正态分布的概率计算
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.设随机变量 X 服从正态分布 N(2,9),若
2015
P(X>c+1)=P(X<c-1),则 c B等于( ) A.1 B.2 C.3 D.4
解析 ∵μ=2,由正态分布的定义知其函数 图象关于 x=2 对称,于是c+1+2 c-1=2, ∴c=2.
4.已知随机变量 ξ 服从2015正态分布 N(2,σ2), P(ξ≤4)=0.84,则 P(ξ≤0)等于( A ) A.0.16 B.0.32 C.0.68 D.0.84
(2)正态曲线的性质: 2015 ①曲线位于 x 轴 上方 ,与 x 轴不相交; ②曲线是单峰的,它关于直线 x= μ 对称; ③曲线在 x= μ 处达到峰值 1 ;
σ 2π ④曲线与 x 轴之间的面积为 1 ; ⑤当 σ 一定时,曲线随着 μ 的变化而沿 x
轴平移,如图甲所示;
⑥当 μ 一定时,曲线的形状由 σ 确定,
2015
正态分布的概率计算
§12.7 正态分布
基础知识 自2015 主学习
要点梳理
1.正态曲线及性质
(1)正态曲线的定义
函数 φμ,σ(x)=
1 2πσe
- x u 2
2 2
,
x∈(-∞,+∞),其中实数 μ 和 σ
(σ>0)为参数,我们称 φμ,σ(x)的 图象(如图)为正态分布密度曲线,
简称正态曲线.
.
(2)正态总体在三个特殊区间内取值的概率值
①P(μ-σ<X≤μ+σ)= 0.6826
;
②P(μ-2σ<X≤μ+2σ)= 0.9544
;
③P(μ-3σ<X≤μ+3σ)= 0.9974
.
题型 服从正态分布的概率计算 例 1 设 X~N(1,22),20试15 求
(1)P(-1<X≤3); (2)P(3<X≤5); (3)P(X≥5).
(3)∵P(X≥5)=P(X≤-3), ∴P(X≥5)=12[1-P(-3<X≤5)] =12[1-P(1-4<X≤1+4)] =12[1-P(μ-2σ<X≤μ+2σ)] =12(1-0.954 4)=0.022 8.
探究提高 求服从正态201分5 布的随机变量在某个区 间取值的概率,只需借助于正态曲线的性质,把所 求问题转化为已知概率的三个区间上.
变式训练 2 (2010·山东)已知随机变量 ξ 服从正态分
20பைடு நூலகம்5
布 N(0,σ2),若 P(ξ>2)=0.023,则 P(-2≤ξ≤2) 等于( C ) A.0.477 B.0.628 C.0.954 D.0.977
解析 由 ξ~N(0,σ2),且 P(ξ>2)=0.023,知 P(-2≤ξ≤2)=1-2P(ξ>2)=1-0.046=0.954.
解 ∵X~N(1,22),∴μ=1,σ=2. (1)P(-1<X≤3)=P(1-2<X≤1+2) =P(μ-σ<X≤μ+σ) =0.682 6.
(2)∵P(3<X≤5)=P(-3<X≤-1) ∴P(3<X≤5)=12[P(-3<X≤5)-P(-1<X≤3)] =12[P(1-4<X≤1+4)-P(2101-5 2<X≤1+2)] =12[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)] =12×(0.954 4-0.682 6)=0.135 9.
2015
越小
σ
,曲线越“瘦高”,表示总体的分
布越集中;σ 越大 ,曲线越“矮胖”,表
示总体的分布越分散,如图乙所示.
2. 正态分布 (1)正态分布的定义及表2015 示
如果对于任何实数 a,b (a<b),随机变量 X 满
足 P(a<X≤b)=ʃbaφμ,σ(x)dx,则称 X 的分布为
正态分布,记作 N(u,σ2)
解析 由正态分布的特征得 P(ξ≤0)=1-P(ξ≤4)=1-0.84=0.16.