives)
(4)人固有一死,或重于泰山或轻于鸿毛.(排斥或) (5) ab=0, 即a=0 或 b=0. (可兼或)
由此可见, “P ∨ Q”表示的是“可兼或”.
2020/5/11
28
1-2 命题联结词(Logical Connectives)
注意:当P和Q客观上不能同时发生时,“P或Q” 可以符号化为“P ∨ Q”。
“P与Q”)称为P与Q的合取式,记作P∧Q,符号“∧”
称为合取联结词。当且仅当P和Q同时为真时P∧Q
为真。
联结词“∧”的定义真值表
P
Q
P∧Q
0
0
0
0
1
0
1
0
0
1
1
1
2020/5/11
22
1-2 命题联结词(Logical Connectives)
“∧” 属于二元(binary)运算符. 合取运算特点:只有参与运算的二命题全为真时,
逻辑可分为:1.形式逻辑 2.辩证逻辑
❖辩证逻辑是研究反映客观世界辩证发展过程的
人类思维的形态的。
❖形式逻辑是研究思维的形式结构和规律的科学,
它撇开具体的、个别的思维内容,从形式结构
方面研究概念、判断和推理及其正确联系的规
第一章命题逻辑(1,2,3)

1.2 联 结 词
联结词:确定复合命题的逻辑形式。
❖ 原子命题和联结词可以组合成复合命题。 ❖ 联结词确定复合命题的逻辑形式,它来源于自然语言中的联结词,
但与自然语言中的联结词有一定的差别; ❖ 从本质上讲,这里讨论的联结词只注重“真值”,而不顾及具体
内容,故亦称“真值联结词”。
1.2.1 否定联结词
❖ 命题P Q的真值与命题P和命题Q的真值之间的关系如表所示。
P
Q
PQ
0
0
1
0
1
1
1
0
0
1
1
1
1.2.4 蕴涵联结词
❖ 说明:
▪ 1)蕴涵联结词也称为条件联结词。“如果P,则Q”也称为P与Q 的条件式。
▪ 2)蕴涵式的真值关系不太符合自然语言中的习惯,这一点请读者 务必注意。
1.1.3 命题标识符
❖ 命题标识符
▪ 为了能用数学的方法来研究命题之间的逻辑关系和推理,需要将 命题符号化。
▪ 通常使用大写字母P, Q, …或用带下标的大写字母或用数字,如Ai, [12]等表示命题。
• 例如:
P:今天下雨
• 意味着P表示“今天下雨”这个命题的名。
• 也可用数字表示此命题
• 例如:
❖ 定义1.1 设P为任一命题,复合命题“非P”(或“P的否定”)称为P 的否定式,记作﹁P,读作“非P”。﹁称为否定联结词。
❖ ﹁P的逻辑关系为P不成立,﹁P为真当且仅当P为假。 ❖ 命题P的真值与其否定﹁P的真值之间的关系
P
﹁P
0
1
1
0
1.2.1 否定联结词
例1.2 设 P:这是一个三角形 ﹁P:这不是一个三角形
数理逻辑命题逻辑一阶谓词逻辑集合论集合及其运算二元关系与函数代数结构代数系统的基本概念群环域格与布尔代数图论数理逻辑和集合论作为两块基石奠定了离散数学乃至整个数学理论的基础在上面生长着代数结构序结构拓扑结构和混合结构这四大结构涵盖与生长出许多数学分支同时各分支间交叉融合又形成了许多新的数学分支形成了庞大的数学体系
逻辑学·第4章-简单命题及其推理-第1节-直言命题PPT课件

.
59
3.从属关系(A与I,E与O)—可同假可同真
sp
sp
sp
s p sp
例如:“全部产品都是合格品” “有的产品是合格品” 即为可同假可同真的关系。
.
60
注意:
“全部”为真“部分”必真,“部分”为真 “全部”不定;
“全部”为假“部分”不定,“部分”为假 “全部”必假。
.
61
4.下反对关系(I与O)—可同真不同假
.
49
(四)特称否定命题的主项不周延,谓项周延
SOP是S类与P类具有真包含关系、交叉关系、全 异关系的概括反映。它只是陈述至少有一个S与P相 排斥、并未陈述全部S与P相排斥,即没有确定地陈 述S的全部外延。因此,其主项S是不周延的。
.
50
SOP陈述了至少有ー个S不是全部的P,即全部P 都与被陈述的那部分S相排斥。所以,其谓项P是周 延的。
.
51
.
52
对直言命题的主项、谓项的周延性的补充说明P77
.
53
四、主谓项分别相同的直言命题间的对当关系
(一)A、E、I、O的真假情况(P78-79) 直言命题实际上反映两类客观对象之间的关系,
A、E、I、O是对现实中S类对象与P类对象之间关系 的概括反映。
.
54
S类与P类的关系:
.
55
(二)A、E、I、O的真假关系(P79-82)
• 全称量项可以省略; • 特称量项绝对不能省略; • 主项是单独概念或集合概念的,量项通常省略; • 主项是普遍概念或非集合概念的,单称量项不能
省略。
.
21
全称量项:表示直言命题主项所反映对象的全 部数量的概念。表达全称量项的自然语言表达式有 以下五种:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 命题及其表示法 1.2 联结词 1.3 命题公式与翻译 1.4 真值表与等价公式 1.5 重言式与蕴含式 1.7对偶与范式 1.8推理理论
第一章 命题逻辑
Propositional Logic
1.1 命题及其表示法 1.2 联结词 1.3 命题公式与翻译 1.4 真值表与等价公式 1.5 重言式与蕴含式 1.7对偶与范式 1.8推理理论
三、主范式 (2)主合取范式 每个合取项中所有变元都要出现 每个变元只出现一次(命题变元或其否定) 主合取范式的化归步骤:见书上38页
例7:试求 (PQ )( PR)的主合取范式。 例8:试求 P ( ( P Q ) ( Q P ) )主合取范式。
大连大学
信息工程学院
9
第20页
1.6 对偶与范式
大连大学
信息工程学院
5
第20页
ቤተ መጻሕፍቲ ባይዱ
1.6 对偶与范式 (复习)
三、主范式 (1)主析取范式 每个析取项中所有变元都要出现 每个变元只出现一次(命题变元或其否定)
主析取范式的化归步骤:见书上36页
例5:试求 P Q 和 (PQ) 的主析取范式。
例6:试求 P ( ( P Q ) ( Q P ) )主析取范式。
分别都是什
(3)若C不去,则A或B可以去。 么?
大连大学
信息工程学院
11
第21页
第一章 命题逻辑
Propositional Logic
1.6 对偶与范式(复习)
二、范式 定义1-7.2 一个命题公式称为合取范式,当且仅当 它具有型式:
A 1A 2A n(n1 ) 其中 A1,A2, ,An 都是由命题变元或其否定所组成
的析取式。
合取范式的特点:
(1)不出现 和 (2)否定符号出现在变元前
定理1-7.3 在真值表中,一个公式的真值为T的指派 所对应的小项的析取,即为此公式的主析取范式。
大连大学
信息工程学院
7
第20页
1.6 对偶与范式 (复习)
三、主范式 (1)主析取范式
用两种方法求下面命题公式的主析取范式。
( P Q ) (P Q )
大连大学
信息工程学院
8
第20页
1.6 对偶与范式
的合取式。
析取范式的特点:
(1)不出现 和 (2)否定符号出现在变元前
(3)总体看是析取式 (4)每个析取项是合取式
(5)每个析取项中只包含命题变元或其否定。
-
4
大连大学
信息工程学院
第18页
1.6 对偶与范式(复习)
二、范式 合取范式和析取范式的化归步骤:见书上31页
例3:求 (P(Q R )) S合取范式。 例4:求 (PQ ) (PQ )析取范式。
(3)总体看是合取式 (4)每个合取项是析取式
(5)每个合取项中只包含命题变元或其否定。
-
3
大连大学
信息工程学院
第17页
1.6 对偶与范式(复习)
二、范式 定义1-7.3 一个命题公式称为析取范式,当且仅当 它具有型式:
A 1A 2A n(n1 ) 其中 A1,A2, ,An 都是由命题变元或其否定所组成
大连大学
信息工程学院
6
第20页
1.6 对偶与范式 (复习)
三、主范式 (1)主析取范式 定义1-7.4 n个变元的合取式,称作布尔合取或小项, 其中每个变元与它的否定不能同时存在,但 两者必须出现且仅出现一次。
定义1-7.5 对于给定的命题公式,如果有一个等价 公式,它仅由小项的析取所组成,则该等价式称为 原式的主析取范式。
三、主范式 定义1-7.6 n个变元的析取式,称作布尔析取或大项, 其中每个变元与它的否定不能同时存在,但 两者必须出现且仅出现一次。
定义1-7.7 对于给定的命题公式,如果有一个等价 公式,它仅由大项的合取所组成,则该等价式称为 原式的主合取范式。
定理1-7.3 在真值表中,一个公式的真值为F的指派 所对应的大项的合取,即为此公式的主合取范式。
大连大学
信息工程学院
10
第20页
1.6 对偶与范式
例9:用真值表求 (PQ )( PR)的主合取范式。
例10:求 (PQ )( PR)的成真指派。
例11:某科研所要从3名科研骨干A,B,C中挑选1~2
名出国进修,由于工作需要,选派需满足如
下条件:
问:有几种
(1)若A去,则C同去;
选派方案
(2)若B去,则C不能去;
第一章 命题逻辑
Propositional Logic
1.1 命题及其表示法 1.2 联结词 1.3 命题公式与翻译 1.4 真值表与等价公式 1.5 重言式与蕴含式 1.7对偶与范式 1.8推理理论
三、主范式 (2)主合取范式 每个合取项中所有变元都要出现 每个变元只出现一次(命题变元或其否定) 主合取范式的化归步骤:见书上38页
例7:试求 (PQ )( PR)的主合取范式。 例8:试求 P ( ( P Q ) ( Q P ) )主合取范式。
大连大学
信息工程学院
9
第20页
1.6 对偶与范式
大连大学
信息工程学院
5
第20页
ቤተ መጻሕፍቲ ባይዱ
1.6 对偶与范式 (复习)
三、主范式 (1)主析取范式 每个析取项中所有变元都要出现 每个变元只出现一次(命题变元或其否定)
主析取范式的化归步骤:见书上36页
例5:试求 P Q 和 (PQ) 的主析取范式。
例6:试求 P ( ( P Q ) ( Q P ) )主析取范式。
分别都是什
(3)若C不去,则A或B可以去。 么?
大连大学
信息工程学院
11
第21页
第一章 命题逻辑
Propositional Logic
1.6 对偶与范式(复习)
二、范式 定义1-7.2 一个命题公式称为合取范式,当且仅当 它具有型式:
A 1A 2A n(n1 ) 其中 A1,A2, ,An 都是由命题变元或其否定所组成
的析取式。
合取范式的特点:
(1)不出现 和 (2)否定符号出现在变元前
定理1-7.3 在真值表中,一个公式的真值为T的指派 所对应的小项的析取,即为此公式的主析取范式。
大连大学
信息工程学院
7
第20页
1.6 对偶与范式 (复习)
三、主范式 (1)主析取范式
用两种方法求下面命题公式的主析取范式。
( P Q ) (P Q )
大连大学
信息工程学院
8
第20页
1.6 对偶与范式
的合取式。
析取范式的特点:
(1)不出现 和 (2)否定符号出现在变元前
(3)总体看是析取式 (4)每个析取项是合取式
(5)每个析取项中只包含命题变元或其否定。
-
4
大连大学
信息工程学院
第18页
1.6 对偶与范式(复习)
二、范式 合取范式和析取范式的化归步骤:见书上31页
例3:求 (P(Q R )) S合取范式。 例4:求 (PQ ) (PQ )析取范式。
(3)总体看是合取式 (4)每个合取项是析取式
(5)每个合取项中只包含命题变元或其否定。
-
3
大连大学
信息工程学院
第17页
1.6 对偶与范式(复习)
二、范式 定义1-7.3 一个命题公式称为析取范式,当且仅当 它具有型式:
A 1A 2A n(n1 ) 其中 A1,A2, ,An 都是由命题变元或其否定所组成
大连大学
信息工程学院
6
第20页
1.6 对偶与范式 (复习)
三、主范式 (1)主析取范式 定义1-7.4 n个变元的合取式,称作布尔合取或小项, 其中每个变元与它的否定不能同时存在,但 两者必须出现且仅出现一次。
定义1-7.5 对于给定的命题公式,如果有一个等价 公式,它仅由小项的析取所组成,则该等价式称为 原式的主析取范式。
三、主范式 定义1-7.6 n个变元的析取式,称作布尔析取或大项, 其中每个变元与它的否定不能同时存在,但 两者必须出现且仅出现一次。
定义1-7.7 对于给定的命题公式,如果有一个等价 公式,它仅由大项的合取所组成,则该等价式称为 原式的主合取范式。
定理1-7.3 在真值表中,一个公式的真值为F的指派 所对应的大项的合取,即为此公式的主合取范式。
大连大学
信息工程学院
10
第20页
1.6 对偶与范式
例9:用真值表求 (PQ )( PR)的主合取范式。
例10:求 (PQ )( PR)的成真指派。
例11:某科研所要从3名科研骨干A,B,C中挑选1~2
名出国进修,由于工作需要,选派需满足如
下条件:
问:有几种
(1)若A去,则C同去;
选派方案
(2)若B去,则C不能去;