导数恒成立问题(学生版)
恒成立能成立3种常见题型(学生版+解析版)
恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,则不等式f x >a 在区间D 上恒成立⇔f x min >a ;不等式f x ≥a 在区间D 上恒成立⇔f x min ≥a ;不等式f x <b 在区间D 上恒成立⇔f x max <b ;不等式f x ≤b 在区间D 上恒成立⇔f x max ≤b ;考点二:存在性问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,即f x ∈m ,n ,则对不等式有解问题有以下结论:不等式a <f x 在区间D 上有解⇔a <f x max ;不等式a ≤f x 在区间D 上有解⇔a ≤f x max ;不等式a >f x 在区间D 上有解⇔a >f x min ;不等式a ≥f x 在区间D 上有解⇔a ≥f x min ;考点三:双变量问题①对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 max ;②对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 min ;③若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 min ;④若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 max ;⑤对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 min ;⑥对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 max ;⑦若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 max⑧若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 min .【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式x -ln x +1>a 恒成立,则a 的取值范围是( )A.a <1B.a <2C.a >1D.a >2【例2】【2022年全国甲卷】已知函数f x =e xx−ln x+x−a.(1)若f x ≥0,求a的取值范围;【例3】已知函数f(x)=12x2-(a+1)ln x-12(a∈R,a≠0).(1)讨论函数的单调性;(2)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.【例4】已知函数f x =ln x-ax(a是正常数).(1)当a=2时,求f x 的单调区间与极值;(2)若∀x>0,f x <0,求a的取值范围;【例5】已知函数f x =xe x(1)求f x 的极值点;(2)若f x ≥ax2对任意x>0恒成立,求a的取值范围.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln x -kx ≤0恒成立,则实数k 的取值范围是( )A.0,eB.-∞,eC.0,1eD.1e ,+∞2.(2022·北京·景山学校模拟预测)已知函数f x =x ln x +ax +2.(1)当a =0时,求f x 的极值;(2)若对任意的x ∈1,e 2 ,f x ≤0恒成立,求实数a 的取值范围.3.(2022·新疆克拉玛依·三模(文))已知函数f x =x ln x ,g x =-x 2+ax -3a ∈R .(1)求函数f (x )的单调递增区间;(2)若对任意x ∈0,+∞ ,不等式f x ≥12g x 恒成立,求a 的取值范围.4.(2022·内蒙古赤峰·三模(文))已知函数f x =x ln x+1.(1)求f x 的最小值;(2)若f x ≥−x2+m+1x−2恒成立,求实数m的取值范围.5.【2020年新高考1卷(山东卷)】已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e时,求曲线y=f x 在点1,f1处的切线与两坐标轴围成的三角形的面积;(2)若不等式f x ≥1恒成立,求a的取值范围.题型二:利用导数处理存在性问题【例1】(2022·河北秦皇岛·三模)函数f x =x3-3x2+3-a,若存在x0∈-1,1,使得f x0>0,则实数a的取值范围为( )A.-∞,-1B.-∞,1C.-1,3D.-∞,3【例2】已知函数f x =ax3+bx2+6x+c,当x=-1时,f x 的极小值为-5,当x=2时,f x 有极大值.(1)求函数f x ;(2)存在x0∈1,3,使得f x0≤t2-2t成立,求实数t的取值范围.【例3】(2022·辽宁·高二阶段练习)已知a>0,若在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,则a的最小值为______.【题型专练】1.已知函数f x =x2+2a+2ln x.(1)当a=-5时,求f x 的单调区间;(2)若存在x∈2,e,使得f x -x2>2x+2a+4x成立,求实数a的取值范围.2.(2022·河北深州市中学高三阶段练习)已知函数f x =ln x-2ax+1.(1)若x=1是f x 的极值点,确定a的值;(2)若存在x>0,使得f x ≥0,求实数a的取值范围.3.已知函数f x =ln x x,设f x 在点1,0处的切线为m(1)求直线m的方程;(2)求证:除切点1,0之外,函数f x 的图像在直线m的下方;(3)若存在x∈1,+∞成立,求实数a的取值范围 ,使得不等式f x >a x-14.已知函数f x =x ln x-ax+1.(1)若f x 在点A(1,f(1))处的切线斜率为-2.①求实数a的值;②求f x 的单调区间和极值.(2)若存在x0∈(0,+∞),使得f x0<0成立,求a的取值范围.5.已知函数f(x)=ln x+ax(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间;(3)若存在x0,使得f x0>0,求a的取值范围.题型三:利用导数处理恒成立与有解问题【例1】(2022·福建省福安市第一中学高三阶段练习)设函数f x =x -1 e x -e ,g x =e x -ax -1,其中a ∈R .若对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,则a 的最大值为( )A.0B.1eC.1D.e【例2】已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.【例3】已知函数f (x )=x sin x +cos x .(1)当x ∈0,π 时,求函数f (x )的单调区间;(2)设函数g (x )=-x 2+2ax .若对任意x 1∈-π,π ,存在x 2∈[0,1],使得12πf x 1 ≤g x 2 成立,求实数a 的取值范围.【例4】(2022·黑龙江·哈尔滨三中高二期末)已知函数f x =ln x x,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2 ,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,则实数a 的取值范围是( )A.-∞,-ln22 B.-∞,-ln22 C.-∞,-1e D.-∞,e -ln22 【例5】(2023·全国·高三专题练习)已知函数f x =x 3-34x +32,0≤x ≤122x +12,12<x ≤1,g x =e x -ax a ∈R ,若存在x 1,x 2∈0,1 ,使得f x 1 =g x 2 成立,则实数a 的取值范围是( )A.-∞,1B.-∞,e -2C.-∞,e -54D.-∞,e 【题型专练】1.(2022·河南·南阳中学高三阶段练习(理))已知函数f x =x 3-3x +a ,g x =2x +1x -1.若对任意x 1∈-2,2 ,总存在x 2∈2,3 ,使得f x 1 ≤g x 2 成立,则实数a 的最大值为( )A.7B.5C.72D.32.(2022·福建宁德·高二期末)已知f x =1-x e x -1,g x =x +1 2+a ,若存在x 1,x 2∈R ,使得f x 2 ≥g x 1 成立,则实数a 的取值范围为( )A.1e ,+∞B.-∞,1eC.0,eD.-1e ,03.(2022·河南安阳·高二阶段练习(理))已知函数f (x )=ln x x,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2 ,∃x 2∈(0,1]使得f x 1 >g x 2 成立,则实数a 的取值范围是( )A.-∞,-ln22 B.-∞,-ln22 C.-∞,-1e D.-∞,e -ln22 4.已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R )(1)若曲线y =f (x )在x =1和x =3处的切线互相平行,求a 的值与函数f (x )的单调区间;(2)设g (x )=(x 2-2x )e x ,若对任意x 1∈0,2 ,均存在x 2∈0,2 ,使得f (x 1)<g (x 2),求a 的取值范围.5.已知函数f x =-ax +xln xa ∈R ,f x 为f x 的导函数.(1)求f x 的定义域和导函数;(2)当a =2时,求函数f x 的单调区间;(3)若对∀x 1∈e ,e 2 ,都有f x 1 ≥1成立,且存在x 2∈e ,e 3 ,使f x 2 +12a =0成立,求实数a 的取值范围.恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,则不等式f x >a 在区间D 上恒成立⇔f x min >a ;不等式f x ≥a 在区间D 上恒成立⇔f x min ≥a ;不等式f x <b 在区间D 上恒成立⇔f x max <b ;不等式f x ≤b 在区间D 上恒成立⇔f x max ≤b ;考点二:存在性问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,即f x ∈m ,n ,则对不等式有解问题有以下结论:不等式a <f x 在区间D 上有解⇔a <f x max ;不等式a ≤f x 在区间D 上有解⇔a ≤f x max ;不等式a >f x 在区间D 上有解⇔a >f x min ;不等式a ≥f x 在区间D 上有解⇔a ≥f x min ;考点三:双变量问题①对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 max ;②对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 min ;③若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 min ;④若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 max ;⑤对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 min ;⑥对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 max ;⑦若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 max ⑧若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 min .【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式x -ln x +1>a 恒成立,则a 的取值范围是( )A.a <1B.a <2C.a >1D.a >2【答案】B【详解】令f x =x -ln x +1,其中x >0,则a <f x min ,f x =1-1x =x -1x,当0<x <1时,f x <0,此时函数f x 单调递减,当x >1时,f x >0,此时函数f x 单调递增,所以,f x min =f 1 =2,∴a <2.故选:B .【例2】【2022年全国甲卷】已知函数f x =e xx−ln x +x −a .(1)若f x ≥0,求a 的取值范围;【答案】(1)(-∞,e +1]【解析】(1)f (x )的定义域为(0,+∞),f(x )=1x -1x2 e x -1x +1=1x 1-1x e x +1-1x =x -1x e x x +1 令f (x )=0,得x =1当x ∈(0,1),f (x )<0,f (x )单调递减,当x ∈(1,+∞),f (x )>0,f (x )单调递增f (x )≥f (1)=e +1-a ,若f (x )≥0,则e +1-a ≥0,即a ≤e +1,所以a 的取值范围为(-∞,e +1]【例3】已知函数f (x )=12x 2-(a +1)ln x -12(a ∈R ,a ≠0).(1)讨论函数的单调性;(2)若对任意的x ∈[1,+∞),都有f (x )≥0成立,求a 的取值范围.【答案】(1)答案见解析;(2)a ≤0.【解析】(1)求f 'x ,分别讨论a 不同范围下f 'x 的正负,分别求单调性;(2)由(1)所求的单调性,结合f 1 =0,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为0,+∞ ,f '(x )=x -a +1x =x 2-a +1 x 当a +1≤0,即a ≤-1时,f 'x >0恒成立,则f x 在0,+∞ 上单调递增;当a +1>0,即a >-1时,x =-a +1(舍)或x =a +1,所以f x 在0,a +1 上单调递减,在a +1,+∞ 上单调递增.所以a ≤-1时,f x 在0,+∞ 上单调递增;a >-1时,f x 在0,a +1 上单调递减,在a +1,+∞ 上单调递增.(2)由(1)可知,当a ≤-1时,f x 在1,+∞ 上单调递增,若f (x )≥0对任意的x ∈[1,+∞)恒成立,只需f (1)≥0,而f (1)=0恒成立,所以a ≤-1成立;当a >-1时,若a +1≤1,即-1<a ≤0,则f x 在1,+∞ 上单调递增,又f (1)=0,所以-1<a ≤0成立;若a >0,则f x 在1,a +1 上单调递减,在a +1,+∞ 上单调递增,又f (1)=0,所以∃x 0∈1,a +1 ,f (x 0)<f 1 =0,不满足f (x )≥0对任意的x ∈[1,+∞)恒成立.所以综上所述:a ≤0.【例4】已知函数f x =ln x -ax (a 是正常数).(1)当a =2时,求f x 的单调区间与极值;(2)若∀x >0,f x <0,求a 的取值范围;【答案】(1)f x 在0,12上单调递增,在12,+∞ 上单调递减,f x 的极大值是-ln2-1,无极小值;(2)1e,+∞ .【解析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得ln x x max <a ,设g x =ln xx,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当a =2时,f x =ln x -2x ,定义域为0,+∞ ,f x =1x -2=1-2xx,令f x >0,解得0<x <12,令f x <0,解得x >12,所以函数f x 在0,12 上单调递增,在12,+∞ 上单调递减,所以f x 的极大值是f 12=-ln2-1,无极小值.(2)因为∀x >0,f x <0,即ln x -ax <0恒成立,即ln xx max<a .设g x =ln x x ,可得g x =1-ln xx2,当0<x <e 时g x >0,当x >e 时g x <0,所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以g x max =g e =1e ,所以a >1e ,即a ∈1e ,+∞ .【例5】已知函数f x =xe x(1)求f x 的极值点;(2)若f x ≥ax 2对任意x >0恒成立,求a 的取值范围.【答案】(1)x =-1是f x 的极小值点,无极大值点;(2)a ≤e .【解析】(1)利用导数研究函数的极值点.(2)由题设知:a ≤e x x 在x >0上恒成立,构造g (x )=e xx 并应用导数研究单调性求最小值,即可求a的范围.【详解】(1)由题设,f x =e x (x +1),∴x <-1时,f x <0,f x 单调递减;x >-1时,f x >0,f x 单调递增减;∴x =-1是f x 的极小值点,无极大值点.(2)由题设,f x =xe x≥ax 2对∀x >0恒成立,即a ≤e x x在x >0上恒成立,令g (x )=e x x ,则g(x )=e x (x -1)x 2,∴0<x <1时,g (x )<0,g (x )递减;x >1时,g (x )>0,g (x )递增;∴g (x )≥g (1)=e ,故a ≤e .【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln x -kx ≤0恒成立,则实数k 的取值范围是( )A.0,e B.-∞,eC.0,1eD.1e ,+∞【答案】D 【解析】由题可得k ≥ln x x 在区间(0,+∞)上恒成立,然后求函数f x =ln xxx >0 的最大值即得.【详解】由题可得k ≥ln xx 在区间(0,+∞)上恒成立,令f x =ln x x x >0 ,则f x =1-ln xx 2x >0 ,当x ∈0,e 时,f x >0,当x ∈e ,+∞ 时,f x <0,所以f x 的单调增区间为0,e ,单调减区间为e ,+∞ ;所以f x max =f e =1e, 所以k ≥1e.故选:D .2.(2022·北京·景山学校模拟预测)已知函数f x =x ln x +ax +2.(1)当a =0时,求f x 的极值;(2)若对任意的x ∈1,e 2 ,f x ≤0恒成立,求实数a 的取值范围.【答案】(1)极小值是f 1e =-1e+2,无极大值.(2)-2e 2-2,+∞【解析】(1)由题设可得f x =ln x +1,根据f x 的符号研究f x 的单调性,进而确定极值.(2)f x =x ln x +ax +2≤0对任意的x ∈1,e 2 恒成立,转化为:-a ≥2+x ln x x =2x+ln x 对任意的x ∈1,e 2 恒成立,令g x =2x+ln x ,通过求导求g x 的单调性进而求得g x 的最大值,即可求出实数a的取值范围.(1)当a=0时,f x =x ln x+2,f x 的定义域为0,+∞,f x =ln x+1=0,则x=1 e.令f x >0,则x∈1e,+∞,令f x <0,则x∈0,1e,所以f x 在0,1e上单调递减,在1e,+∞上单调递增.当x=1e时,f x 取得极小值且为f1e =1e ln1e+2=-1e+2,无极大值.(2)f x =x ln x+ax+2≤0对任意的x∈1,e2恒成立,则-a≥2+x ln xx=2x+ln x对任意的x∈1,e2恒成立,令g x =2x+ln x,g x =-2x2+1x=-2+xx2=0,所以x=2,则g x 在1,2上单调递减,在2,e2上单调递增,所以g1 =2,g e2 =2e2+2,所以g x max=g e2 =2e2+2,则-a≥2e2+2,则a≤-2e2-2.实数a的取值范围为:-2e2-2,+∞.3.(2022·新疆克拉玛依·三模(文))已知函数f x =x ln x,g x =-x2+ax-3a∈R.(1)求函数f(x)的单调递增区间;(2)若对任意x∈0,+∞,不等式f x ≥12g x 恒成立,求a的取值范围.【答案】(1)1e,+∞,(2)-∞,4【解析】(1)求函数f(x)的单调递增区间,即解不等式f (x)>0;(2)参变分离得a≤2ln x+x+3x,即求h x =2ln x+x+3x x∈0,+∞的最小值.(1)f(x)=x ln x定义域为(0,+∞),f (x)=ln x+1f (x)>0即ln x+1>0解得x>1e,所以f(x)在1e,+∞单调递增(2)对任意x∈0,+∞,不等式f x ≥12g x 恒成立,即x ln x≥12-x2+ax-3恒成立,分离参数得a≤2ln x+x+3x.令h x =2ln x+x+3x x∈0,+∞,则h x =x+3x-1x2.当x∈0,1时,h x <0,h x 在0,1上单调递减;当x∈1,+∞时,h x >0,h x 在1,+∞上单调递增.所以h x min=h1 =4,即a≤4,故a的取值范围是-∞,4.4.(2022·内蒙古赤峰·三模(文))已知函数f x =x ln x+1.(1)求f x 的最小值;(2)若f x ≥−x2+m+1x−2恒成立,求实数m的取值范围.【答案】(1)f(x)min=-1 e2(2)-∞,3【解析】(1)求出函数的导数,利用导数求函数在定义域上的最值即可;(2)由原不等式恒成立分离参数后得m≤ln x+x+2x,构造函数h x =ln x+x+2x,利用导数求最小值即可.(1)由已知得f x =ln x+2,令f x =0,得x=1 e2.当x∈0,1 e2时,f x <0,f x 在0,1e2上单调递减;当x∈1e2,+∞时,f x ≥0,f x 在1e2,+∞上单调递增.故f(x)min=f1e2=-1e2.(2)f x ≥−x2+m+1x−2,即mx≤x ln x+x2+2,因为x>0,所以m≤ln x+x+2x在0,+∞上恒成立.令h x =ln x+x+2x,则m≤h(x)min,h x =1x+1-2x2=x+2x-1x2,令h x =0,得x=1或x=-2(舍去).当x∈0,1时,h x <0,h x 在0,1上单调递减;当x∈1,+∞时,h x >0,h x 在1,+∞上单调递增.故h(x)min=h1 =3,所以m≤3,即实数m的取值范围为-∞,3.5.【2020年新高考1卷(山东卷)】已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e时,求曲线y=f x 在点1,f1处的切线与两坐标轴围成的三角形的面积;(2)若不等式f x ≥1恒成立,求a的取值范围.【答案】(1)2e-1(2)[1,+∞)【解析】(1)利用导数的几何意义求出在点1,f1切线方程,即可得到坐标轴交点坐标,最后根据三角形面积公式得结果;(2)方法一:利用导数研究函数f x 的单调性,当a =1时,由f 1 =0得f x min =f 1 =1,符合题意;当a >1时,可证f 1af (1)<0,从而f x 存在零点x 0>0,使得f (x 0)=ae x 0-1-1x 0=0,得到f (x )min ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得f x ≥1恒成立;当0<a <1时,研究f 1 .即可得到不符合题意.综合可得a 的取值范围.【详解】(1)∵f (x )=e x -ln x +1,∴f (x )=e x -1x,∴k =f (1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e ),∴函数f x 在点(1,f (1)处的切线方程为y -e -1=(e -1)(x -1),即y =e -1 x +2,∴切线与坐标轴交点坐标分别为(0,2),-2e -1,0,∴所求三角形面积为12×2×-2e -1 =2e -1.(2)[方法一]:通性通法∵f (x )=ae x -1-ln x +ln a ,∴f (x )=ae x -1-1x,且a >0.设g (x )=f ′(x ),则g ′(x )=ae x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f (1)=0,∴f x min =f 1 =1,∴f x ≥1成立.当a >1时,1a <1 ,∴e 1a -1<1,∴f 1af (1)=a e 1a -1-1 (a -1)<0,∴存在唯一x 0>0,使得f (x 0)=ae x 0-1-1x 0=0,且当x ∈(0,x 0)时f (x )<0,当x ∈(x 0,+∞)时f (x )>0,∴ae x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=ae x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0⋅x 0=2ln a +1>1,∴f x >1,∴f x ≥1恒成立;当0<a <1时, f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不是恒成立.综上所述,实数a 的取值范围是[1,+∞).[方法二]【最优解】:同构由f (x )≥1得ae x -1-ln x +ln a ≥1,即e ln a +x -1+ln a +x -1≥ln x +x ,而ln x +x =e ln x +ln x ,所以e ln a +x -1+ln a +x -1≥e ln x +ln x .令h (m )=e m +m ,则h (m )=e m +1>0,所以h (m )在R 上单调递增.由e ln a +x -1+ln a +x -1≥e ln x +ln x ,可知h (ln a +x -1)≥h (ln x ),所以ln a +x -1≥ln x ,所以ln a ≥(ln x -x +1)max .令F(x)=ln x-x+1,则F (x)=1x-1=1-xx.所以当x∈(0,1)时,F (x)>0,F(x)单调递增;当x∈(1,+∞)时,F (x)<0,F(x)单调递减.所以[F(x)]max=F(1)=0,则ln a≥0,即a≥1.所以a的取值范围为a≥1.[方法三]:换元同构由题意知a>0,x>0,令ae x-1=t,所以ln a+x-1=ln t,所以ln a=ln t-x+1.于是f(x)=ae x-1-ln x+ln a=t-ln x+ln t-x+1.由于f(x)≥1,t-ln x+ln t-x+1≥1⇔t+ln t≥x+ln x,而y=x+ln x在x∈(0,+∞)时为增函数,故t≥x,即ae x-1≥x,分离参数后有a≥xe x-1.令g(x)=xe x-1,所以g(x)=e x-1-xe x-1e2x-2=e x-1(1-x)e2x-2.当0<x<1时,g (x)>0,g(x)单调递增;当x>1时,g (x)<0,g(x)单调递减.所以当x=1时,g(x)=xe x-1取得最大值为g(1)=1.所以a≥1.[方法四]:因为定义域为(0,+∞),且f(x)≥1,所以f(1)≥1,即a+ln a≥1.令S(a)=a+ln a,则S (a)=1+1a>0,所以S(a)在区间(0,+∞)内单调递增.因为S(1)=1,所以a≥1时,有S(a)≥S(1),即a+ln a≥1.下面证明当a≥1时,f(x)≥1恒成立.令T(a)=ae x-1-ln x+ln a,只需证当a≥1时,T(a)≥1恒成立.因为T (a)=e x-1+1a>0,所以T(a)在区间[1,+∞)内单调递增,则[T(a)]min=T(1)=e x-1-ln x.因此要证明a≥1时,T(a)≥1恒成立,只需证明[T(a)]min=e x-1-ln x≥1即可.由e x≥x+1,ln x≤x-1,得e x-1≥x,-ln x≥1-x.上面两个不等式两边相加可得e x-1-ln x≥1,故a≥1时,f(x)≥1恒成立.当0<a<1时,因为f(1)=a+ln a<1,显然不满足f(x)≥1恒成立.所以a的取值范围为a≥1.【整体点评】(2)方法一:利用导数判断函数f x 的单调性,求出其最小值,由f min≥0即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法二:利用同构思想将原不等式化成e ln a+x-1+ln a+x-1≥e ln x+ln x,再根据函数h(m)=e m+m 的单调性以及分离参数法即可求出,是本题的最优解;方法三:通过先换元,令ae x-1=t,再同构,可将原不等式化成t+ln t≥x+ln x,再根据函数y=x+ln x的单调性以及分离参数法求出;方法四:由特殊到一般,利用f(1)≥1可得a的取值范围,再进行充分性证明即可.题型二:利用导数处理存在性问题【例1】(2022·河北秦皇岛·三模)函数f x =x3-3x2+3-a,若存在x0∈-1,1,使得f x0>0,则实数a的取值范围为( )A.-∞,-1B.-∞,1C.-1,3D.-∞,3【答案】D【分析】根据题意,将问题转化为求解函数f x 的最大值问题,先通过导数方法求出函数f x 的最大值,进而求出答案.【详解】因为f x =x3-3x2+3-a,所以f x =3x2-6x=3x x-2,x∈-1,1.由题意,只需f (x)max>0.当x∈[-1,0)时,f x >0,当x∈(0,1]时,f x <0,所以f x 在[-1,0)上单调递增,在(0,1]上单调递减,所以f(x)max=f0 =3-a>0,故实数a的取值范围为-∞,3.故选:D.【例2】已知函数f x =ax3+bx2+6x+c,当x=-1时,f x 的极小值为-5,当x=2时,f x 有极大值.(1)求函数f x ;(2)存在x0∈1,3,使得f x0≤t2-2t成立,求实数t的取值范围.【答案】(1)f x =-x3+32x2+6x-32;(2)(-∞,-1]∪[3,+∞).【解析】(1)求导后,根据f -1=f 2 =0和f-1=-5,解得a,b,c即可得解;(2)转化为f x min≤t2-2t,再利用导数求出函数f(x)在1,3上的最小值,然后解不等式t2-2t≥3可得结果.(1)∵f x =3ax2+2bx+6,由f -1=f 2 =0,得3a-2b+6=0且12a+4b+6=0,解得a=-1,b=3 2,又f-1=-5,∴c=-3 2,经检验a=-1,b=32时,f x =-x3+32x2+6x-32满足题意,∴f x =-x3+32x2+6x-32;(2)存在x0∈1,3,使得f x0≤t2-2t,等价于f x min≤t2-2t,∵f x =-3x2+3x+6=-3x-2x+1,当x∈[1,2)时,f (x)>0,当x∈(2,3]时,f (x)<0,∴f x 在(2,3]上递减,在[1,2)上递增,又f1 =5,f3 =3,∴f x 在1,3上的最小值为f3 =3,∴t2-2t≥3,解得t≤-1或3≤t,所以t的取值范围是(-∞,-1]∪[3,+∞).【例3】(2022·辽宁·高二阶段练习)已知a>0,若在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,则a的最小值为______.【答案】e【分析】将原式化为e x-ln e x≤x a-ln x a,构造函数g(t)=t-ln t(t>1),求导得函数g(t)在(1,+∞)上单调递增,即得e x≤x a,两边取对数分离参数a,构造函数h(x)=xln x(x>1),利用导数求解函数h(x)的最小值即可.【详解】解:不等式e x-x≤x a-a ln x成立,即e x-ln e x≤x a-ln x a成立,因为x∈(1,+∞),a>0,所以e x>1,x a>1,令g(t)=t-ln t(t>1),则e x-ln e x≤x a-ln x a⇒g(e x)≤g(x a),因为g (t)=1-1t>0,所以g(t)在(1,+∞)上单调递增,所以e x≤x a,即x≤a ln x(x>1),因为在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,所以a≥xln xmin,令h(x)=xln x(x>1),则h (x)=ln x-1ln2x,故当x=e时,h(x)取得最小值h(e)=eln e=e.所以a≥e,即a的最小值为e.故答案为:e.【题型专练】1.已知函数f x =x2+2a+2ln x.(1)当a=-5时,求f x 的单调区间;(2)若存在x∈2,e,使得f x -x2>2x+2a+4x成立,求实数a的取值范围.【答案】(1)单调递减区间为0,2,单调递增区间为2,+∞;(2)e2-e+2e-1,+∞ .【解析】(1)当a=-5时,f x =x2-8ln x,得出f x 的定义域并对f x 进行求导,利用导数研究函数的单调性,即可得出f x 的单调区间;(2)将题意等价于2x +2a +4x -2a +2 ln x <0在2,e 内有解,设h x =2x +2a +4x-2a +2 ln x ,即在2,e 上,函数h x min <0,对h x 进行求导,令hx =0,得出x =a +2,分类讨论a +2与区间2,e 的关系,并利用导数研究函数h x 的单调和最小值,结合h x min <0,从而得出实数a 的取值范围.(1)解:当a =-5时,f x =x 2-8ln x ,可知f x 的定义域为0,+∞ ,则fx =2x -8x =2x 2-8x,x >0,可知当x ∈0,2 时,f x <0;当x ∈2,+∞ 时,f x >0;所以f x 的单调递减区间为0,2 ,单调递增区间为2,+∞ .(2)解:由题可知,存在x ∈2,e ,使得f x -x 2>2x +2a +4x成立,等价于2x +2a +4x-2a +2 ln x <0在2,e 内有解,可设h x =2x +2a +4x -2a +2 ln x ,即在2,e 上,函数h x min <0,∴hx =2-2a +4x 2-2a +2x=2x 2-2a +2 x -2a +4 x 2=2x +1 x -a +2 x 2,令h x =0,即x +1 x -a +2 =0,解得:x =a +2或x =-1(舍去),当a +2≥e ,即a ≥e -2时,h x <0,h x 在2,e 上单调递减,∴h x min =h e =2e +2a +4e -2a -2<0,得a >e 2-e +2e -1,又∵e 2-e +2e -1>e -2,所以a >e 2-e +2e -1;当a +2≤2时,即a ≤0时,h x >0,h x 在2,e 上单调递增,∴h x min =h 2 =6+a -2a +2 ln2<0,得a >6-ln4ln4-1>0,不合题意;当2<a +2<e ,即0<a <e -2时,则h x 在2,a +2 上单调递减,在a +2,e 上单调递增,∴h x min =h a +2 =2a +6-2a +2 ln a +2 ,∵ln2<ln a +2 <ln e =1,∴2a +2 ln2<2a +2 ln 2a +2 <2a +2,∴h a +2 =2a +6-2a +2 ln a +2 >2a +6-2a -2=4,即h x min >4,不符合题意;综上得,实数a 的取值范围为e 2-e +2e -1,+∞ .【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题:(1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.2.(2022·河北深州市中学高三阶段练习)已知函数f x =ln x-2ax+1.(1)若x=1是f x 的极值点,确定a的值;(2)若存在x>0,使得f x ≥0,求实数a的取值范围.【答案】(1)a=12,(2)-∞,12【分析】(1)由已知可得出f 1 =0,求出a的值,然后利用导数分析函数f x 的单调性,结合极值点的定义检验即可;(2)由参变量分离法可得出2a≤ln x+1x,利用导数求出函数g x =ln x+1x的最大值,即可得出实数a的取值范围.(1)解:因为f x =ln x-2ax+1,该函数的定义域为0,+∞,则f x =1x-2a,由已知可得f 1 =1-2a=0,可得a=12,此时f x =1x-1=1-xx,列表如下:x0,111,+∞f x +0-f x 增极大值减所以,函数f x 在x=1处取得极大值,合乎题意,故a=1 2.(2)解:存在x>0,使得f x =ln x-2ax+1≥0可得2a≤ln x+1x,构造函数g x =ln x+1x,其中x>0,则g x =-ln xx2,当0<x<1时,g x >0,此时函数g x 单调递增,当x>1时,g x <0,此时函数g x 单调递减,则g x max=g1 =1,所以,2a≤1,解得a≤12,因此,实数a的取值范围是-∞,12.3.已知函数f x =ln x x,设f x 在点1,0处的切线为m(1)求直线m的方程;(2)求证:除切点1,0之外,函数f x 的图像在直线m的下方;(3)若存在x∈1,+∞,使得不等式f x >a x-1成立,求实数a的取值范围【答案】(1)y=x-1;(2)见详解;(3)(-∞,1).【解析】(1)求导得f (x)=1-ln xx2,由导数的几何意义k切=f′(1),进而可得答案.(2)设函数h(x)=f(x)-(x-1)=ln x x-x+1,求导得h′(x),分析h(x)的单调性,最值,进而可得f (x)-(x-1)≤0,则除切点(1,0)之外,函数f(x)的图象在直线的下方.(3)若存在x∈(1,+∞),使得不等式a<ln xx(x-1)成立,令g(x)=ln xx(x-1),x>1,只需a<g(x)max.【详解】(1)f (x)=1x⋅x-ln xx2=1-ln xx2,由导数的几何意义k切=f′(1)=1,所以直线m的方程为y=x-1.(2)证明:设函数h(x)=f(x)-(x-1)=ln x x-x+1,h (x)=1-ln xx2-1=1-ln x-x2x2 ,函数定义域为(0,+∞),令p(x)=1-ln x-x2,x>0,p′(x)=-1x-2x<0,所以p(x)在(0,+∞)上单调递减,又p(1)=0,所以在(0,1)上,p(x)>0,h′(x)>0,h(x)单调递增,在(1,+∞)上,p(x)<0,h′(x)<0,h(x)单调递减,所以h(x)max=h(1)=0,所以h(x)≤h(1)=0,所以f(x)-(x-1)≤0,若除切点(1,0)之外,f(x)-(x-1)<0,所以除切点(1,0)之外,函数f(x)的图象在直线的下方.(3)若存在x∈(1,+∞),使得不等式f(x)>a(x-1)成立,则若存在x∈(1,+∞),使得不等式f(x)x-1>a成立,即若存在x∈(1,+∞),使得不等式a<ln xx(x-1)成立,令g(x)=ln xx(x-1),x>1,g′(x)=1x⋅x(x-1)-(2x-1)ln xx2(x-1)2=x-1-(2x-1)ln xx2(x-1)2 ,令s(x)=x-1-(2x-1)ln x,x>1s′(x)=1-2ln x-(2x-1)•1x=x-2x ln x-2x+1x=-x-2x ln x+1x,令q(x)=-x-2x ln x+1,x>1q′(x)=-1-2ln x-2=-3-2ln x<0,所以在(1,+∞)上,q(x)单调递减,又q(1)=0,所以在(1,+∞)上,q(x)<0,s′(x)<0,s(x)单调递减,所以s(x)≤s(1)=0,即g′(x)≤0,g(x)单调递减,又limx→1ln xx(x-1)=limx→11x2x-1=1,所以a<1,所以a的取值范围为(-∞,1).4.已知函数f x =x ln x-ax+1.(1)若f x 在点A(1,f(1))处的切线斜率为-2.①求实数a的值;②求f x 的单调区间和极值.(2)若存在x0∈(0,+∞),使得f x0<0成立,求a的取值范围.【答案】(1)①a=3;②减区间为(0,e2),增区间为(e2,+∞),极小值为1-e2,无极大值;(2)(1,+∞).【解析】(1)求得函数的导数f x =ln x+1-a,①根据题意得到f x =-2,即可求得a的值;②由①知f x =ln x-2,x>0,结合导数的符号,以及极值的概念与计算,即可求解;(2)设g x =ln x+1x,根据存在x0∈(0,+∞),使得f x0<0成立,得到a>g x min成立,结合导数求得函数g x 的单调性与最小值,即可求解.【详解】(1)由题意,函数f x =x ln x-ax+1的定义域为(0,+∞),且f x =ln x+1-a,①因为f x 在点A(1,f(1))处的切线斜率为-2,可得f x =1-a=-2,解得a=3.②由①得f x =ln x-2,x>0,令f x >0,即ln x-2>0,解得x>e2;令f x <0,即ln x-2<0,解得0<x<e2,所以函数f x 在(0,e2)上单调递减,在(e2,+∞)上单调递增,当x=e2时,函数f x 取得极小值,极小值为f e2=1-e2,无极大值,综上可得,函数f x 的减区间为(0,e2),增区间为(e2,+∞),极小值为1-e2,无极大值.(2)因为f x =x ln x-ax+1,由f x0<0,即x0ln x0-ax0+1<0,即a>x0ln x0+1x0=ln x0+1x0,设g x =ln x+1x,x>0根据题意知存在x0∈(0,+∞),使得f x0<0成立,即a>g x min成立,由g x =ln x+1x,x>0,可得g x =1x-1x2=x-1x2,当0<x<1时,g x <0,g x 单调递减;当x>1时,g x >0,g x 单调递增,所以当x=1时,函数g x 取得最小值,最小值为g1 =1,所以a>1,即实数a的取值范围是(1,+∞).5.已知函数f(x)=ln x+ax(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间;(3)若存在x0,使得f x0>0,求a的取值范围.【答案】(1)2x-y-1=0;(2)a≥0时,f x 在0,+∞单增;a<0,f x 在0,-1 a单增,在-1a,+∞单减;(3)a>-1e.【解析】(1)求出函数导数,将切线横坐标代入得到斜率,再求出切点纵坐标,最后写出切线方程;(2)求导后,通分,分a≥0,a<0两种情况讨论得到单调区间;(3)当a≥0时,代特值验证即可,当a<0时,函数最大值大于0,解出即可.【详解】由题意,f(1)=1,f x =1x+1,所以f 1 =2,所以切线方程为:y-1=2x-1⇒2x-y-1=0.(2)x>0,f (x)=1x+a=ax+1x,若a≥0,则f (x)>0,f x 在0,+∞单增;若a<0,则x∈0,-1 a时,f x >0,f x 单增;x∈-1a,+∞时,f x <0,f x 单减.(3)由(2),若a≥0,则f(2)=ln2+2a>0,满足题意;若a<0,f x max=f-1 a=ln-1a-1>0⇒a>-1e,则-1e<a<0,综上:a>-1 e.题型三:利用导数处理恒成立与有解问题【例1】(2022·福建省福安市第一中学高三阶段练习)设函数f x =x -1 e x -e ,g x =e x -ax -1,其中a ∈R .若对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,则a 的最大值为( )A.0 B.1eC.1D.e【答案】C【分析】由题意易知f x ≥0恒成立,则可等价为对∀x 2∈0,+∞ ,g x 2 ≥0恒成立,利用参变分离,可变形为a ≤e x -1x ,(x >0)恒成立,易证e x -1x >1,(x >0),则可得a ≤1,即可选出答案.【详解】对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,等价于f x 1 min ≤g x 2 min ,当x <1时,x -1<0,e x -e <0,所以f x >0,当x ≥1时,x -1≥0,e x -e ≥0,所以f x ≥0,所以f x ≥0恒成立,当且仅当x =1时,f (x )min =0,所以对∀x 2∈0,+∞ ,g x 2 ≥0恒成立,即e x -ax -1≥0,当x =0,e x -ax -1=0≥0成立,当x >0时,e x-ax -1≥0⇒a ≤e x -1x恒成立.记h (x )=e x -x -1,x >0,因为h (x )=e x -1>0恒成立,所以h (x )在(0,+∞)上单调递增,且h (0)=0,所以h (x )=e x-x -1>0恒成立,即e x-1>x ⇒e x -1x>1,(x >0)所以a ≤1.所以a 的最大值为1.故选:C .【点睛】本题考查导数在不等式的恒成立与有解问题的应用,属于难题,此类问题可按如下规则转化:一般地,已知函数y =f (x ),x ∈a ,b ,y =g (x ),x ∈c ,d(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)max <g (x 2)min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)max <g (x 2)max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)min <g (x 2)max ;(4)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)min <g (x 2)min ;(5)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)=g (x 2),则f (x )的值域是g (x )值域的子集.【例2】已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.【答案】(1)最大值为ln2-1,最小值为-12;(2)-1e 6,+∞ .【解析】(1)利用导数研究f (x )的区间单调性,进而确定端点值和极值,比较它们的大小,即可得最值;(2)将问题转化为x 1∈[-1,2]、x 2∈(0,+∞)上g (x 1)max <f (x 2)max ,利用二次函数性质及导数求函数最值,即可得结果.(1)由题设f (x )=ln x -x 2,则f (x )=2-x2x,所以在[1,2)上f (x )>0,f (x )递增,在(2,e ]上f (x )<0,f (x )递减,则f (1)=-12<f (e )=1-e2,极大值f (2)=ln2-1,综上,f (x )最大值为ln2-1,最小值为-12.(2)由g (x )=x 2-2x +2=(x -1)2+1在x ∈[-1,2]上g (x )max =g (-1)=5,根据题意,只需g (x )max <f (x )max 即可,由f (x )=a +1x且x ∈(0,+∞),当a ≥0时,f (x )>0,此时f (x )递增且值域为R ,所以满足题设;当a <0时,0,-1a 上f (x )>0,f (x )递增;-1a ,+∞ 上f (x )<0,f (x )递减;所以f (x )max =f -1a =-1-ln (-a ),此时-1-ln (-a )>5,可得a >-1e 6,综上,a 的取值范围-1e 6,+∞ .【点睛】关键点点睛:第二问,将问题转化为x 1∈[-1,2]、x 2∈(0,+∞)上g (x 1)max <f (x 2)max 求参数范围.【例3】已知函数f (x )=x sin x +cos x .(1)当x ∈0,π 时,求函数f (x )的单调区间;(2)设函数g (x )=-x 2+2ax .若对任意x 1∈-π,π ,存在x 2∈[0,1],使得12πf x 1 ≤g x 2 成立,求实数a 的取值范围.【答案】(1)当x ∈0,π 时,函数f (x )的单调递增区间为0,π2 ,函数f (x )的单调递减区间为π2,π ;(2)12,+∞.【解析】(1)首先对函数求导,根据x 的取值情况判断f x 的正负情况,进而得到f x 的增减情况;(2)对任意x 1∈-π,π ,存在x 2∈[0,1],使得h (x 1)≤g (x 2)成立,等价于h (x )max ≤g (x )max ,然后对a 进行讨论,分别求函数的最值,进而得到结论.(1)因为f (x )=x sin x +cos x ,所以f (x )=sin x +x cos x -sin x =x cos x .当x ∈0,π 时,f (x )与f (x )的变化情况如表所示:x 0,π2 π2π2,π f (x )+-f (x )单调递增π2单调递减所以当x ∈0,π 时,函数f (x )的单调递增区间为0,π2,函数f (x )的单调递减区间为π2,π.(2)当x ∈-π,π 时,f (-x )=f (x ),所以函数f (x )为偶函数.所以当x ∈-π,π 时,函数f (x )的单调递增区间为-π,-π2 ,0,π2,函数f (x )的单调递减区间为-π2,0 ,π2,π ,所以函数f (x )的最大值为f -π2 =f π2 =π2.设h x =12πf x ,则当x ∈-π,π 时,h x max =12π⋅π2=14.对任意x 1∈-π,π ,存在x 2∈[0,1],使得h (x 1)≤g (x 2)成立,等价于h (x )max ≤g (x )max .当a ≤0时,函数g (x )在区间[0,1]上的最大值为g (0)=0,不合题意.当0<a <1时,函数g (x )在区间[0,1]上的最大值为g (a )=a 2,则a 2≥14,解得a ≥12或a ≤-12,所以12≤a <1.当a ≥1时,函数g (x )在区间[0,1]上的最大值为g (1)=2a -1,则2a -1≥14,解得a ≥58,所以a ≥1.综上所述,a 的取值范围是12,+∞.【例4】(2022·黑龙江·哈尔滨三中高二期末)已知函数f x =ln xx ,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,则实数a 的取值范围是( )A.-∞,-ln22B.-∞,-ln22C.-∞,-1eD.-∞,e -ln22【答案】A【分析】将问题转化为∃x ∈0,1 使得f (x )min >g (x )成立,通过求得导数和单调性,可得最值,再根据不等式成立,结合参数分离可得a 的范围.【详解】∀x 1∈1,e 2 ,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,等价为∃x ∈0,1 使得f (x )min >g (x )成立,由f x =ln x x 得f x =1-ln xx2,当x ∈0,e 时,f x >0,此时f x 单调递增,当x ∈e ,+∞ 时,f x <0,此时f x 单调递减,f 1 =0,f e 2 =2e 2,故f x min =f 1 =0ln (x +1)+2ax 2<0在x ∈0,1 成立,当0<x <1时,-2a >ln (x +1)x 2min ,设h (x )=ln (x +1)x 2,0<x <1 ,则h (x )=1-1x +1-2ln (x +1)x 3,由m x =1-1x +1-2ln (x +1),得m x =1(x +1)2-2x +1=-1-2x(x +1)2<0,所以m x =1-1x +1-2ln (x +1)在0,1 递减,所以1-1x +1-2ln (x +1)<m 0 =0,则h (x )在0,1 递减,所以h (x )>h 1 =ln2,则-2a >ln2,所以a <-ln22.故选:A【例5】(2023·全国·高三专题练习)已知函数f x =x 3-34x +32,0≤x ≤122x +12,12<x ≤1,g x =e x -ax a ∈R ,若存在x 1,x 2∈0,1 ,使得f x 1 =g x 2 成立,则实数a 的取值范围是( )A.-∞,1 B.-∞,e -2C.-∞,e -54D.-∞,e【答案】C【分析】根据题意可得f x 的值域与 g x =e x -ax 的值域有交集即可,先求导分析f x 的值域,再求导分情况讨论g x =e x -ax 的单调性与值域,结合解集区间的端点关系列式求解即可【详解】①当0≤x ≤12时,f x =x 3-34x +32,则f x =3x 2-34=3x 2-14 ≤0在0,12上恒成立,。
导数中恒成立问题的几种解法
j一
: —— 一
分开, 化 为 求 g( 转 )=二 _ 在 区 间 _ =
由厂( )< , 0 得 < < ’. . .
为 ( ,2 . 1 )
3
) 的递 减 区 问
[ 一 】的 值 可 一 上 最 即 . ,
解法 二 : 数形 结合
・ .
解法. 问题 : 已知 函数
. ‘ .
. . .
. 2 ’ 一a≥ . .
.
( ), 一 ≤ 0
)= 。+a + +1 a∈R, x ,
・ .
‘
若 数 (在 间 一 ,了内 减 数求口 函 , ) 区 【了 一 ]是 函 , 2 1
的取值 范 围. 解 法一 : 分离 参变 量
画厂 ( 的 草 图 ( 右 ) 如 图 ) 由数形 结合得 : ,
・
【了 一 ]成 , 的僦 匦(转 7页 一 ,3 立 】 2 都 求 汉 下 第4 )
7 ・ 2
《 数学之友》
21 0 0年第 8期
分析 : 本题 只有 注 意到 已知条 件 与 根 的判 别式
2 2 利 用判 别式 , 断三 角形 的形状 . 判
应 用
23 利 用判 别式 , 明几何 不等 式 . 证
例 8 如 图 , T切 o0 于 P
,
直线 P Ⅳ交 oD于 点 , Ⅳ,
P
2 1 结合 三 角形 三边 关 系 , 明一元二 次方程根 的 . 证
情 况
求证 : +P 肼 Ⅳ> P . 2T
证 明 :由 切 割 线 定 理 得 P ・ N =P , 是 P P 是 方 程 一( M + M P 于 , Ⅳ P P ) P = Ⅳ + 0的两 实 根 , 为 删 ≠P 即方 程 有 因 N,
利用导数研究不等式恒成立(能成立)问题
利用导数研究不等式恒成立(能成立)问题1.设函数f (x )=(1+x -x 2)e x (e =2.718 28…是自然对数的底数).(1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1+2x 2恒成立,求实数a 的取值范围.解:(1)f ′(x )=(2-x -x 2)e x =-(x +2)(x -1)e x .当x <-2或x >1时,f ′(x )<0;当-2<x <1时,f ′(x )>0.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增.(2)设F (x )=f (x )-(ax +1+2x 2),F (0)=0,F ′(x )=(2-x -x 2)e x -4x -a ,F ′(0)=2-a ,当a ≥2时,F ′(x )=(2-x -x 2)e x -4x -a ≤-(x +2)·(x -1)e x -4x -2≤-(x +2)(x -1)e x -x -2=-(x +2)·[(x -1)e x +1],设h (x )=(x -1)e x +1,h ′(x )=x e x ≥0,所以h (x )在[0,+∞)上单调递增,h (x )=(x -1)e x +1≥h (0)=0,即F ′(x )≤0在[0,+∞)上恒成立,F (x )在[0,+∞)上单调递减,F (x )≤F (0)=0,所以f (x )≤ax +1+2x 2在[0,+∞)上恒成立.当a <2时,F ′(0)=2-a >0,而函数F ′(x )的图象在(0,+∞)上连续且x →+∞,F ′(x )逐渐趋近负无穷,必存在正实数x 0使得F ′(x 0)=0且在(0,x 0)上F ′(x )>0,所以F (x )在(0,x 0)上单调递增,此时F (x )>F (0)=0,f (x )>ax +1+2x 2有解,不满足题意. 综上,a 的取值范围是[2,+∞).2.设函数f (x )=2ln x -mx 2+1.(1)讨论函数f (x )的单调性;(2)当f (x )有极值时,若存在x 0,使得f (x 0)>m -1成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2mx =-2(mx 2-1)x, 当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;当m >0时,令f ′(x )>0,得0<x <m m , 令f ′(x )<0,得x >m m , ∴f (x )在⎝⎛⎭⎫0,m m 上单调递增,在⎝⎛⎭⎫m m ,+∞上单调递减. (2)由(1)知,当f (x )有极值时,m >0,且f (x )在⎝⎛⎭⎫0,m m 上单调递增,在⎝⎛⎭⎫m m ,+∞上单调递减.∴f (x )max =f ⎝⎛⎭⎫m m =2ln m m -m ·1m +1=-ln m , 若存在x 0,使得f (x 0)>m -1成立,则f (x )max >m -1.即-ln m >m -1,ln m +m -1<0成立.令g (x )=x +ln x -1(x >0),∵g ′(x )=1+1x>0,∴g (x )在(0,+∞)上单调递增, 且g (1)=0,∴0<m <1.∴实数m 的取值范围是(0,1).3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1.(1)求函数y =f (x )的图象在x =1处的切线方程;(2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围.解:(1)∵f ′(x )=1x,∴f ′(1)=1. 又∵f (1)=0,∴所求切线的方程为y -f (1)=f ′(1)(x -1),即为x -y -1=0.(2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0.①当a ≥1时,f (x )<g (x )≤ag (x );②当a ≤0时,f (x )>0,ag (x )≤0,不满足不等式f (x )≤ag (x );③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1x-a (x >1),令φ′(x )=0,得x =1a, 当x 变化时,φ′(x ),φ(x )的变化情况如下表:∴φ(x )max =φ⎝⎛⎭⎫1a >φ(1)=0,不满足不等式.综上所述,实数a 的取值范围为[1,+∞).4.已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1).(1)求函数f (x )的极小值;(2)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 是自然对数的底数),求实数a 的取值范围.解:(1)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a .∵当a >1时,ln a >0,函数y =(a x -1)ln a 在R 上是增函数,当0<a <1时,ln a <0,函数y =(a x -1)ln a 在R 上也是增函数,∴当a >1或0<a <1时,f ′(x )在R 上是增函数,又∵f ′(0)=0,∴f ′(x )>0的解集为(0,+∞),f ′(x )<0的解集为(-∞,0),故函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0),∴函数f (x )在x =0处取得极小值1.(2)∵存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1,∴只需f (x )max -f (x )min ≥e -1即可.由(1)可知,当x ∈[-1,1]时,f (x )在[-1,0]上是减函数,在(0,1]上是增函数, ∴当x ∈[-1,1]时,f (x )min =f (0)=1,f (x )max 为f (-1)和f (1)中的较大者.f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a-2ln a , 令g (a )=a -1a-2ln a (a >0), ∵g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0, ∴g (a )=a -1a-2ln a 在(0,+∞)上是增函数. 而g (1)=0,故当a >1时,g (a )>0,即f (1)>f (-1);当0<a <1时,g (a )<0,即f (1)<f (-1).∴当a >1时,f (1)-f (0)≥e -1,即a -ln a ≥e -1.由函数y =a -ln a 在(1,+∞)上是增函数,解得a ≥e ;当0<a <1时,f (-1)-f (0)≥e -1,即1a+ln a ≥e -1, 由函数y =1a +ln a 在(0,1)上是减函数,解得0<a ≤1e. 综上可知,所求实数a 的取值范围为⎝⎛⎦⎤0,1e ∪[e ,+∞).。
导数恒成立问题求参数范围
导数恒成立问题求参数范围好嘞,今天咱们聊聊“导数恒成立问题求参数范围”这个话题,别看这个名字听上去高大上,其实说白了就是要搞清楚,什么情况下一个函数的导数总是成立。
先来个简单的背景介绍,导数嘛,就是数学里用来描述一个函数变化速度的工具,像车速表一样。
你要是开车,看看速度表,啊,今天我开得挺快,这就是导数在起作用。
好了,咱们举个简单的例子,想象你有个函数,它的样子就像是弯弯曲曲的山路。
你走这条路的时候,有时候上下起伏,有时候平平的。
如果这条路一直都是上坡或者下坡,那导数就恒成立了。
反过来,如果你遇到的路况不一样,比如突然出现个大坑,那导数就不再恒成立了,懂了吗?再来点具体的,假设有个函数,像是f(x) = ax² + bx + c。
这个函数的导数就是f'(x) = 2ax + b。
如果我说这个导数恒成立,那么就意味着不管你给我什么x,这个导数都必须有意义,也就是说,不会变成无穷大,或者不连续。
这里的参数a、b、c就成了关键角色,像是我们生活中的小伙伴,得看他们的表现。
现在,你可能会问,怎么才能搞清楚这参数的范围呢?我们得先了解什么是“恒成立”。
就像你每天吃饭,不管怎样都得吃,不可能今天想吃米饭,明天又想吃饺子,哈哈,没门儿!所以对于我们的函数,如果它的导数在某个范围内都是稳定的,那我们就得找出这个范围。
这些参数就像是调味料,放多了味道会太重,放少了又不够。
这时候我们可以考虑导数的零点,特别是2ax + b = 0的时候,咱们可以解出x的值。
想象一下,如果有个b恰好是0,那这个函数就像是一个平稳的湖面,没有波澜,真是太好啦!但是,若是a也为0,那这个函数直接就成了常数函数,导数自然也成了0。
这样一来,大家都快乐,哈哈。
不过,若是a大于0或者小于0,那我们就得小心了。
因为这时候函数的形状会随着x的变化而变化。
我们不想一会儿上天,一会儿入地,对吧?所以参数a就像是把握方向的舵,得仔细考虑。
考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版
考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。
高考数学专题:导数恒成立问题(含答案)
1、设函数f(x)=13x3-a2x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间;(3)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.2、已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<c e x.3、设函数f(x)=a e x ln x+b e x-1x,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.4、已知函数f(x)=ax2-(a+2)x+ln x,其中a∈R.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;(3)若∀x1,x2∈(0,+∞),且x1<x2,f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.5、若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是( ) A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞)答案: B 2x ln x≥-x2+ax-3,则a≤2ln x+x+3x.设h(x)=2ln x+x+3x(x>0),则h′(x)=(x+3)(x-1)x2.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4.所以a≤h(x)min=4.故a的取值范围是(-∞,4].6、已知函数f(x)=12x2-a ln x(a∈R).(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.7、已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)内总不是单调函数,求m 的取值范围.8、已知a ∈R ,函数f (x )=4x 3-2ax +a .(1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0.9、已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.答案:1、解:(1)f ′(x )=x 2-ax +b , 由题意得⎩⎨⎧f (0)=1,f ′(0)=0,即⎩⎨⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时, a <⎝ ⎛⎭⎪⎫x +2x max =-22即可,所以满足要求的a 的取值范围是(-∞,-22).2、【解析】 (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x , 由(1)得g ′(x )=f (x )≥f (ln 2)>0,故g (x )在R 上单调递增.又g (0)=1>0, 因此,当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:方法一:①若c ≥1,则e x ≤c e x . 又由(2)知,当x >0时,x 2<e x . 所以当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x .所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增. 取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增, 又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c ,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:对任意给定的正数c ,取x 0=4c, 由(2)知,当x >0时,e x >x 2, 所以e x=e x 2·e x 2>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22,当x >x 0时,e x>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22>4c ⎝ ⎛⎭⎪⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)内单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x.取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .3、解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x ·e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e. 故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e , 即h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0,故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ), 即f (x )>1.4、解:(1)当a =1时,f (x )=x 2-3x +ln x (x >0),f ′(x )=2x -3+1x =2x 2-3x +1x,则f (1)=-2,f (1)=0.所以切线方程是y =-2.(2)函数f (x )=ax 2-(a +2)x +ln x 的定义域是(0,+∞).当a >0时,f ′(x )=2ax -(a +2)+1x =2ax 2-(a +2)x +1x =(2x -1)(ax -1)x(x >0).令f ′(x )=0,得x =12或x =1a .①当0<1a ≤1,即a ≥1时,f (x )在[1,e]上单调递增,所以f (x )在[1,e]上的最小值是f (1)=-2;②当1<1a <e ,即1e <a <1时,f (x )在⎣⎢⎡⎦⎥⎤1,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,e 上单调递增,所以f (x )在[1,e]上的最小值是f ⎝ ⎛⎭⎪⎫1a <f (1)=-2,不合题意,故1e <a <1舍去;③当1a ≥e ,即0<a ≤1e 时,f (x )在[1,e]上单调递减,所以f (x )在[1,e]上的最小值是f (e)<f (1)=-2,不合题意,故0<a ≤1e 舍去.综上所述,a 的取值范围为[1,+∞).(3)设g (x )=f (x )+2x ,则g (x )=f (x )+2x =ax 2-ax +ln x ,只要g (x )在(0,+∞)上单调递增,即g ′(x )≥0在(0,+∞)上恒成立即可.而g ′(x )=2ax -a +1x =2ax 2-ax +1x(x >0).①当a =0时,g ′(x )=1x >0,此时g (x )在(0,+∞)上单调递增;②当a ≠0时,因为x >0,依题意知,只要2ax 2-ax +1≥0在(0,+∞)上恒成立.记h (x )=2ax 2-ax +1,则抛物线过定点(0,1),对称轴x =14.故必须⎩⎨⎧a >0,Δ=a 2-8a ≤0,即0<a ≤8. 综上可得,a 的取值范围为[0,8].6、解:(1)因为f ′(x )=x -ax(x >0),且f (x )在x =2处的切线方程为y =x +b , 所以⎩⎪⎨⎪⎧2-a ln 2=2+b ,2-a 2=1,解得a =2,b =-2ln 2.(2)若函数f (x )在(1,+∞)上为增函数,则f ′(x )=x -ax ≥0在(1,+∞)上恒成立,即a ≤x 2在(1,+∞)上恒成立.所以a ≤1.7、解:(1)f ′(x )=a (1-x )x(x >0),当a >0时,f (x )的单调增区间为(0,1),减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数. (2)由(1)得f ′(2)=-a2=1,即a =-2, ∴f (x )=-2ln x +2x -3, ∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)内总不是单调函数, 即g ′(x )=0在区间(t ,3)内有变号零点. 由于g ′(0)=-2, ∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373. 所以-373<m <-9.8、解:(1)由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x ) =12⎝⎛⎭⎪⎫x -a 6⎝ ⎛⎭⎪⎫x +a 6, 此时函数f (x )的单调递增区间为⎝⎛⎦⎥⎤-∞,-a 6和⎣⎢⎡⎭⎪⎫a 6,+∞, 单调递减区间为⎣⎢⎡⎦⎥⎤-a 6,a 6. (2)证明:由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|a -2| =4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2=6⎝⎛⎪⎫x -3 ⎛⎪⎫x +3.于是所以g (x )min =g ⎝ ⎛⎭⎪⎫33=1-439>0.所以当0≤x ≤1时,2x 3-2x +1>0. 故f (x )+|a -2|≥4x 3-4x +2>0.9、解:(1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e-(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令t =e x (x >0),则t >1, 所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x +1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e-1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. ①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.。
利用导数求解参数问题(恒成立问题)经典题目
用导数解参数问题已知函数的单调性,求参变量的取值范围,实质上是含参不等式恒成立的一种重要题型。
本文将举例说明此类问题的求解策略。
结论一、 不等式()()f x g a ≥恒成立⇔[]min()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max()()f x g a ≤(求解()f x 的最大值).结论二、 不等式()()f x g a ≥存在解⇔[]max()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min()()f x g a ≤(即求解()f x 的最小值).一、(2008湖北卷)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞- 二、若不等式()2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。
解:设()()()2121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立,()()()()()()2221210202021210x x f f x x ⎧----<-<⎧⎪⎪∴∴⎨⎨<---<⎪⎪⎩⎩解得:1122x -++<<三、(2009浙江)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析:(Ⅰ)略(Ⅱ))2()1(23)(2+--+='a a x a x x f函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a 四、(新课程卷 )若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.解:[])1()1()1()(2---=-+-='a x x a ax x x f令0)(='x f ,解得x=1或x=a-1,并且 a≠2,否则f (x)在整个定义域内单调。
导数大题求参归类(学生版)
导数大题求参归类目录题型01 恒成立求参:常规型题型02 恒成立求参:三角函数型题型03恒成立求参:双变量型题型04 恒成立求参:整数型题型05恒成立求参:三角函数型整数题型06“能”成立求参:常规型题型07“能”成立求参:双变量型题型08“能”成立求参:正余弦型题型09 零点型求参:常规型题型10 零点型求参:双零点型题型11 零点型求参:多零点综合型题型12 同构型求参:x1,x2双变量同构题型13 虚设零点型求参高考练场热点题型归纳题型01恒成立求参:常规型【解题攻略】利用导数求解参数范围的两种常用方法:(1)分离参数法:将参数和自变量分离开来,构造关于自变量的新函数,研究新函数最值与参数之间的关系,求解出参数范围;(2)分类讨论法:根据题意分析参数的临界值,根据临界值作分类讨论,分别求解出满足题意的参数范围最后取并集.1(2024上·北京·高三阶段练习)设a>0,函数f(x)=x a ln x.(1)讨论f(x)的单调性;(2)若f(x)≤x,求a的取值范围;(3)若f (x)≤1,求a.2(2024上·甘肃武威·高三统考期末)已知函数f x =2xe x+a ln x+1.(1)当a=0时,求f x 的最大值;(2)若f x ≤0在x∈0,+∞上恒成立,求实数a的取值范围.【变式训练】1(2023上·江苏镇江·高三校考阶段练习)已知函数f x =x2-ax e x.(1)若f x 在-2,-1上单调递增,求实数a的取值范围;(2)若f x ≥sin x对x∈-∞,0恒成立,求实数a的取值范围.2(2024上·山西·高三期末)已知函数f x =m x-12-2x+2ln x,m≥2.(1)求证:函数f x 存在单调递减区间,并求出该函数单调递减区间a,b的长度b-a的取值范围;(2)当x≥1时,f x ≤2xe x-1-4x恒成立,求实数m的取值范围.3(2024·全国·模拟预测)已知函数f(x)=2x2-a ln x-1,a∈R.(1)求函数f(x)的单调区间;(2)若对任意的x∈(0,+∞),不等式f(x+1)>(x+1)2+1x+1-1e x恒成立,求实数a的取值范围.题型02恒成立求参:三角函数型【解题攻略】三角函数与导数应用求参:1.正余弦的有界性2.三角函数与函数的重要放缩公式:x≥sin x x≥0.1(2023·全国·高三专题练习)已知函数f x =sin xx,g x =a cos x.(1)求证:x∈0,π2时,f x <1;(2)当x∈-π2,0∪0,π2时,f x >g x 恒成立,求实数a的取值范围;(3)当x∈-π2,0∪0,π2时,f x2>g x 恒成立,求实数a的取值范围.2(2023上·全国·高三期末)已知函数f (x )=e x sin x -2x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求f (x )在区间0,π2上的最大值;(3)设实数a 使得f (x )+x >ae x 对x ∈R 恒成立,求a 的最大整数值.【变式训练】1(2023上·湖北省直辖县级单位·高三校考阶段练习)已知函数f x =e ax -2ax a ∈R ,a ≠0 .(1)讨论f x 的单调性;(2)若不等式f x ≥sin x -cos x +2-2ax 对任意x ≥0恒成立,求实数a 的取值范围.2(2023上·甘肃定西·高三甘肃省临洮中学校考阶段练习)已知函数f x =e x-sin x-cos x,f x 为其导函数.(1)求f x 在-π,+∞上极值点的个数;(2)若f (x)≥ax+2-2cos x a∈R对∀x∈-π,+∞恒成立,求a的值.题型03恒成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2023·四川攀枝花·统考模拟预测)已知函数f x =ae x -x a ∈R .(1)当a =1时,求f x 的单调区间;(2)设函数g x =x 2-1 e x -x -f x ,当g x 有两个极值点x 1,x 2x 1<x 2 时,总有tg x 2 ≥2+x 1 ex 2+x 22-3 成立,求实数t 的值.2(2024上·四川成都·高三成都七中校考阶段练习)设函数f x =e x -ax ,其中a ∈R .(1)讨论函数f (x )在[1,+∞)上的极值;(2)若函数f (x )有两零点x 1,x 2x 1<x 2 ,且满足x 1+λx 21+λ>1,求正实数λ的取值范围.【变式训练】1(2023·上海松江·校考模拟预测)已知函数f (x )=ax -a ln x -e xx.(1)若a =0,求函数y =f (x )的极值点;(2)若不等式f (x )<0恒成立,求实数a 的取值范围;(3)若函数y =f (x )有三个不同的极值点x 1、x 2、x 3,且f (x 1)+f (x 2)+f (x 3)≤3e 2-e ,求实数a 的取值范围.2(2023下·山东德州·高三校考阶段练习)已知函数f x =2ln x +12(a -x )2,其中a ∈R .(1)讨论函数f x 的单调性;(2)若f x 存在两个极值点x 1,x 2x 1<x 2 ,f x 2 -f x 1 的取值范围为34-ln2,158-2ln2 ,求a 的取值范围.题型04恒成立求参:整数型【解题攻略】恒成立求参的一般规律①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;如果参数涉及到整数,要注意对应解中相邻两个整数点函数的符号1(2023上·湖北·高三校联考阶段练习)已知f x =e x -2x +a .(1)若f x ≥0恒成立,求实数a 的取值范同:(2)设x 表示不超过x 的最大整数,已知e x +2ln x -e +2 x +2≥0的解集为x x ≥t ,求et .(参考数据:e ≈2.72,ln2≈0.69,ln3≈1.10)2(2023上·浙江·高三校联考阶段练习)已知函数f x =ae x-2,g x =x+1x+2ln x,e=2.71828⋯为自然对数底数.(1)证明:当x>1时,ln x<x2-12x;(2)若不等式f x >g x 对任意的x∈0,+∞恒成立,求整数a的最小值.【变式训练】1(2023·江西景德镇·统考一模)已知函数f x =sin x+sin ax,x∈0,π2.(1)若a=2,求函数g x =f x +sin x值域;(2)是否存在正整数a使得f xx>3cos x恒成立?若存在,求出正整数a的取值集合;若不存在,请说明理由.2(2023·全国·高三专题练习)已知函数f x =5+ln x,g x =kxx+1k∈R.(1)若函数f x 的图象在点1,f1处的切线与函数y=g x 的图象相切,求k的值;(2)若k∈N∗,且x∈1,+∞时,恒有f x >g x ,求k的最大值.(参考数据:ln5≈1.61,ln6≈1.7918,ln2+1≈0.8814)题型05恒成立求参:三角函数型整数1(2020·云南昆明·统考三模)已知f(x)=e x-2x-1 2.(1)证明:f(x)>0;(2)对任意x≥1,e sin x+x2-ax-1-ln x>0,求整数a的最大值.(参考数据:sin1≈0.8,ln2≈0.7)2(2020上·浙江·高三校联考阶段练习)已知函数f x =a sin x +sin2x ,a ∈R .(1)若a =2,求函数f x 在0,π 上的单调区间;(2)若a =1,不等式f x ≥bx cos x 对任意x ∈0,2π3恒成立,求满足条件的最大整数b .【变式训练】1(2022·全国·高三专题练习)已知函数f (x )=e x +a cos x -2x -2,f ′(x )为f (x )的导函数.(1)讨论f ′(x )在区间0,π2 内极值点的个数;(2)若x ∈-π2,0时,f (x )≥0恒成立,求整数a 的最小值.2(2023·云南保山·统考二模)设函数f x =x sin x ,x ∈R (1)求f x 在区间0,π 上的极值点个数;(2)若x 0为f x 的极值点,则f x 0 ≥λln 1+x 20 ,求整数λ的最大值.题型06“能”成立求参:常规型【解题攻略】形如f x ≥g x 的有解的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x max≥0恒成立即可;2、参数分离法:转化为a≥φx 或a≤φx 恒成立,即a≥φx min或a≤φx max恒成立,只需利用导数求得函数φx 的单调性与最值即可.1(2023上·浙江·高三浙江省长兴中学校联考期中)已知函数f x =a ln x+x,a∈R.(1)讨论函数f x 的单调性;(2)若存在x∈e,e2,使f x ≤ax+1 2ln x成立,求实数a的取值范围.注:e为自然对数的底数.2(2023上·湖南长沙·高三统考阶段练习)已知函数f x =a2e2x+a-2e x-12x2,y=g x 是y=f x 的导函数.(1)若a=3,求y=g x 的单调区间;(2)若存在实数x∈0,1使f x >32a-2成立,求a的取值范围.【变式训练】1(2023·全国·模拟预测)已知函数f x =x2+a ln ex.(1)讨论f x 的单调性;(2)若存在x∈1,e,使得f x -ax-a≤2,求实数a的最小值.2(2023上·黑龙江齐齐哈尔·高三统考阶段练习)已知函数f x =a ln x+1-a2x2-x a∈R.(1)若a=2,求函数f x 的单调区间;(2)若存在x0≥1,使得f x0<aa-1,求a的取值范围.题型07“能”成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)相等关系记y =f x ,x ∈a ,b 的值域为A , y =g x ,x ∈c ,d 的值域为B ,①若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊆B ;②若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊇B ;③若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,故A ∩B ≠∅;(2)不等关系(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2022·江西上饶·高三校联考阶段练习)已知函数f (x )=2ax -e x +2,其中a ≠0.(1)若a =12,讨论函数f (x )的单调性;(2)是否存在实数a ,对任意x 1∈[0,1],总存在x 2∈[0,1],使得f x 1 +f x 2 =4成立?若存在,求出实数a 的值;若不存在,请说明理由.2(2023上·辽宁沈阳·高三沈阳二十中校考阶段练习)已知函数f x =a ln x +1xx >0 .(1)讨论函数f x 的单调性;(2)若存在x 1,x 2满足0<x 1<x 2,且x 1+x 2=1,f x 1 =f x 2 ,求实数a 的取值范围.【变式训练】1(2023·全国·高三专题练习)已知函数f x =ax 2-2+5a x +5ln x a ∈R ,g x =x 2-52x .(1)若曲线y =f x 在x =3和x =5处的切线互相平行,求a 的值;(2)求f x 的单调区间;(3)若对任意x 1∈0,52 ,均存在x 2∈0,52,使得f x 1 <g x 2 ,求a 的取值范围.2(2023上·重庆·高三校联考阶段练习)已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.题型08“能”成立求参:正余弦型1(2017·江苏淮安·高三江苏省淮安中学阶段练习)函数f (x )=a cos x -x +b (a >0,b >0).(1)求证:函数f (x )在区间0,a +b 内至少有一个零点;(2)若函数f (x )在x =-π6处取极值,且∃x ∈0,π2 ,使得f (x )<3cos x -sin x 成立,求实数b 的取值范围.2(2023·全国·高三专题练习)已知函数f (x )=x +2-2cos x(1)求函数f (x )在-π2,π2 上的最值:(2)若存在x ∈0,π2使不等式f (x )≤ax 成立,求实数a 的取值范围【变式训练】1(2020·四川泸州·统考二模)已知函数f (x )=sin x x,g (x )=(x -1)m -2ln x .(1)求证:当x ∈(0,π]时,f (x )<1;(2)求证:当m >2时,对任意x 0∈(0,π],存在x 1∈(0,π]和x 2∈(0,π](x 1≠x 2)使g (x 1)=g (x 2)=f (x 0)成立.2(2023·全国·高三专题练习)已知函数f x =ln1+x-a sin x,a∈R.(1)若y=f x 在0,0处的切线为x-3y=0,求a的值;(2)若存在x∈1,2,使得f x ≥2a,求实数a的取值范围.题型09零点型求参:常规型【解题攻略】零点常规型求参基础:1.分类讨论思想与转化化归思想2.数形结合与单调性的综合应用:一个零点,则多为所求范围内的单调函数,或者“类二次函数”切线处(极值点处)3.注意“找点”难度,对于普通学生,可以用极限思维代替“找点思维”。
高二数学导数中的恒成立问题专题学案含答案
(2)若对于任意的 a [1 ,2] ,不等式 f (x) 10 在[1 ,1] 上恒成立,求 b 的取值范围.
2
4
解:(1) f (x) 1 a . x2
当 a 0 时,显然 f (x) 0 (x 0) .这时 f (x) 在 (, 0) ,(0, ) 上内是增函数.
∴当 x 1时, f (x) 取得极大值 f (1) 5 8c ,又 f (0) 8c , f (3) 9 8c . 则当 x [0,3]时, f (x) 的最大值为 f (3) 9 8c .
∵对于任意的 x [0,3],有 f (x) c2 恒成立,∴ 9 8c c2 ,解得 c 1或 c 9 , 因此 c 的取值范围为 (,1) (9, ) .
[1 2
,
2]
成
从而得 b 7 ,∴满足条件的 b 的取值范围是 (, 7] .
4
4
法二:变量分离.
∵
f
(x)
10
,∴ b
10
(x
a) x
,即
b
10
(x
a x
)min
.
令 g(x)
10 (x
a), x
g ( x)
1
a x2
x2 a x2
0,
∴ g(x) 在[1 ,1] 上递减, g(x) 最小值为 g(1) 4a 39 4 2 39 7 ,
a 的最大值.
解:(1)函数 f (x) 的定义域是 (1, ) ,
f (x) 2ln(1 x) x2 2x 2(1 x) ln(1 x) x2 2x .
1 x (1 x)2
(1 x)2
设 g(x) 2(1 x) ln(1 x) x2 2x .
专题13 导数运算法则在抽象函数中的应用(学生版) -2025年高考数学压轴大题必杀技系列导数
专题13 导数运算法则在抽象函数中的应用导数与不等式都是高考中的重点与难点,与抽象函数有关的导数问题更是一个难点,求解此类问题的关键是根据导数的运算法则构造合适的函数,再利用导数的运算法则确定所构造函数的性质,最后再利用函数性质求解.(一) 抽象函数的奇偶性及应用若()()f x f x -=两边求导得()()f x f x ¢¢--=,即()()f x f x ¢¢-=-,即若可导函数()f x 是偶函数,则()f x ¢是奇函数,同理可得:若可导函数()f x 是奇函数,则()f x ¢是偶函数.【例1】(2024届上海市奉贤区高三二模)已知定义域为R 的函数()y f x =,其图象是连续的曲线,且存在定义域也为R 的导函数()y f x =¢.(1)求函数()e e x xf x -=+在点()()0,0f 的切线方程;(2)已知()cos sin f x a x b x =+,当a 与b 满足什么条件时,存在非零实数k ,对任意的实数x 使得()()f x kf x -=-¢恒成立?(3)若函数()y f x =是奇函数,且满足()()23f x f x +-=.试判断()()22f x f x +=¢-¢对任意的实数x 是否恒成立,请说明理由.【解析】(1)由题可知,()e e x x f x -¢=-,所以切线的斜率为(0)0f ¢=,且(0)2f =,所以函数在点()()0,0f 的切线方程为()200y x -=-,即2y =;(2)由题可知()sin cos f x a x b x ¢=-+,又因为定义域上对任意的实数x 满足()()f x kf x ¢-=-,所以cos sin sin cos a x b x ak x bk x -=-,即b aka bk -=ìí=-î,当R k Î且0k ¹时,0a b ==,当1k =时,0a b +=,当1k =-时,0a b -=;(3)因为函数()y f x =在定义域R 上是奇函数,所以()()f x f x -=-, 所以()()()f x x f x ¢¢¢-×-=-,所以()()f x f x ¢¢-=,所以()y f x ¢=是偶函数,因为()()23f x f x +-=,所以()()()()223f x f x x ¢¢¢¢+-×-=,即()()20f x f x ¢¢--=,即()()2f x f x ¢¢=-,因为()()f x f x ¢¢-=,所以()()2f x f x ¢¢-=-,即()()2f x f x ¢¢=+,所以()y f x ¢=是周期为2的函数,所以()()()22f x f x f x ¢¢¢=+=-,所以()()()()22f x f x f x f x ¢¢¢¢-=-==+. (二)和差型抽象函数的应用解答此类问题时一般要根据题意构造辅助函数求解,构造时要结合所求的结论进行分析、选择,然后根据所构造的函数的单调性求解.如给出式子()f x k ¢-,可构造函数()()y f x kx b =-+,给出式子()f x kx ¢-,可构造函数()212y f x x b =-+ ,一般地,若给出()()f x g x ¢¢±通常构造函数()()y f x g x c =±+.【例2】已知()()y f x x =ÎR 的导函数()f x ¢满足()3f x ¢>且(1)3f =,求不等式()3f x x >的解集.【解析】令()()3F x f x x =-,则()()30F x f x ¢¢=->,∴()F x 在R 上为单调递增.又∵(1)3f =,∴(1)(1)30F f =-=,则()3f x x >可转化为()0(1)F x F >=,根据()F x 单调性可知不等式()3f x x >的解集为(1,)+∞.(三)积型抽象函数的应用若给出形如()()()()f x g x f x g x ¢¢+的式子通常构造函数()()y f x g x c =+ ,如给出()()xf x nf x ¢+可构造函数()ny x f x =,如给出()()f x nf x ¢+,可构造函数()e nx y f x =,如给出()()tan f x f x x ¢+,可构造函数()sin y f x x =.【例3】(2024年全国高考名校名师联席命制数学押题卷)若函数()f x 在[],a b 上满足()()()0g x f x f x ¢=³且不恒为0,则称函数()f x 为区间[],a b 上的绝对增函数,()g x 称为函数()f x 的特征函数,称任意的实数(),c a b Î为绝对增点(()f x ¢为函数()f x 的导函数).(1)若1为函数()()e xf x a x =-的绝对增点,求a 的取值范围;(2)绝对增函数()f x 的特征函数()g x 的唯一零点为0x .(ⅰ)证明:0x 是()f x ¢的极值点;(ⅱ)证明:()g x 不是绝对增函数.【解析】(1)因为函数()()e x f x a x =-,所以()()1e xf x a x =--¢,则()()()()21e xf x f x x a x a =--+¢.由()()0f x f x ¢³得()()10x a x a --+³,解得1x a £-或x a ³,所以()f x 为区间(],1a -∞-及区间[),a +∞上的绝对增函数.又1为函数()f x 的绝对增点,所以11a <-或1a >,解得2a >或1a <,所以a 的取值范围为()(),12,-∞+∞U .(2)(ⅰ)设()f x 为区间[],a b 上的绝对增函数,由题意知()00g x =,当0x x ¹时,()()00,,g x x a b >Î.①若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上单调递增,则在区间()00Δ,x x x -上,()()0,0f x f x >¢<,则()0g x <,与()0g x >矛盾.若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上单调递减,则在区间()00Δ,x x x -上,()()0,0f x f x ¢<>,则()0g x <,与()0g x >矛盾.若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上不单调,则存在()'000Δ,x x x x Î-,且()00f x ¢¢=,此时()00g x ¢=与()g x 有唯一零点0x 矛盾.所以()00f x ¹.②若()00f x ¹,不妨设()00f x >,则()00f x ¢=,且存在1Δ0x >,使得当()0101Δ,Δx x x x x Î-+时,()0f x >,且当()()010001Δ,,Δx x x x x x x Î-+U 时,()0f x ¢>,即1Δ0x $>,使()f x ¢在()010Δ,x x x -上单调递减,在()001,Δx x x +上单调递增.所以0x 为()f x ¢的极值点.同理,当()00f x <时也成立.(ⅱ)若()g x 为绝对增函数,则()()0g x g x ×¢³在[],a b 上恒成立,又()0g x ³恒成立,所以()0g x ¢³恒成立.令()()e x x g x j =×,所以()0x j ³,且()()()()e 0xx g x g x j ¢¢=×+³,所以()x j 在(),a b 上单调递增.又()00x j =,所以当()0,x a x Î时,()0x j <,则()0g x <,与()0g x ³矛盾,所以假设不成立,所以()g x 不是绝对增函数.【例4】定义在π(0,2上的函数()f x ,其导函数是()f x ¢,且恒有()()tan f x f x x <¢×成立,比较π6æöç÷èø与π3f æöç÷èø的大小.【解析】因为π(0,)2x Î,所以sin 0x >,cos 0x >.由()()tan f x f x x <¢,得()cos ()sin f x x f x x <¢.即()sin ()cos 0f x x f x x ¢->.令()()sin f x g x x =,π(0,2x Î,则2()sin ()cos ()0f x x f x xg x sin x ¢-¢=>.所以函数()()sin f x g x x =在π(0,2xÎ上为增函数,则π()(6g g <π3,即ππ()()63ππsin sin63f f <,所以π()612f <ππ(()63f <.(四)商型抽象函数的应用若给出形如()()()()f x g x f x g x ¢¢-的式子通常构造函数()()f x y cg x =+ ,如给出()()xf x nf x ¢-可构造函数()n f x y x =,给出()()f x nf x ¢-,可构造函数()nx f x y e =,给出()()tan f x f x x ¢-,可构造函数()sin f xy x=.【例5】(2024届湖北省襄阳市第五中学高三第二次适应性测试)柯西中值定理是数学的基本定理之一,在高等数学中有着广泛的应用.定理内容为:设函数f (x ),g (x )满足:①图象在[],a b 上是一条连续不断的曲线;②在(),a b 内可导;③对(),x a b "Î,()0g x ¢¹,则(),a b x $Î,使得()()()()()()f b f a fg b g a g x x --¢¢=.特别的,取()g x x =,则有:(),a b x $Î,使得()()()f b f a f b ax -¢=-,此情形称之为拉格朗日中值定理.(1)设函数()f x 满足()00f =,其导函数()f x ¢在()0,+∞上单调递增,证明:函数()f x y x=在()0,∞+上为增函数.(2)若(),0,e a b "Î且a b >,不等式ln ln 0a b b a m b a a b æö-+-£ç÷èø恒成立,求实数m 的取值范围.【解析】(1)由题()()()00f x f x f xx -=-,由柯西中值定理知:对0x ">,()0,x x $Î,使得()()()()001f x f f f x x x -==¢¢-,()()f x f xx =¢,又()f x ¢在()0,∞+上单调递增,则()()f x f x ¢>¢,则()()f x f x x¢>,即()()0xf x f x ->¢,故()f x y x=在()0,∞+上为增函数;(2)22ln ln ln ln 0a b b a a a b b m m b a a b a b -æö-+-£Û£ç÷-èø,取()ln f x x x =,()2g x x =,因为a b >,所以由柯西中值定理,(),b a x $Î,使得()()()()()()22ln ln 1ln 2f a f b f a a b b g a g b a b g x xx x--+===-¢-¢,由题则有:1ln 2m xx+£,设()()1ln 0e 2x G x x x+=<<,()2ln 2xG x x -¢=,当01x <<时,()0G x ¢>,当1e x <<时,()0G x ¢<,所以()G x 在()0,1上单调递增,在()1,e 上单调递减,所以()()max 112G x G ==,故12m ³,所以实数m 的取值范围是1,2éö+∞÷êëø.【例6】已知函数()f x 在()0,1恒有()()2xf x f x ¢>,其中()f x ¢为函数()f x 的导数,若a ,b 为锐角三角形两个内角,比较22cos (sin ),sin (cos )f f b a a b 的大小.【解析】设()()2()01f x g x x x =<<,则()()()()()243220x f x x f x x f x f x g x x x ¢¢×-××-×¢==>所以函数()g x 在()0,1上单调递增.a ,b 为锐角三角形两个内角,则π2a b +>所以ππ022b a <-<<,由正弦函数sin y x =在π0,2æöç÷èø上单调递增.则π0cos sin sin 12b b a æö<=-<<ç÷èø所以()()cos sin g g b a <,即()()22cos sin cos sin f f b a b a<所以()()22sin cos cos sin f f a b b a ×<×.(五)根据()()()f x f x g x ±-=构造函数若给出形如()()()f x f x g x ¢±=的式子通常构造偶函数或奇函数.【例7】设函数()f x 在R 上存在导函数'()f x ,x R "Î,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --³-+-,求实数m 的取值范围.【解析】因为()()3f x f x x --=,所以33()()()22x x f x f x --=-- 令3()()()()2x g x f x g x g x =-\=- 即函数()g x 为偶函数,因为()0,∞+上有()22'30f x x ->,所以23()()02x g x f x ¢¢=-> 即函数()g x 在(0,)+∞单调递增;又因为()()22364f m f m m m --³-+-所以33(2)(2)()(2)()22m m g m g m f m f m ---=---+2(2)()3640f m f m m m =--+-+³即(2)()g m g m -³,所以2m m -³,解得1m £ ,故选B.(六)信息迁移题中的抽象函数求解此类问题关键是如何利用题中的信息.【例8】已知定义在R 上的函数()f x 的导函数为()f x ¢,若()1f x ¢£对任意x ÎR 恒成立,则称函数()f x 为“线性控制函数”.(1)判断函数()sin f x x =和()e xg x =是否为“线性控制函数”,并说明理由;(2)若函数()f x 为“线性控制函数”,且()f x 在R 上严格增,设A B 、为函数()f x 图像上互异的两点,设直线AB 的斜率为k ,判断命题“01k <£”的真假,并说明理由;(3)若函数()f x 为“线性控制函数”,且()f x 是以(0)T T >为周期的周期函数,证明:对任意12,x x 都有()()12f x f x T -£.【解析】(1)()cos 1f x x =£¢,故()sin f x x =是“线性控制函数”;()1e 1g ¢=>,故()e x g x =不是“线性控制函数”.(2)命题为真,理由如下:设()()()()1122,,,A x f x B x f x ,其中12x x <由于()f x 在R 上严格增,故()()12f x f x <,因此()()1212f x f x k x x -=>-由于()f x 为“线性控制函数”,故()1f x ¢£,即()10f x ¢-£令()()F x f x x =-,故()()10F x f x ¢¢=-£,因此()F x 在R 上为减函数()()()()()()()()112212121212121101f x x f x x f x f x F x F x k k x x x x x x ------=-==£Þ£---,综上所述,01k <£,即命题“01k <£”为真命题.(3)根据(2)中证明知,对任意a b <都有()()1f a f b k a b-=£-由于()f x 为“线性控制函数”,故()1f x ¢³-,即()10f x ¢+³令()()G x f x x =+,故()()10G x f x ¢=+³¢,因此()F x 在R 上为增函数()()()()()()()()()()101f a a f b b f a f b G a G b f a f b a b a b a b a b+-+---+==³Þ³-----因此对任意a b <都有()()[]1,1f a f b a b-Î--,即()()1f a f b a b -£-当12x x =时,则()()120f x f x T -=£恒成立当12x x ¹时,若21x x T -£,则()()()()1212121f x f x f x f x x x T--³³-,故()()12f x f x T-£若21x x T ->时,则存在[)311,x x x T Î+使得()()32f x f x =故1()()()()131313f x f x f x f x x x T--³>-,因此()()()()1213f x f x f x f x T-=-<综上所述,对任意12,x x 都有()()12f x f x T -£.(事实上,对任意12,x x 都有()()122Tf x f x -£,此处不再赘述)【例9】定义:若曲线C 1和曲线C 2有公共点P ,且在P 处的切线相同,则称C 1与C 2在点P 处相切.(1)设()()221,8f x x g x x x m =-=-+.若曲线()y f x =与曲线()y g x =在点P 处相切,求m 的值;(2)设()3h x x =,若圆M :()()2220x y b r r +-=>与曲线()y h x =在点Q (Q 在第一象限)处相切,求b 的最小值;(3)若函数()y f x =是定义在R 上的连续可导函数,导函数为()y f x ¢=,且满足()()f x f x ¢³和()f x <都恒成立.是否存在点P ,使得曲线()sin y f x x =和曲线y =1在点P 处相切?证明你的结论.【解析】(1)设点11(,)P x y ,由22()1,()8f x xg x x x m =-=-+,求导得()2,()28f x x g x x ¢¢=-=-,于是11228x x -=-,解得12x =,由11()()f x g x =,得2212282m -=-´+,解得9m =,所以m 的值为9.(2)设切点3222(,),0Q x x x >,由()3h x x =求导得2()3h x x ¢=,则切线的斜率为222()3h x x ¢=,又圆M :222()x y b r +-=的圆心(0,)M b ,直线MQ 的斜率为322x bx -,则由3222213x x x b -×=-,得32213b x x =+,令31(),03x x x x j =+>,求导得221()33x x xj ¢=-,当0x <<()0x j ¢<,当x >()0x j ¢>,即函数()j x 在上递减,在)+∞上递增,因此当x =()x j ,所以当2x min b =(3)假设存在0(,1)P x 满足题意,则有00()sin 1f x x =,对函数()sin y f x x =求导得:()sin ()cos y f x x f x x ¢¢=+,于是0000()sin ()cos 0f x x f x x ¢+=,即0000()sin ()cos f x x f x x ¢=-,平方得222222000000[()]sin [()]cos [()](1sin )f x x f x x f x x ¢==-,即有2222200000[()]sin [()]sin [()]f x x f x x f x ¢+=,因此2200201[()]1[()][()]fx f x f x ¢×+=,整理得224000[()][()][()]f x f x f x ¢+=,而恒有()()f x f x ¢³成立,则有2200[()][()]f x f x ¢³,从而4200[()]2[()]f x f x ³,显然0()0f x ¹,于是20[()]2f x ³,即0|()|f x ³与()f x <所以假设不成立,即不存在点P 满足条件.【例1】(2024年全国统一考试数学押题卷)函数与函数之间存在位置关系.已知函数()f x 与()g x 的图象在它们的公共定义域D 内有且仅有一个交点()()00,x f x ,对于1x D "Î且()10,x x Î-∞,2x D Î且()20,x x Î+∞,若都有()()()()11220f x g x f x g x éùéù-×-<ëûëû,则称()f x 与()g x 关于点()()00,x f x 互穿;若都有()()()()11220f x g x f x g x éùéù-×->ëûëû,则称()f x 与()g x 关于点()()00,x f x 互回.已知函数()f x 与()g x 的定义域均为R ,导函数分别为()f x ¢与()g x ¢,()f x 与()g x 的图象在R 上有且仅有一个交点()(),m f m ,()f x ¢与()g x ¢的图象在R 上有且仅有一个交点()(),m f m ¢.(1)若()e xf x =,()1g x x =+,试判断函数()f x 与()g x 的位置关系.(2)若()f x ¢与()g x ¢关于点()(),m f m ¢互回,证明:()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.(3)研究表明:若()f x ¢与()g x ¢关于点()(),m f m ¢互穿,则()f x 与()g x 关于点()(),m f m 互回且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.根据以上信息,证明:23e 126!ixx x x x i ³++++×××+(i为奇数).【解析】(1)设()()()()e 1e 1x xH x f x g x x x =-=-+=--,则()e 1xH x ¢=-,当0x <时,()0H x ¢<,当0x >时,()0H x ¢>,()H x \在(),0∞-上单调递减,在()0,∞+上单调递增,所以()()00e 10H x H ³=-=,即()()f x g x ³,当且仅当0x =时取等号.又()f x 与()g x 的图象在R 上有且仅有一个交点()0,1,\函数()f x 与()g x 关于点()0,1互回.(2)设1x m <,2x m >,则()()()()11220f x g x f x g x ¢¢¢¢éùéù-×->ëûëû,(互回的定义的应用)设()()()h x f x g x =-,则()()()h x f x g x ¢¢¢=-,故()()120h x h x ¢¢>.①若()()12,h x h x ¢¢均大于零,因为()()()0h m f m g m ¢¢¢=-=,(提示:()f x ¢与()g x ¢的图象交于点()(),m f m ¢.所以()0h x ¢³,所以()h x 单调递增,又()()()0h m f m g m =-=,(提示:()f x 与()g x 的图象交于点()(),m f m )所以()10h x <,()20h x >,所以()()()()()()1211220h x h x f x g x f x g x ×=-×-<éùéùëûëû,()()120h x h x ¢×>,所以()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.②若()()12,h x h x ¢¢均小于零,因为()()()0h m f m g m ¢¢¢=-=,所以()0h x ¢£,所以()h x 单调递减,又()()()0h m f m g m =-=,所以()10h x >,()20h x <,所以()()()()()()1211220h x h x f x g x f x g x ×=-×-<éùéùëûëû,()()120h x h x ¢×>,所以()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.综上,()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.(3)设()e xi f x =,()23126!ii x x x g x x i =+++++L (N *i Î)则()()'1e xi i f x f x -==(2i ³),()()()231'11261!i i i x x x g x x g x i --=+++++=-L (2i ³)(关键:寻找()'i f x 与()1i f x -,()'i g x 与()1i g x -,2i ³之间的关系)易知()1e xf x =,()11g x x =+,由(1)可知()1f x 与()1g x 关于点()0,1互回.因为()()00e 10i i f g ===,所以*N i "Î,()i f x 与()i g x 的图象交于点()0,1.由(2)得()2f x 与()2g x 关于点()0,1互穿,(提示:()()21f x f x ¢=,()()21g x g x ¢=)由(3)得()3f x 与()3g x 关于点()0,1互回,易得当i 为奇数时,()i f x 与()i g x 关于点()0,1互回,所以()1,0x "Î-∞,()20,x Î+∞,有()()()()11220i i i i f x g x f x g x éùéù-×->ëûëû(i 为奇数).(提示:互回的定义的应用)由题意得()()()()2212120i i i i f x g x f x g x --éùéù-×->ëûëû对任意正整数i 恒成立,(提示:由本问信息可得)所以()()()()121222220i i i i f x g x f x g x ----éùéù-×->ëûëû()()()()222232320i i i i f x g x f x g x ----éùéù-×->ëûëû,L ,()()()()222212120f xg x f x g x éùéù-×->ëûëû累乘得()()()()()()222121212120i i i i f x g x f x g x f x g x --éùéùéù-×-->ëûëûëûL 所以()()()()2212120i i f x g x f x g x éùéù-×->ëûëû易知()()12120f x g x ->,(点拨:()()11f x g x ³,当且仅当0x =时等号成立,又()20,x Î+∞,所以()()1212f x g x >.所以()()220i i f x g x ->.因为()()()()11220i i i i f x g x f x g x éùéù-×->ëûëû,(i 为奇数),所以()()110i i f x g x ->(i 为奇数),因为()()00i i f g =,所以()()i i f x g x ³(i 为奇数),即23e 126!ixx x x x i ³++++¼+(i 为奇数),得证.【例2】(2024届上海市普陀区桃浦中学高三上学期期末)对于一个在区间I 上连续的可导函数()y f x =,在I 上任取两点()11(,)x f x ,()22(,)x f x ,如果对于任意的1x 与2x 的算术平均值的函数值大于等于对于任意的1x 与2x 的函数值的算术平均值,则称该函数在I 上具有“M 性质”.如果对于任意的1x 与2x 的几何平均值的函数值大于等于对于任意的1x 与2x 的函数值的几何平均值,则称()y f x =在I 上具有“L 性质”.(1)如果函数log a y x =在定义域内具有“M 性质”,求a 的取值范围.(2)对于函数ln y ax x =-,若该函数的一个驻点是1=x e ,求a ,并且证明该函数在2,x e éùÎ+∞ëû上具有“L 性质”.(3)设存在,m n I Î,使得()()f m f n =.①证明:取(,)m n x Î,则有()()()()f m f n f m n x ¢-=-②若[,]I a b =,设命题p :函数()y f x =具有“M 性质”,命題:()q f x ¢为严格减函数,试证明p 是q 的必要条件.(可用结论:若函数()f x 在区间I 上可导,且在区间I 上连续,若有(,)a b I Í,且()()f a f b =,则()f x 在区间I 上存在驻点)【解析】(1)由函数()log a f x x =在(0,)+∞上具有“M 性质”,可得对任意()1212121,(0,),log log log log 22aa a a x x x x x x +Î+∞³+=又12x x +³1a >;(2)令1()ln ,()g x ax x g x a x ¢=-=-由10e g æö¢=ç÷èø,得ea =则()e ln g x x x =-,在10,e æöç÷èø上严格减:在1,e æö+∞ç÷èø上严格增.要证()g x 在)2e ,é+∞ë上具有“L 性质”.需证g³即证()()212gg x g x éù³×ëû,而(222212 e ln gx x éù==-ëû()()()()()2121122121221e ln e ln e e ln l n ln ln g x g x x x x x x x x x x x x x ×=--=-++×则()()2212121lnln 4x x x x =-()121221ln ln n e l ln x x x x x x +-³,需证()()()212121221121ln ln e ln ln ln ln 4x x x x x x x x x x +-++³,由()212121ln ln ln ln 4x x x x+³,()()122112e ln ln x x x xx x +-12ln ln x x éù=××ëû2e==故只需证0³,下面给出证明:设ln ()x h x x =,则21ln ()x h x x -¢=,即在(e,)+∞上()0,()h x h x<¢递减,所以0hh éù-£ëû,即0³.综上,()()()212121221121ln ln e ln ln ln ln 4x x x x x x x x p x x +-++成立,故g³,得证.(3)①令()(()())()()g x f m f n x f x m n =---,()()()()()g x f m f n f x m n ¢¢=---,由可用结论,令x x =为该函数的驻点,则0()()()()()g f m f n f m n x x ¢¢==---,即取(,)m n x Î,则有()()()()f m f n f m n x ¢-=-,得证.②取12,(,)x x a b Î,设12,(0,1),{1,2}k x x u k <ÎÎ,记01220012,x x x h x x x x =+=-=-,则1020,x x h x x h =-=+,由①中的结论,则有:()()()0001f x h f x hf x u h ¢+-=+(1)()()()0002f x h f x hf x u h ¢--=-(2)由(1)-(2),得()()()()()00001022f x h f x h f x h f x u h f x u h ¢¢éù-++-=+--ëû对()f x ¢在区间[]0201,x u h x u h -+使用①中的结论,则:()()()2120102()f u u h h f x u h f x u h x ¢¢¢¢éù+=+--ëû,其中,()0201,x u h x u h x Î-+.由于()f x ¢是严格减函数,则()0f x ¢¢£,即()()()0002f x h f x h f x ++-³,即()()121222f x f x x x f ++æö³ç÷èø.所以p 是q 的必要条件.【例3】已知函数()f x 的定义域为[)0,∞+,导函数为()f x ¢,若()()1f x f x x <¢+恒成立,求证:()()3210f f -<.【解析】设函数()()()01f xg x x x =³+,因为()()1f x f x x <¢+,0x ³,所以()()()10x f x f x ¢+-<,则()'g x ()()()()2101x f x f x x -=+¢+<,所以()g x 在[)0,∞+上单调递减,从而()()13g g >,即()()1324f f >,所以()()3210f f -<.【例4】已知函数()f x 满足()()1'xf x f x e +=,且()01f =,判断函数()()()2132g x f x f x =-éùëû零点的个数.【解析】()()()()1''1x x x f x f x e f x e f x e +=Û+=()'1x e f x éùÛ=ëû,∴()xe f x x c =+,()xx c f x e +=,∵()01f =代入,得1c =,∴()1xx f x e +=.()()()()213002g x f x f x f x =-=Þ=éùëû或()16f x =,()1001xx f x x e +=Þ=Þ=-;()()1116166x x x f x e x e +=Þ=Þ=+,如图所示,函数x y e =与函数()61y x =+的图像交点个数为2个,所以()16f x =的解得个数为2个;综上,零点个数为3个.【例5】已知定义在R 上的函数()f x 的导数为()f x ¢,且满足()()2sin f x f x x +-=,当0x ³时()sin cos f x x x x ¢>-- ,求不等式()π22f x f x æö--ç÷èøsin 2cos x x <+的解集.【解析】设()()sin g x f x x =-,则()()sin g x f x x -=-+,所以()()g x g x --=()()f x f x --2sin 0x -=,所以()g x 是偶函数,设()()sin 0h x x x x =-³,则()1cos 0h x x ¢=-³,所以()()0h x h ¢³,即sin 0x x -³,所以0x ³时()sin cos cos f x x x x x ¢>--³- , 所以0x ³时()()cos 0g x f x x ¢¢=+>,()g x 在[)0,+∞上是增函数,所以()π22f x f x æö--ç÷èøsin 2cos x x<+()2sin 2f x xÛ-ππsin 22f x x æöæö<---ç÷ç÷èøèø()π22g x g x æöÛ<-ç÷èø()π22g x g x æöÛ<-ç÷èøπ22x x Û<-Û()22π22x x æö<-ç÷èøππ3022x x æöæöÛ+-<ç÷ç÷èøèøππ26x Û-<<,故选C.【例6】已知定义域为R 的函数()y f x =,其导函数为()y f x ¢¢=,满足对任意的x ÎR 都有()1f x ¢<.(1)若()sin 4xf x ax =+,求实数a 的取值范围;(2)若存在0M >,对任意x ÎR ,成立()f x M £,试判断函数()y f x x =-的零点个数,并说明理由;(3)若存在a 、()b a b <,使得()()f a f b =,证明:对任意的实数1x 、[]2,x a b Î,都有()()122b af x f x --<.【解析】(1)若()sin 4x f x ax =+,则cos ()4xf x a ¢=+,由题意,对任意的x ÎR 都有()1f x ¢<,则1cos 4x a +<,即1cos 14xa <+<-,所以cos cos 1441x xa <---<,由于1cos 4x -的最小值为34,cos 14x --的最大值为34-,所以3344a -<<,即实数a 的取值范围为33,44æö-ç÷èø;(2)依题意,()10y f x ¢¢=-<,所以,()y f x x =-在R 上为减函数,所以至多一个零点;()f x M £Þ()M f x M -<<,,当1x M =--时,()()110y f x x f M M =-=--++>,当1x M =+时,()()110y f x x f M M =-=+--<,所以()y f x x =-存在零点,综上存在1个零点;(3)因为()1f x ¢<,由导数的定义得()()12121f x f x x x -<-,即()()1212f x f x x x -<-,不妨设12a x x b £££若122b ax x --£,则()()12122b a f x f x x x --<-£若122b a x x -->,则()()()()()()1212f x f x f x f b f a f x -=-+-()()()()12f x f b f a f x <-+-12b x x a<-+-()22b a b ab a --<--=.1.若定义域为D 的函数()y f x =使得()y f x ¢=是定义域为D 的严格增函数,则称()f x 是一个“T 函数”.(1)分别判断()13=x f x ,()32f x x =是否为T 函数,并说明理由;(2)已知常数0a >,若定义在()0,∞+上的函数()y g x =是T 函数,证明:()()()()132g a g a g a g a +-<+-+;(3)已知T 函数()y F x =的定义域为R ,不等式()0F x <的解集为(),0∞-.证明:()F x 在R 上严格增.2.对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”;(2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ¢,且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ÎR ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.3.(2024届江苏省盐城市滨海县高三下学期高考适应性考试)根据多元微分求条件极值理论,要求二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点,首先构造出一个拉格朗日辅助函数(,,)(,)(,)L x y f x y g x y l l =+,其中l 为拉格朗日系数.分别对(,,)L x y l 中的,,x y λ部分求导,并使之为0,得到三个方程组,如下:(,,)(,)(,)0(,,)(,)(,)0(,,)(,)0x x x y y y L x y f x y g x y L x y f x y g x y L x y g x y ll l l l l =+=ìï=+=íï==î,解此方程组,得出解(,)x y ,就是二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点.,x y 的值代入到(,)f x y 中即为极值.补充说明:【例】求函数22(,)f x y x xy y =++关于变量x 的导数.即:将变量y 当做常数,即:(,)2x f x y x y =+,下标加上x ,代表对自变量x 进行求导.即拉格朗日乘数法方程组之中的,,x y L L L l 表示分别对,,x y λ进行求导.(1)求函数222(,)2f x y x y xy xy =++关于变量y 的导数并求当1x =处的导数值.(2)利用拉格朗日乘数法求:设实数,x y 满足22(,)410g x y x y xy =++-=,求(,)2f x y x y =+的最大值.(3)①若,,x y z 为实数,且1x y z ++=,证明:22213x y z ++³.②设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值.4.(2024届浙江省宁波市宁波九校高三上学期期末)我们把底数和指数同时含有自变量的函数称为幂指函数,其一般形式为()()()()()01v x y u x u x u x =>¹,,幂指函数在求导时可以将函数“指数化"再求导.例如,对于幂指函数x y x =,()()()()ln ln ln e e e ln 1x x x x x x x y x x ¢¢¢¢éù====+êúëû.(1)已知()10x xf x xx -=>,,求曲线()y f x =在1x =处的切线方程;(2)若0m >且1m ¹,0x >.研究()112xxm g x æö+=ç÷èø的单调性;(3)已知a b s t ,,,均大于0,且a b ¹,讨论2t s s a b æö+ç÷èø和2st t a b æö+ç÷èø大小关系.5.(湖北省八市高三下学期3月联考)英国数学家泰勒发现的泰勒公式有如下特殊形式:当()f x 在0x =处的()*n n ÎN 阶导数都存在时,()()()()()()()()323000002!3!!n n f f f f x f f x x x x n =++++¢¢×××+¢+×××.注:()f x ¢¢表示()f x 的2阶导数,即为()f x ¢的导数,()()()3n f x n ³表示()f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算1sin 2的值,精确到小数点后两位;(2)由该公式可得:246cos 12!4!6!x x x x =-+-+×××.当0x ³时,试比较cos x 与212x-的大小,并给出证明(不使用泰勒公式);(3)设*n ÎN ,证明:()111142tannk n n n k n k=>-+++å.6. 函数()f x 满足22()(e )(2)ex f x f x -+=(e 为自然数的底数),且当1x £时,都有()()0f x f x ¢+>(()f x ¢为()f x 的导数),比较20202022(2022)(2020),e ef f 的大小 .7.设函数()f x 在R 上可导,其导函数为()f x ¢,且2()()0f x xf x ¢+>.求证: ()0f x ³.8.已知函数()f x 及其导函数()f x ¢的定义域均为R ,()23f x +是偶函数,记()()g x f x ¢=,()2g x +也是偶函数,求()2023f ¢的值.9. 定义在()0,∞+上的函数()y f x =有不等式()()()23f x xf x f x ¢<<恒成立,其中()y f x ¢=为函数()y f x =的导函数,求证:()()2481f f <<.10.已知()f x ¢为定义域R 上函数()f x 的导函数,且()()20f x f x ¢¢+-=,1x ³, ()()()120x f x f x -+>¢且()31f =,求不等式()()241f x x >-的解集11.定义在区间(0,)+∞上函数()f x 使不等式2()'()3()f x xf x f x <<恒成立,('()f x 为()f x 的导数),求(2)(1)f f 的取值范围.12.设()y f x =是定义在R 上的奇函数.若()(0)f x y x x=>是严格减函数,则称()y f x =为“D 函数”.(1)分别判断y x x =-和sin y x =是否为D 函数,并说明理由;(2)若1112xy a =-+是D 函数,求正数a 的取值范围;(3)已知奇函数()y F x =及其导函数()y F x ¢=定义域均为R .判断“()y F x ¢=在()0,∞+上严格减”是“()y F x =为D 函数”的什么条件,并说明理由.13.设M 是定义在R 上且满足下列条件的函数()f x 构成的集合:①方程()0f x x -=有实数解;②函数()f x 的导数()f x ¢满足0()1f x ¢<<.(1)试判断函数sin ()24x x f x =+是否集合M 的元素,并说明理由;(2)若集合M 中的元素()f x 具有下面的性质:对于任意的区间[],m n ,都存在0[,]x m n Î,使得等式()0()()()f n f m n m f x ¢-=-成立,证明:方程()0f x x -=有唯一实数解.(3)设1x 是方程()0f x x -=的实数解,求证:对于函数()f x 任意的23,x x R Î,当211x x -<,311x x -<时,有()()322f x f x -<.14.设定义在R 上的函数()f x 的导函数为()f x ¢,若()()2f x f x ¢+>,()02024f =,求不等式2022()2e xf x >+(其中e 为自然对数的底数)的解集。
导数中恒成立问题(最值问题)
导数中恒成立问题(最值问题)导数中恒成立问题(最值问题)恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。
知识储备(我个人喜欢将参数放左边,函数放右边)先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题如:化简后我们分析得到,对[],x a b ∀∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ∃∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题如:化简后我们分析得到,对[]12,,x x a b ∀∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ∀∈,[]2,x c d ∃∈使12()()f x g x ≥,那么只需min min ()()f x g x ≥如:化简后我们分析得到,[]1,x a b ∃∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量)3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(2014.03苏锡常镇一模那题特别典型)今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是11,,e e之类),所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。
最全总结之导数恒成立问题
恒成立问题类型一由恒成立求参数之参数分离例1.(宜昌市2019届)已知函数.(1)求函数的单调区间;(2)若关于的不等式在上恒成立,求实数的取值范围.解析:(1)依题意,当时,令,得或,令,得,可知的增区间为,,减区间为;当时,令,得,令,得或,可知的增区间为,减区间为,.综上,当时,的增区间为,,减区间为;当时,的增区间为,减区间为,.(2)方法一:,即,令,则,令,则.①若,当时,,从而在上单调递增,因为,故当时,,即,从而在上单调递增,因为,故当时,恒成立,符合题意;②若,当时,恒成立,从而在上单调递减,则,即时,,从而在上单调递减,此时,不符合题意;③若,由,得,当时,,故在上单调递减,则,即,故在上单调递减,故当时,,不符合题意;综上所述,实数的取值范围为方法二 分离参数法(好处是不用讨论参数,坏处是可能计算比较复杂),即,x x xe x e a 221-->即的最大值问题转化成求函数令)(1)(22x g xex e x g xx --=x x e x e x x x g 2222122)('-++=x e x x x h 22122)(-++=令x x e x x e x x h 22224)(224)('-+=-+=ϕ,令则 )1(4)('2x e x -=ϕ则00)('==x x 得:令ϕ上单调递减上单调递增,在在所以),0()0,()(+∞-∞x ϕ0)0()(=≤ϕϕx 0)('≤x h 即0)0()()(')(=<=h x h x g x h 单调递减,则所以)0()()(g x g x g <单调递减,则所以0lim )0(→=x g x xxe x e 221--1)12(12lim )'()'1(lim 220220=+-=--=→→x e e xe x e x x x x x x 用到洛必达法则)( 11)(≥⇒<a x g 所以跟踪训练一1. (长春实验高中2019届 )已知函数.(1)证明:当时,函数在上是单调函数;(2)当时,恒成立,求实数的取值范围. 解析:(1),令,则.则当时,,当时,.所以函数在取得最小值,.故,即函数在上是单调递增函数.(2)当时,,即令(),则令(),则.当时,单调递增,.则当时,,所以单调递减.当时,,所以单调递增.所以,所以.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.2.(2019届高三毕业班)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)若恒成立,求的取值范围.解析:(Ⅰ)当时,,则,∴,,∴曲线在点处的切线方程为.(Ⅱ)若对恒成立,即对恒成立,设,可得,由,可得,当时,,单调递增;当时,,单调递减.∴在处取得极大值,且为最大值,∴的取值范围为.【点睛】曲线的切线问题要区分是“在点”还是“过点”切线问题,在点相比容易,“过点”则需要对此点进行分情况讨论;恒成立问题常见解法是分离变量,构造新函数求解最值,有时也可分情况讨论。
人教A版高二数学选修利用导数研究恒成立问题-1教案
教案人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》关注本店铺,下次再找不迷路漂市一中钱少锋重点:会用导数确定函数最值进而解决不等式恒成立问题.难点:构建恰当的函数解决不等式恒成立问题.教学过程(表格描述)教学环节主要教学活动设置意图知识点回顾【回顾】如何利用导数确定函数的最值?复习回顾导数确定函数最值得方法,为本节课做好知识铺垫.思考探究思考探究【思考1】你能确定函数2()21f x x x=--在[2,3]上的最大值和最小值吗?【预设】1、求导函数'()22f x x=-'()0f x>在[2,3]上恒成立,所以()f x在[2,3]上单调递增,所以max()(3)2f x f==,min()(2)1f x f==-.2、对于二次函数2()21f x x x=--,其对称轴1x=,所以在对称轴右侧的区间[2,3]上()f x单递增,所以max()(3)2f x f==,min()(2)1f x f==-.【探究】试判断下列说法是否正确?①对于任意的[2,3]x∈都有()0f x≤成立.②对于任意的[2,3]x∈都有()2f x≤成立.【探究】若对于任意的[2,3]x∈都有()f x c≤成立,你能确定实数c的取值范围吗?恒成立问题尤其是根据恒成立的条件确定参数问题是高考的热点,是利用导数研究函数的一种重要题型.有必要引导学生探究、归纳、积累这类问题的解决方法从学生熟【预设】1、 一方面实数c 不小于()f x 在[2,3]的 所有函数值,c 大于等于()f x 在[2,3]上 的最大值即可;2、另一方面可以看成函数()y f x =与常数函数y c =函数值的大小关系,借助函数图象可以看出c 的取值范围.【思考2】对于函数2()21f x x x =-- .【探究】试判断下列说法是否正确? ③对于任意的[2,3]x ∈都有()0f x ≥成立.④对于任意的[2,3]x ∈都有()-1f x ≥成立. 【探究】若对于任意的[2,3]x ∈都有()f x m ≥成立,你能确定实数m 的取值范围吗?【预设】1、一方面实数m 不大于()f x 在[2,3]上的所有函数值,m 小于等于()f x 在[0,2]上的最小值即可;2、另一方面,可以看成函数()y f x =与常数函数y m =函数值的大小关系,同样借助函数图象可以看出m 的取值范围.【思考3】已知函数31()3f x x x =-.下面两个说法是否正确?①对于任意的[0,2]x ∈,都有()0f x ≥成立? ②对于任意的[0,2]x ∈,都有()1f x ≤成立?【分析】判断两个说法是否正确的关键点是的什么? 利用导数确定函数()f x 在[0,2]上的最值,借助函数图象,做出判断.【预设】31()3f x x x =-,[0,2]x ∈,悉的简单的二次函数入手,再到三次函数复习巩固确定函数最值的方法,通过设问让学生思考判断一些结论是否正确,逐步帮助学生理解恒成立问题的本质,体会恒成立问题与函数最值的关系。
专题 导数恒成立问题中的端点效应法-学生版
导数恒成立问题中的端点效应法恒成立问题中,我们常常能见到类似的命题:“对于任意的],[b a x ∈,都有0)(≥x f 恒成立”()(x f 中包含参数),这里的端点b a ,往往是使结论成立的临界条件,这种观察区间端点值来解决问题的方法,我们称之为端点效应.1.适用类型①不便于参变分离;②参变分离后的函数形式比较复杂.2.解题步骤①移项,将所有变量移到一边,使不等式右侧为0;②计算端点处的函数值,验证端点处函数值是否为0,若为0,则可继续处理,否则此题不适合端点分析法.注:区间端点处的函数值恰好是不等式恒成立时的临界值是这类问题的显著特征!题型一指数型端点效应例1.1设函数2()(1)x f x x e ax =--.若当0x ≥时()0f x ≥,求实数a 的取值范围.练1.11已知函数)1(ln )(--=x m x x f ,当),1[+∞∈x 时,e x ef e x≥+)(,求实数m 的取值范围.*练1.12已知R ∈λ,函数)1ln ()(+---=x x x ex e x f xλ,若1≥x 时,0)(≥x f 恒成立,求λ的最大值.题型二对数型端点效应例2.1已知关于x 的不等式xx a 11ln ->对任意),1(+∞∈x 恒成立,求实数a 的取值范围.练2.11已知函数()(1)ln (1)f x x x a x =+--,若当()1,x ∈+∞时,0)(>x f ,求a 的取值范围.练2.12已知函数()()1ln --=x a x x f ,若当1≥x 时,不等式()1ln +≤x x x f 恒成立,求实数a 的取值范围;题型三三角型端点效应例3.1已知函数x x x f sin )(+=,设1)()(-'=x f x g ,若21)(ax x g +≥在),0[+∞上恒成立,求实数a 的取值范围.练3.11已知函数)(cos sin )(R a x x a xe x f x ∈-=,若对任意的]2,0[π∈x ,0)(≥x f 恒成立,求实数a 的取值范围.练3.12已知函数x x x x x f --=cos sin 2)(,)(x f '为)(x f 的导数.(1)证明:)(x f '在区间),0(π存在唯一零点;(2)若],0[π∈x 时,ax x f ≥)(,求实数a 的取值范围.。
2020年高三一轮复习数学教案第11讲《导数的分类讨论思想与恒成立问题》(学生版)
个性化教学辅导教案1.(2016·青岛模拟)若函数f(x)=x3+bx2+cx+d的单调减区间为(-1,3),则b+c=________.2.(2016·衡水中学模拟)已知函数f(x)(x∈R)满足f(1)=1,f(x)的导数f′(x)<12,则不等式f(x2)<x22+12的解集为________________.3、已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18 B.11C.18 D.17或181、已知函数f (x )=x -alnx ,当x >1时,f (x )>0恒成立,则实数a 的取值范围是( ) A .(1,+∞) B .(-∞,1) C .(e ,+∞) D .(-∞,e )2、已知函数f (x )=(2-a )lnx+x1+2ax(Ⅰ)当a=2时,求函数f (x )的极值; (Ⅱ)当a <0时,讨论f (x )的单调性3、定义在R 上的奇函数y=f (x )满足f (3)=0,且当x >0时,不等式f (x )>﹣xf′(x )恒成立,则函数g (x )=xf (x )+lg|x+1|的零点的个数为( )A .1B .2C .3D .44、已知函数f (x )=x 3+3x 对任意的m∈[-2,2],f (mx -2)+f (x )<0恒成立,则x∈ 。
学科分析:从近五年的考查情况来看,该讲一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查,一般出现在选择题和填空题的后两题中以及解答题的第21题,难度较大,复习备考的过程中应引起重视. 学生分析:1、学习风格(动觉型、视觉型、听觉型)2、知识点分析:(1)导数的分类讨论思想 (2)导数的恒成立问题【精准突破一】学习目标:分类讨论思想在求函数单调区间中的运用 目标分解:分类讨论思想在求函数单调区间中的运用 【目标:分类讨论思想在求函数单调区间中的运用 】利用导数求函数单调区间基本方法是先求导数'()0f x >,再解'()0f x >或'()0f x <得到单调递增或递减区间.纵观近几年的高考题,不难发现求函数单调区间问题是屡屡出现,它以导数为研究工具不断的出现在每年的高考题中,常考常新,试题类型也由最初的直接求单调区间问题逐步发展为要利用分类讨论思想才能完成的问题,也即利用分类讨论思想解决求单调区间问题已成为近几年高考的热点问题,这类试题出现频率高、函数类型变化大,对学生的综合能力要求高,但纵观其解题规律则不难看出其分类讨论的依据主要可分为三类:一、根据最高次项系数来分类:在解'()0f x >或'()0f x <得到单调递增或递减区间时,如果最高次项系数带有参数,且参数的取值不确定,则需要对参数的取值进行分类讨论,以此来确定导数在各区间上的符号,从而确定单调区间。
【一题一课 难点突破】导数中的恒成立问题
1 1 2当a 0时,f x 在 0, 上递增, 在 , 上递减, f x max a a 1 1 f ln 0, 即恒成立。 a a
转化手段
单变量恒成立问题 方法3:参变量半分离法解恒成立问题
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以半分离:lnx<-ax-1,构造f (x)=lnx与g(x)=-ax-1 由图像得:a<-1
转化手段
单变量恒成立问题 方法4:端点值代入法解恒成立问题
例题:设函数f (x)=(x+1)ln(x+1),若对于所有的x≥0, 都有f (x)≥ax,求a的问题 方法4:端点值代入法解恒成立问题
例题:设函数f (x)=(x+1)ln(x+1),若对于所有的x≥0, 都有f (x)≥ax,求a的取值范围?
f x f a 1若x a且f x f a , f x 在x a处可导,则f a xlim 0 a xa f x f a 2若x a且f x f a , f x 在x a处可导,则f a xlim 0 a xa
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以直接讨论:
求导:f x
这与f x 0恒成立矛盾。
1 a, x 1当a 0时,f x 0, f x 在0, 讨论: 恒增,找到f 1 a 1 0
转化手段
单变量恒成立问题 方法1:参变量分离法解恒成立问题
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以转化为:
函数导数中的恒成立问题解题技巧
函数导数中的恒成立问题解题技巧函数导数中的恒成立问题解题技巧随着新课标下的高考越来越重视考查知识的综合应用,恒成立问题成为了考试中的热点问题。
这种问题涉及方程、不等式、函数性质与图象及它们之间的综合应用,同时渗透换元、转化与化归、数形结合、函数与方程等思想方法,考查综合解题能力。
在函数、导数中,这种问题更为明显。
本文将介绍两种解题技巧。
一、利用函数的性质解决XXX成立问题利用函数的性质解决恒成立问题,主要是函数单调性的应用。
例如,对于已知函数$f(x)=x^3+(1-a)x^2-a(a+2)x+b(a,b\in R)$,若函数$f(x)$的图象过原点,且在原点处的切线斜率是$-3$,求$a,b$的值。
我们可以先求出$f'(x)$,然后令$f(0)=b=0$,$f'(-1)$和$f'(1)$的乘积小于$0$,解出$a=-3$或$a=1$。
再比如,若函数$f(x)$在区间$(-1,1)$上不单调,求$a$的取值范围。
我们可以利用导函数$f'(x)$在给定的区间上有零点这一性质,根据函数零点的存在性定理解出$a$的取值范围。
二、利用数形结合思想解决恒成立问题利用数形结合思想解决恒成立问题,可以通过画图来求出函数的单调区间、极值点等信息,再结合数学方法解决问题。
例如,对于已知$x=3$是函数$f(x)=a\ln(1+x)+x^2-10x$的一个极值点,求$a$。
我们可以求出$f'(x)$,然后令$f'(3)=0$,解出$a=16$。
再比如,若直线$y=b$与函数$y=f(x)$的图象有$3$个交点,求$b$的取值范围。
我们可以根据函数$f(x)$的单调性来求出其极大值和极小值,画出图象,数形结合可以求出$b$的取值范围。
这些技巧可以帮助我们更好地解决函数导数中的恒成立问题,提高我们的解题能力。
方法点评:分离参数是解决恒成立问题的一种重要方法,通过构造新函数并求其最值,可以得到参数取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数恒成立问题
1、已知函数
(a 为实数) (I )若
在处有极值,求a 的值; (II )若
在]23[--,上是增函数,求a 的取值范围。
2、设函数2()ln f x x x ax =++. (Ⅰ)若12
x =时,()f x 取得极值,求a 的值; (Ⅱ)若()f x 在其定义域内为增函数,求a 的取值范围;
3、设函数2()(1)2ln(1)f x x x =+-+.
(Ⅰ)求f (x )的单调区间; (Ⅱ)若当1[1,1]x e e
∈--时,不等式f (x )<m 恒成立,求实数m 的取值范围; (Ⅲ)若关于x 的方程2()f x x x a =++在区间[0, 2]上恰好有两个相异的实根,求实数a 的取值范围.
4、已知函数()ln f x x x =.
(Ⅰ)求()f x 的最小值;
(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围.
5、已知函数239()()(24
f x x x =++)对任意m x f x f x x ≤--∈|)()(|],0,1[,2121不等式恒
成立,试求m 的取值范围。
6、已知函数()2
a f x x x
=+,()ln g x x x =+,其中0a >. (1)若函数()x f y =在[]e ,1上的图像恒在()x g y =的上方,求实数a 的取值范围.
(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,
求实数a 的取值范围.
7、设函数
(1)当a=1时,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求实数a 的取值范围;(3)设函数
,若在[l ,e]上至少存在一组使成立,求实数a 的取值范围.
8、设函数x e x x f 22
1)(=. (I )求函数)(x f 的单调区间; (II )若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围.
9、已知21()(1)2
x f x e a x =-+ (1)求()f x 在0x =处的切线方程.(2)若()f x 在区间(0,2]x ∈为增函数,求a 的取值范围
10、设函数()x x f x e e -=-.若对所有0x ≥都有()f x ax ≥,求a 的取值范围.
11、已知()(1)ln 1f x x x x =+-+,若2()1xf x x ax '≤++,求a 的取值范围.
12、若对所有的[,)x e ∈+∞都有ln x x ax a ≥-成立,求实数a 的取值范围.。