数学建模货物配送问题课程设计
快递公司的配送数学建模
快递公司的配送问题摘要配送是物流系统中非常重要的一个环节,在物流的各项成本中,配送成本占了相当高的比例,减少配送里程以降低物流配送成本成为物流管理过程中首要考虑的问题之一。
本文在已知货运车容量、各客户所需货物重量、快递公司与客户以及客户与客户之间的距离的条件下,建立了以单车场路径问题模型(即VRP模型)为基础、以车辆总行程最短为目标函数、以货物运输量小于汽车载重量以及在客户要求的时间范围内运送货物等为约束条件的单目标线性规划模型。
对于问题一,本文建立了两个模型:模型I:硬时间窗车辆路径规划模型首先根据题目所给条件,对运货所需的车辆数进行预估,然后结合货物运输量小于汽车载重量、一个客户点的货物仅由一辆车配送等约束条件,同时考虑线路的连通性和汽车到达客户点的时间范围,采用0-1规划法建立使总运行里程最小的车辆路径规划模型。
模型II:软时间窗车辆路径规划模型在模型I硬时间窗车辆路径规划模型的基础上,将模型I中的关于时间范围的约束条件,通过设定惩罚函数的系数,变成目标函数的一部分。
本文在考虑路程最短的目标的同时,也要求尽可能在时间范围内到达。
因此,建立了以成本(包括惩罚成本以及行驶过程中带来的成本)最小为目标的函数,以运输量小于汽车载重量以及线路的连通性等为约束条件,建立软时间车辆路径规划模型。
最后运用遗传算法求解模型。
对于问题二,根据题目所提供的数据,利用硬时间窗车辆路径规划模型。
首先,根据货运车的载重量和客户点的需求总量,估计出运货所需车辆数为3,然后,借助Lingo 求解该模型。
得到最优路径的总里程数为910千米,快递公司每天的配送方案应为:每天出动3辆车。
3辆车的行驶路径分别为:0->3->1->2->0,0->6->4->0,0->8->5->7->0关键词: VRPTW 遗传算法 0-1规划法 Lingo目录一、问题重述 (1)二、模型假设和符号说明 (1)三、问题分析 (2)四、模型的建立与求解 (3)4.1问题一的解答 (3)4.1.1模型的准备 (3)4.1.2模型的建立 (3)4.1.3模型的求解 (6)4.2问题二的解答 (7)4.2.1对货运车辆数的估计 (7)4.2.2路线的规划 (7)五、模型的评价与改进 (10)5.1模型的优缺点分析 (10)5.2 模型的改进 (11)六、参考文献 (11)七、附录 (12)一、问题重述某快递公司在某个地区拥有一支货运车队,每台货运车辆的载重量(吨)相同、平均速度(千米/小时)相同,该快递公司用这样的车为若干个客户配送物品,快递公司与客户以及客户与客户之间的公路里程(千米)为已知。
数学建模_送货线路设计问题
数学建模_送货线路设计问题送货路线设计问题1、问题重述现今社会⽹络越来越普及,⽹购已成为⼀种常见的消费⽅式,随之物流⾏业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,⽽且她们往往⼀⼈送多个地⽅,请设计⽅案使其耗时最少。
现有⼀快递公司,库房在图1中的O点,⼀送货员需将货物送⾄城市内多处,请设计送货⽅案,使所⽤时间最少。
该地形图的⽰意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路⾏⾛,⽽不能⾛其它任何路线。
各件货物的相关信息见表1,50个位置点的坐标见表2。
假定送货员最⼤载重50公⽄,所带货物最⼤体积1⽴⽅⽶。
送货员的平均速度为24公⾥/⼩时。
假定每件货物交接花费3分钟,为简化起见,同⼀地点有多件货物也简单按照每件3分钟交接计算。
现在送货员要将100件货物送到50个地点。
请完成以下问题。
1、若将1~30号货物送到指定地点并返回。
设计最快完成路线与⽅式。
给出结果。
要求标出送货线路。
2、假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与⽅式。
要求标出送货线路。
3、若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回。
设计最快完成路线与⽅式。
要求标出送货线路,给出送完所有快件的时间。
由于受重量与体积限制,送货员可中途返回取货。
可不考虑中午休息时间。
2、问题分析送货路线问题可以理解为:已知起点与终点的图的遍历问题的合理优化的路线设计。
图的遍历问题的指标:路程与到达的时间,货物的质量与体积,以及最⼤可以负载的质量与体积。
在路线的安排问题中,考虑所⾛的路程的最短即为最合理的优化指标。
对于问题⼆要考虑到所到的点的时间的要求就是否满⾜题意即采⽤多次分区域的假设模型从⽽找出最优的解对于问题三则要考虑到体积与质量的双重影响,每次到达后找到达到最⼤的体积与质量的点然后返回,再依次分析各个步骤中可能存在的不合理因素达到模型的进⼀步合理优化得到最合理的解。
数学建模货物配送问题课程设计
.安徽工业大学—数学建模论文货 物 运 送 问 题组 员: 班 级: 指导教师:侯为根.;2013-7-30.1、问题重述 一公司有二厂,分处 A、B 两市,另外还有 4 间具有存贮机构的库房,分别在 P、Q、R 和 S 市。
公司出售产品给 6 家客户 C1,C2,…,C6,由各库房或直接由工 厂向客户供货。
配送货物的费用由公司负担,单价见下表:表一受货者供货者A 市厂 B 市厂 P 库房 Q 库房P 库房0.5----Q 库房0.50.3R 库房1.00.5S 库房0.20.2客户 C1 客户 C2 客户 C3 客户 C4 客户 C5 客户 C61.0 ---1.5 2.0 ---1.02.0 -------------------1.5 0.5 1.5 ---1.01.0 0.5 0.5 1.0 0.5 ----注:单位元/吨;划“----”表示无供货关系.R 库房---1.5 2.0 ---0.5 1.5S 库房------0.2 1.5 0.5 1.5某些客户表示喜欢由某厂或某库房供货.计有: C1-------- A 市厂 C2-------- P 库房 C5--------Q 库房 C6--------R 库房或 S 库房.;.A 市厂月供货量不能超过 150 千吨,B 市厂月供货量不能超过 200 千吨。
各 库房的月最大流通量千吨数为库房P流通量70表二QRS5010040各客户每月所必须满足的供货量为(单位:千吨)表三客户C1C2C3C4C5C6要求货量501040356020现假设可以在 T 市和 V 市建新库房,和扩大 Q 市的库房,而库房的个数又不能多 于 4 个,必要时可关闭 P 市和 S 市的库房。
建新库房和扩建 Q 市库房的费用(计入利息)摊至每月为下表所列值(万 元),它们的潜在的月流通量(千吨)也列于表中库房T V Q(扩建)表四月费用 1.2 0.4 0.3流通量30 25 20.;.关闭 P 市库房月省费用 1 万元;关闭 S 市库房月省 0.5 万元。
数学建模案例多商品配送问题
题设条件: � 在一个周期开始时,每个零售商对所有商品在不同时段的需求已知 � 一个周期内,对于不同的商品各货栈给各零售商的价格已知,且价格不随
时段变化
增加假设:
� 所讨论区域半径在 300km 以内,运输时间远小于时段长度
� 当货栈容量不足时,供应商提前或推迟供货最多只能跨越一个时段(否则
关键词:
物流配送 分步优化 启发式算法 质量-服务损失函数 Lingo 软件
1
一、问题重述
多商品配送方案的设计是现实生活中很多供货商所面临的问题。现某供货商在 一地区内的不同地点有若干仓储货栈。其目标是按照不同零售商的需求将商品及时 发送给零售商,使总成本尽可能小。这里考虑总成本由两个主要部分构成:
⎨ ⎪⎩ kk 2
pijk
(t2
−
t0 )2
t1 (t2
< t0 > t0
)
其中 kk1 是第 k 种商品的提前赔偿系数, kk2 是第 k 种商品的推迟赔偿系数,由
于持有成本一般小于缺货成本,故 kk1 < kk2
[运输成本函数]
4
根据常用的运价递减原则[6] ,可绘出运输成本
图线大致如下侧所示,故我们将运输成本函数定为下
Vk
第 k 种商品的单位体积
S
货车的容量
Bijkl 第 i 个货栈与第 j 个零售商在第 l 时段是否存在第 k 种商品的运输
持有成本 —— 持有某种货物一段时间所必须支付的成本,包括管理费、仓储费、 管理费、利息费用等
缺货成本 —— 当需要某种货物而又不能从库存得到供应时所导致的零售商在 商誉、 名声、及潜在的未来销售上的损失
送货问题数学建模
解决送货问题可以使用数学建模的方法,以下是一个基本的数学建模过程:
1. 定义问题:明确问题的背景和目标。
例如,送货问题可以定义为如何选择最佳的送货路线,以便在给定时间内尽可能快速地送达所有货物。
2. 建立数学模型:根据问题的特点,选择适当的数学模型来描述问题。
送货问题可以使用图论中的旅行商问题(Traveling Salesman Problem,TSP)进行建模。
在TSP中,每个送货点被看作是图中的节点,送货点之间的距离被看作是节点之间的边。
3. 确定目标函数:定义用于衡量送货路线的优劣的目标函数。
对于送货问题,可以选择目标函数为总送货距离或送货时间。
4. 添加约束条件:考虑问题中的各种约束条件,如送货员的工作时间限制、访问某些送货点的次序要求等。
5. 求解问题:使用优化算法来求解建立的模型。
对于TSP问题,可以使用蚁群算法、遗传算法等启发式算法来寻找最佳的送货路线。
6. 模型评估和优化:对求解结果进行评估,看是否满足问题的要求。
如果不满足,可以进行参数调整或尝试其他算法来优化模型。
7. 结果解释和应用:将最终的送货路线结果解释给相关人员,并将其应用于实际的送货任务中。
需要注意的是,送货问题的具体建模方法和求解策略可能因问题的具体情况而有所差异。
在实际应用中,还需要考虑更多的因素,如送货量、交通状况、车辆容量等。
因此,在进行数学建模时,要根据实际情况进行灵活调整和优化。
数学建模—货物配送问题
数学建模—货物配送问题本文将会探讨货物配送问题,其中会使用到数学建模的方法来解决。
问题描述假设有 $n$ 个城市需要被配送货物,每个城市之间的距离是已知的 $d_{i,j}$,其中 $d_{i,j}$ 表示第 $i$ 个城市和第 $j$ 个城市之间的距离。
需要找到一种合理的方案使得每个城市都能够被配送到且总的成本最小。
模型建立这是一个典型的旅行商问题,可以使用线性规划的方法来解决。
我们设 $x_{i,j}$ 表示是否从城市 $i$ 转移到城市 $j$,则可以得到以下的规划模型:$$\begin{aligned}\min \quad & \sum_{i=1}^n \sum_{j=1}^n d_{i,j} x_{i,j} \\s.t. \quad & \sum_{j=1}^n x_{i,j} = 1, \quad i=1,\cdots,n \\& \sum_{i=1}^n x_{i,j} = 1, \quad j=1,\cdots,n \\& u_i - u_j + nx_{i,j} \leq n-1, \quad i,j=2,\cdots,n, i \neq j \\& x_{i,j} \in \{0,1\}, \quad i,j=1,\cdots,n\end{aligned}$$其中,第一个约束是保证每个城市都恰好被访问一次,第二个约束也是保证每个城市都恰好被访问一次,第三个约束是 TSP 约束条件。
结论通过进行线性规划求解,可以求得货物配送问题的最优解。
当然,对于特别大的问题,我们还可以使用遗传算法等启发式算法来解决。
通过本文的学习,相信大家可以掌握货物配送问题的建模方法,并且对于线性规划方法有更深入的了解。
货物配送问题数学建模
货物配送问题数学建模一、问题描述在物流配送中,如何合理地安排货物的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化,是一个重要的问题。
本文将以某物流公司为例,探讨如何利用数学建模的方法解决货物配送问题。
二、问题分析该物流公司需要将货物从A地配送到B地,其中A地有n个发货点,B地有m个收货点。
每个发货点的货物重量不同,每个收货点的需求量也不同。
为了保证配送效率,该物流公司需要在每个发货点选择最优的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化。
具体而言,该问题需要考虑以下因素:1.货物重量:每个发货点的货物重量不同,需要考虑不同重量的货物在配送过程中的影响。
2. 配送路线:如何选择最优的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化。
3. 配送成本:配送成本包括人工成本、车辆成本、油费等,需要考虑如何在保证配送效率的同时最小化配送成本。
三、数学建模为了解决上述问题,我们可以采用数学建模的方法。
具体而言,我们可以将该问题建模为一个最小费用最大流问题。
最小费用最大流问题是图论中的一个经典问题,其主要思想是在网络流的基础上,引入费用这一概念,使得在满足流量限制的同时,最小化总费用。
在本问题中,我们可以将发货点看作源点,收货点看作汇点,货物的重量看作每个边的流量限制,配送成本看作每个边的费用。
具体而言,我们可以将该问题建模为以下几个步骤:1. 建立网络模型:将发货点和收货点看作网络中的节点,将货物的配送路线看作网络中的边,建立网络模型。
2. 确定流量限制:将每个发货点的货物重量看作每个边的流量限制。
3. 确定费用:将配送成本看作每个边的费用。
4. 求解最小费用最大流:利用最小费用最大流算法,求解最小费用最大流,得到最优的配送路线。
四、实际案例为了验证上述方法的有效性,我们在某物流公司的实际配送中进行了测试。
具体而言,我们将该问题建模为一个最小费用最大流问题,并利用最小费用最大流算法求解最优的配送路线。
快递公司送货策略(数学建模)
B题快递公司送货策略摘要本文主要解决快递公司送货策略问题,研究在各种运货地点,重量的确定,业务员的运输条件和工作时间等各种约束条件下,设计最优的路线,得出最优送货策略。
主要研究如下三个问题。
问题一:首先考虑在时间和重量两个约束条件之下,优先考虑重量,通过对送货点的分布进行分析,将分布点按照矩形,弧形和树的理念将问题分成三种模块,从而建立三种送货方案。
方案一,运用矩形,将整个区域分成5个区域,以选择的点的送货质量之和小于25kg 且距离尽可能小的点的集合作为一个区域。
依次来分配业务员的送货地点。
方案二,运用弧形,以原点为圆心画同心圆,按照就近原则确定送货区域,依次分配业务员的送货地点。
方案三,运用Dijkstra 算法计算出每一个顶点到其它点的距离。
分析点的分布,由此得到最小树,在最小树的基础上,向四周延伸,得到相应区域。
且以送货质量小于25kg且距离尽可能小的点的集合作为一个区域。
依次来分配业务员的送货地点。
其次,再综合这三种方案所涉及到得时间,路程依次进行对比,画出柱形图,清晰可得出最优的方案为方案三。
问题二,是解决送货总费用最小的问题。
因此要求业务员的运行路线要尽量短,且尽早卸货。
首先将该区域安排送货点均匀度分为三个小区域,以每个点的信件质量从小到大排列,以送货点最大点为中心,选择该点附近质量较大且距离较短原则的下一个送货点,依次类推,直到根据约束条件为每次携带的快件量不超过25kg,找到该条路线最后一个送货点。
按此方法可得路线为0→10→12→11→0,0→7→14→27→0,0→1→26→28→0,0→13→19→25→0,0→2→5→16→17→0,0→22→15→29→30→0,0→6→20→18→24→0,0→4→3→8→9→21→23→0,并且利用C语言编程(见附录),算得每条路线的费用,所得总费用为14636.1元。
问题三,在问题一的基础上,将业务员的工作时间延长到8小时,由此在问题一的基础上,将8小时的工作时间所需花费的费用在三个方案中进行对比,由此得到依旧是方案三的为最优。
数学建模运输问题送货问题
数学建模运输问题送货问题数学建模论文题目: 送货问题学院(直属系数学与计算机学院年级、专业: 2010级信息与计算科学姓名:杨尚安指导教师: 蒲俊完成时间: 2012年 3 月20 日本文讨论的是货运公司的运输问题,根据各公司需求和运输路线图,建立了线性规划模型和0-1规划模型,对货运公司的出车安排进行了分析和优化,得出运费最小的调度方案。
对于问题一,由于车辆在途中不能掉头,出车成本固定,要使得总成本最小,即要使在一定的车辆数下,既满足各公司的需求,又要尽量减小出车次数。
故以最小出车数为目标函数,建立线性规划模型,并通过lingo求解,得出最小出车数27次。
接着考虑车的方向问题,出车分为顺时针和逆时针,建立0-1模型,并求解,得出满足问题一的调度方案(见附录表1)。
对于问题二,车辆允许掉头,加上车辆装载货物和空装时运输费不同,,要使总成本最小,故可以通过修改原目标函数,建立线性规划模型和0-1规划模型,求解,得出最佳派出车辆3辆并列出满足问题二的调度方案。
对于问题三第一小问,增加了运输车辆的类型。
即装载材料的方法很多,在上述分析的基础上,通过增加约束条件,建立新的线性规划模型,并求解,得出满足问题三的调度方案。
在第二小问中,由于给出部分公司有道路相通,可采用运筹学中的最短路问题的解决方法加以解决。
关键字:线性规划模型0-1规划模型调度一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。
路线是唯一的双向道路(如图1)。
货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。
每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。
运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。
送货路线-数学建模-一等奖
摘要摘要本文讨论了送货员送货路线的优化设计问题, 即在给定送货地点和给定设计规范的条件下,综合考虑最大载重范围、最大带货体积以及各货物送货时限,确定业务员的最佳运行路线策略.并总结出一些在这类图中求解近似最优回路的有效法则.对于问题1,采用了两种方法进行了计算,第一种是通过Floyd算法做出各顶点间的最短路径矩阵,然后选出1~30号货物所送达的顶点间的最短路径及距离,用二边逐次修正法求解Hamilton圈;第二种是通过蚁群算法获得多条近似优解,选取最佳线路.对于第二问,则采用改进的遗传算法,求解有时间约束条件的TSP问题,根据线路规划问题的特点,基于遗传算法(GA)建立了一个适用于带有时间约束的送货路线规划模型.实验证明了此算法的有效性和可行性.对于第三问,利用分割求解法和蚁群算法的合成算法,运用共同链分割全图,对每一个分图进行最优求解,由此得到全图的最优解。
关键词送货问题;优化路线;TSP模型;蚁群算法送货路线设计的数学模型1 问题重述现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少.现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少.该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线.各件货物的相关信息见表1,50个位置点的坐标见表2.假定送货员最大载重50公斤,所带货物最大体积1立方米.送货员的平均速度为24公里/小时.假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算.现在送货员要将100件货物送到50个地点.请完成以下问题.1. 若将1~30号货物送到指定地点并返回.设计最快完成路线与方式.给出结果.要求标出送货线路.2. 假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式.要求标出送货线路.3. 若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回.设计最快完成路线与方式.要求标出送货线路,给出送完所有快件的时间.由于受重量和体积限制,送货员可中途返回取货.可不考虑中午休息时间..2模型的假设与符号说明2.1 模型假设1.假设送货员只能沿如图所示连通线路行走,而不能走其它任何路线; 2.在连通线路中业务员可以任意选择路线;3.假设送货员每到达一个地点,交接一件货物花费都为3分钟,交接完毕马上前往下一个地点,期间不花费时间;4.假设送货员的速度保持匀速,即保持24公里/小时,不考虑堵车,发生意外等现象; 2.2 符号说明i W :第i 个货物的重量;(,)i x y :序号为i 的送货点的坐标; i V :第i 个货物的体积;C :送货路线总路程;N :送货员送货次数;t :送货所用总时间;(,)G V E :赋权连通图;i G :(,)G V E 的第i 个子图;i L :子图i G 中的最佳回路;()e ω:边e 的边权;()v ω:点v 的点权;i l :i L 的各边权之和;i e :i L 的各点权之和;T :送货中的停留时间; u :送货员的行驶速度;点权()i v T V ω=⨯.为叙述方便起见,我们在文中不加说明地使用上述变量和符号的变形形式,它们的含义可以通过上下文确定.3 模型的分析与建立3.1 模型的建立把快递公司送货地点示意图抽象为一赋权连通图(,)G V E ,在权图G 中,i v ∈()V G 对应示意图中的快递公司地点及货物送达点,0v 表示快递公司所在地,j e ∈()E G 对应示意图中路径.边权()j e ω∈对应示意图中的路径长度.建立的数学模型如下:{}0(),(),(G),(),e E G e N v V v T V v V ωω∀∈∃∈∃∈∃∈⨯∈求G 中回路12,,,(1)k L L L k >,使得满足:(1)0(),1,2,,;i v V L i k ∈=(2)1()();ki i V L V G ==(3)1()()min(i ni e E L e ω=∈=∑∑目标为总距离最短)或1()()max ()()min(i i j ke E L e V L e v ωω≤≤∈∈⎧⎫⎪⎪+=⎨⎬⎪⎪⎩⎭∑∑目标为时间最短) 为了讨论方便,先给出图论中相关的一些定义.定义1 经过图G 的每个顶点正好一次的圈,称为G 的哈密顿环路,也称Hamilton 圈.定义2 在加权图(,)G V E =中(1)权最小的哈米顿圈称为最佳Hamilton 圈;(2)经过每个顶点至少一次且权最小的闭通路称为TSP 回路问题.由定义2可知,本问题是一个寻找TSP 回路的问题.TSP 回路的问题可转化为最佳Hamilton 圈的问题.方法是由给定的图(,)G V E =构造一个以V 为顶点集的完备图(,)G V E ''=,E '中每条边(,)x y 的权等于顶点x 与y 在图中最短路径的权,111min{,}m m m m ij im mj ij d d d d ---=+在图论中有以下定理:定理1 加权图G 的送货员回来的权和G '的最佳Hamilton 圈的权相同; 定理2 在加权完备图中求最佳Hamilton 圈的问题是NPC 问题. 在解决问题的过程中,我们用到以下算法:算法一(Floyd 算法):令n D 表示一个N N ⨯矩阵,它的(,)i j 元素是m ij d .1.将图中各顶点编为1,2,,N .确定矩阵0D ,其中(,)i j 元素等于从顶点i 到顶点j 最短弧的长度(如果有最短弧的话).如果没有这样的弧,则令0ij d =∞.对于i ,令00ij d =.2.对1,2,,m N =,依次由m-1D 的元素确定m D 的元素,应用递归公式111min{,}m m m m ij im mj ij d d d d ---=+.每当确定一个元素时,就记下它所表示的路.在算法终止时,矩阵n D 的元素(,)i j 就表示从顶点i 到顶点j 最短路的长度.算法二:求加权图(,)G V E =的TSP 问题回路的近似算法:1.用算法一(Floyd 算法)求出(,)G V E =中任意两个顶点间的最短路,构造出完备图(,)G V E ''=,(,),(,)min (,)G x y E x y d x y ω'∀∈=.2.输入图G '的一个初始Hamilton 圈;3.用对角线完全算法产生一个初始Hamilton 圈;4.随机搜索出(,)G V E ''=中若干个Hamilton 圈,例如2000个;5.对2、3、4步所得的每个Hamilton圈,用二边逐次修正法进行优化,得到近似最佳Hamilton圈;6.在第5步求出的所有H圈中,找出权最小的一个,此即要找的最佳Hamilton 圈的近似解.算法三:蚁群算法蚁群算法是一种新型的模拟进化算法.该算法由意大利学者M. DorigoV. Maniezzo和A. Colorini 等人在90年代首先提出,称之为蚁群系统(ant colony system ),应用该算法求解TSP 问题、分配问题,取得了较好的结果.算法受到真实蚁群觅食行为的启发,科学家发现虽然单个蚂蚁没有太多的智力,也无法掌握附近的地理信息,但整个蚁群却可以找到一条从巢穴到食物源之间的最优路线.经过大量细致观察研究发现:蚂蚁个体之间通过一种称之为外激素(pheromone) 的物质进行信息传递.蚂蚁在运动过程中, 能够在它所经过的路径上留下该种物质,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上单位时间走过的蚂蚁越多,表明该路线的可用性越好,则后来者选择该路径的概率就越大.蚂蚁个体之间就是通过这种信息的交流寻找最优的到达食物源的线路.蚁群算法具有实现简单、正反馈、分布式的优点.图1 蚁群算法说明在图1中,从A到E(或者从E 到A)有两条路径(ABCDE 和ABHDE),其中B到H、D到H的距离为1,B到C和D到C的距离为0.5.下面分别考虑在时刻t = 0 , 1 ,2 . .时蚁群的运动情况.如图2b,在时刻t = 0 ,设有30只蚂蚁从A运动到B.此时路径BH、BC上没有外激素(蚂蚁留下的信息量),故蚂蚁将以相同的概率向BC、BH 运动,于是各有15只蚂蚁分别选择路径BH和BC.在真实蚁群中,外激素的数量会随时间的流逝而蒸发掉一部分,为说明方便,此处假设:①所有蚂蚁运动的速度相等;②外激素蒸发量与时间成正比例,即路径上外激素的剩余量与路径的长度成反比;③蚂蚁选路的概率与所选路上外激素的浓度成正比.因为路径BHD 的长度是路径BCD的2倍,当B点的蚂蚁到达D点后,路径BCD上的外激素是BHD上的2倍.如图2c,在时刻t =1有30只蚂蚁从E到达D.因为路径DC上的外激素量是DH上的2倍,根据蚂蚁选路特点,将会有20只蚂蚁选择DC,而只有10只蚂蚁选择DH.以此类推,当t = 2 ,3 ,4. . . 时,将会有更多的蚂蚁选择路径BCD.经过较长时间运动后,蚁群最终会沿着最优路径ABCDE运动.网络的路由问题与蚁群寻路的问题有很大的可比性,都是寻找可以到达目的地的最优路线.目前已经证明蚁群算法在解决路由问题上具有分布式、正反馈、全局收敛等优点.3.2 求解准备1)根据已知位置点的坐标和连接情况,使用Matlab做出各点位置图如下:图2 各点位置与连通情况图2)根据已知各点坐标,由两点间距离公式d=邻连通点间的距离如下表:表1 相邻连通点距离表3.3 模型的求解 3.3.1 问题1问题1要求将1—30号货物送到指定地点并返回,不考虑各货物的送达时间,考虑到3048.550i i W ==<∑,且300.881i i V ==<∑,故不用考虑重量、体积对送货次数的影响,即只需一次送货,无需中途返回取货. 方法一:Floyd 算法+二次逐项修边法1.由表1中的数据,做出图(,)G V E 的邻接矩阵(0)A ,根据Floyd 算法,求得任意两点间的最短距离(51)A ;2.经过分析,发现运送1~30号货物只涉及22个点(含0v ),由于其中21个送货点中有5个含2货物,2个含3货物;3、将这22个顶点令为点集i X ={(,)i i a b ,0,1,2,,21i =},令矩阵B 为仅含有点i X 的最短距离方阵,构成加权图完备图(,)G V E ''=;5296 5094 7493 3621 2182 1797 5395 4709 1392 39972929 6707 5254 4677 6215 5777 6885 9751 8833 7860 11722 5296 08456 11063 8916 3114 7092 10691 5714 6688 6285 5217 12003 7542 8489 10026 8065 9173 13562 12645 11671 15534 5094 8456 0 2608 2196 5342 3297 3970 8806 5489 8093 7026 5282 9350 6177 7714 9873 10981 11250 10333 9359 13222 7493 11063 2608 03872 7950 5696 2098 11205 7888 9675 9425 3410 11750 7471 5933 11454 13380 9469 8552 10653 11441 3621 8916 2196 3872 0 5803 1824 1775 7333 4016 6620 5553 3086 7877 4704 5610 8400 9508 9146 8229 7887 11118 2182 3114 5342 7950 5803 03979 7577 3884 3574 3171 2104 8889 4428 5375 6913 4951 6059 10449 9531 8558 12420 1797 7092 3297 5696 1824 3979 0 3598 5509 2192 4797 3729 4910 6054 2880 4418 6576 7684 7954 7036 6063 9925 5395 10691 3970 2098 1775 7577 3598 0 9107 5790 7577 7327 1312 9652 53733836 9357 11283 7372 6454 8556 9343 4709 5714 8806 11205 7333 3884 5509 9107 0 3317 2848 1780 9113 4105 5052 6589 4628 5736 10125 9208 8234 12097 1392 6688 5489 7888 4016 3574 2192 5790 3317 0 2605 1537 7102 3862 4809 6346 4385 5493 9882 8965 7991 11854 3997 6285 8093 9675 6620 3171 4797 7577 2848 2605 0 1068 6265 3393 2204 3741 1780 5023 7278 6360 5386 9249 2929 5217 7026 9425 5553 2104 3729 7327 1780 1537 1068 0 7333 2325 3272 4809 2848 3956 8345 7428 6454 10317 6707 12003 5282 3410 3086 8889 4910 1312 9113 7102 6265 7333 0 9658 4061 2524 8045 10461 6060 5142 7244 8031 5254 7542 9350 11750 7877 4428 6054 9652 4105 3862 3393 2325 9658 0 5596 7134 5172 1631 7200 8117 4848 8243 4677 8489 6177 7471 4704 5375 2880 5373 5052 4809 2204 3272 4061 5596 0 1537 3984 6400 5074 4156 3183 7045 6215 10026 7714 5933 5610 6913 4418 3836 6589 6346 3741 4809 2524 7134 1537 0 5521 7937 3536 2618 4720 5508 5777 8065 9873 11454 8400 4951 6576 9357 4628 4385 1780 2848 8045 5172 3984 5521 0 6803 9057 8140 7166 11029 6885 9173 10981 13380 9508 6059 7684 11283 5736 5493 5023 3956 10461 1631 6400 7937 6803 0 5569 6486 3217 6612 9751 13562 11250 9469 9146 10449 7954 7372 10125 9882 7278 8345 6060 7200 5074 3536 9057 5569 0 918 2352 1971 8833 12645 10333 8552 8229 9531 7036 6454 9208 8965 6360 7428 5142 8117 4156 2618 8140 6486 918 0 3269 2889 7860 11671 9359 10653 7887 8558 6063 8556 8234 7991 5386 6454 7244 4848 3183 4720 7166 3217 2352 3269 0 4323 11722 15534 13222 11441 11118 12420 9925 9343 12097 11854 9249 10317 8031 824370455508 11029 6612 1971 2889 4323 0 ⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭图3 加权完备图G ’的邻接矩阵4、将(,,)P V E w 的邻接矩阵(,)B i j 通过经典货郎担问题的解法,即二次逐项修边法,求得最优的Hamilton 圈.图4 方法一运行结果截图表2 程序中点的数字与图1中的对应转换程序 0 1 2 3 4 5 6 7 8 9 10 图 0 131416 17 18 21 23 24 26 27 程序1112 131415161718192021图31 32 34 36 38 39 40 42 43 45 49图5 路线示意图路线:0-->18-->13-->19-->24-->31-->27-->39-->31-->34-->40-->45--> 42-->49-->42-->43-->38-->36-->38-->35-->32-->23-->16-->14-->17-->21-->26-->0路程:C= 54708 (m)方法二:蚁群算法蚁群算法中α、β、ρ等参数对算法性能有很大的影响。
数学建模_送货问题[1]
快递公司送货策略摘要目前,快递行业蓬勃发展,为生活带来诸多便利。
对于快递公司,如何合理安排业务员的人数和派送路线,使快件在指定时间内送达目的地并且费用最省,成为一个十分重要的问题。
本文通过对已知数据的分析,根据相关数学建模知识,解决了题目要求的实际问题。
针对问题一:从利用人员最少,运行路程最短,人员工作时间和负重相对平均三个方面综合考虑,利用四叉树的思想划分区域确定业务员的运行路线,并建立物流配送模型,用LINGO筛选出最佳路线,最后制定出公司送货策略的最佳方案。
表一为所得结果:表一:最佳送货策略所需人数及运行总路程针对问题二,建立费用最省模型,并对结果进行优化处理,在5人负责八条总路程为484km的前提下,最后费用最少为15780.7针对问题三,在问题一的基础上,尽量保证时间的均衡,并用尽可能少的人完成投递任务。
最终用四人完成投递任务关键词:四叉树分区物流配送模型 LINGO软件费用最省模型一、问题重述目前,快递行业蓬勃发展,为生活带来更多方便。
在合理条件下,用最少的人员获得最大的利润是快递公司需解决的实际问题。
假设快递公司每个业务员每天平均工作时间不超6小时,在每个送货点停留的时间为10分钟,途中速度为25km/h,每次出发最多能带25千克的重量。
平均每天收到快件总重量为184.5千克,假设送货运行路线均为平行于坐标轴的折线。
需解决如下问题:(1)为该公司提供一个合理的送货策略;(2)如果业务员携带快件时的速度是20km/h,获得酬金3元/km kg;而不携带快件时的速度是30km/h,酬金2元/km,请为公司设计一个费用最省的策略;(3)如果可以延长业务员的工作时间到8小时,公司的送货策略将有何变化?表二为每个送货点的快件量T和坐标表二:各个送货点的快件质量及坐标图一为送货点的坐标分布图一:送货点坐标分布图二、基本假设与符号说明3.1.基本假设结合本题实际,为了确保模型求解的准确性和合理性,我们排除了一些未知因素的干扰,提出了以下几点假设:1、每个业务员每天平均工作时间、在每个送货点的停留时间和每次出发负重与题中所给条件相符,不会因任何原因发生变化;2、每个业务员送货往返途中始终维持题中给定速度,途中不会出现使速度变化的各种意外情况;3、每个业务员在送完当天货物后均需返回公司;4、每个送货点均处于平行两坐标轴的十字路口上,即业务员送货运行路线均为平行于坐标轴的折线5、每天所有快递均投递成功,不出现未签收需再次投递的情况;6、附件中所给出所有数据条件均合理,与实际相符。
快递公司送货策略(数学建模)
B题快递公司送货策略摘要本文主要解决快递公司送货策略问题,研究在各种运货地点,重量的确定,业务员的运输条件和工作时间等各种约束条件下,设计最优的路线,得出最优送货策略。
主要研究如下三个问题。
问题一:首先考虑在时间和重量两个约束条件之下,优先考虑重量,通过对送货点的分布进行分析,将分布点按照矩形,弧形和树的理念将问题分成三种模块,从而建立三种送货方案。
方案一,运用矩形,将整个区域分成5个区域,以选择的点的送货质量之和小于25kg 且距离尽可能小的点的集合作为一个区域。
依次来分配业务员的送货地点。
方案二,运用弧形,以原点为圆心画同心圆,按照就近原则确定送货区域,依次分配业务员的送货地点。
方案三,运用Dijkstra 算法计算出每一个顶点到其它点的距离。
分析点的分布,由此得到最小树,在最小树的基础上,向四周延伸,得到相应区域。
且以送货质量小于25kg且距离尽可能小的点的集合作为一个区域。
依次来分配业务员的送货地点。
其次,再综合这三种方案所涉及到得时间,路程依次进行对比,画出柱形图,清晰可得出最优的方案为方案三。
问题二,是解决送货总费用最小的问题。
因此要求业务员的运行路线要尽量短,且尽早卸货。
首先将该区域安排送货点均匀度分为三个小区域,以每个点的信件质量从小到大排列,以送货点最大点为中心,选择该点附近质量较大且距离较短原则的下一个送货点,依次类推,直到根据约束条件为每次携带的快件量不超过25kg,找到该条路线最后一个送货点。
按此方法可得路线为0→10→12→11→0,0→7→14→27→0,0→1→26→28→0,0→13→19→25→0,0→2→5→16→17→0,0→22→15→29→30→0,0→6→20→18→24→0,0→4→3→8→9→21→23→0,并且利用C语言编程(见附录),算得每条路线的费用,所得总费用为14636.1元。
问题三,在问题一的基础上,将业务员的工作时间延长到8小时,由此在问题一的基础上,将8小时的工作时间所需花费的费用在三个方案中进行对比,由此得到依旧是方案三的为最优。
物资配送问题数学建模
物资配送问题是一种常见的物流配送问题,它涉及到如何安排车辆或路线,将物资从一个地方运送到另一个地方。
这个问题可以抽象为一个优化问题,目标是最小化运输成本或最大化运输效率。
下面是一种简单的数学建模方法:
1.确定问题和目标:明确需要配送的物资种类、数量、目的地以及运输工具等信
息,然后确定目标函数,例如最小化运输成本或最大化运输效率。
2.建立模型:将物资配送问题转化为一个线性规划问题,使用变量表示物资的数
量、车辆的数量、车辆的容量以及运输路径等信息。
3.确定约束条件:考虑车辆容量、物资数量、目的地等因素对配送的影响,确定
相应的约束条件。
4.确定目标函数:根据问题和目标,确定目标函数,例如最小化运输成本或最大
化运输效率。
5.求解模型:使用线性规划求解器或者其他优化工具,求解模型并得到最优解。
数模_送货路线设计问题论文[1]1
目录一、问题重述 ............................................................................................................................. - 2 -1.1问题背景 ...................................................................................................................... - 2 -1.2实际现状 ...................................................................................................................... - 2 -1.3问题提出 ...................................................................................................................... - 2 -二、基本假设 ............................................................................................................................. - 3 -三、符号说明及名词解释.......................................................................................................... - 3 -3.1基本符号 ...................................................................................................................... - 3 -3.2部分符号说明与名词解释........................................................................................... - 3 -四、问题分析、模型建立与模型求解...................................................................................... - 4 -4.1问题一 .......................................................................................................................... - 4 -4.1.1问题分析............................................................................................................. - 4 -4.1.2 模型建立............................................................................................................ - 4 -4.1.3模型求解............................................................................................................. - 6 -4.1.4 模型的优化........................................................................................................ - 7 -4.2问题二 .......................................................................................................................... - 9 -4.2.1问题分析........................................................................................................... - 9 -4.2.2模型建立........................................................................................................... - 9 -4.2.3模型求解......................................................................................................... - 10 -4.2.4 通过模拟进行校验.......................................................................................... - 11 -4.3问题三 ........................................................................................................................ - 12 -4.3.1问题分析........................................................................................................... - 12 -4.3.2模型建立........................................................................................................... - 12 -4.3.3模型求解........................................................................................................... - 14 -五、模型分析 ........................................................................................................................... - 17 -5.1模型优点..................................................................................................................... - 17 -5.2 模型缺点..................................................................................................................... - 17 -5.3模型的推广................................................................................................................. - 17 -六、参考文献 ........................................................................................................................... - 17 - 附录: ....................................................................................................................................... - 19 - 附录一:............................................................................................................................ - 19 - 附录二:............................................................................................................................ - 23 - 附录三:............................................................................................................................ - 23 -送货路线设计问题一、问题重述1.1问题背景现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方。
快递公司的配送数学建模
快递公司的配送问题摘要配送是物流系统中非常重要的一个环节,在物流的各项成本中,配送成本占了相当高的比例,减少配送里程以降低物流配送成本成为物流管理过程中首要考虑的问题之一。
本文在已知货运车容量、各客户所需货物重量、快递公司与客户以及客户与客户之间的距离的条件下,建立了以单车场路径问题模型(即VRP模型)为基础、以车辆总行程最短为目标函数、以货物运输量小于汽车载重量以及在客户要求的时间范围内运送货物等为约束条件的单目标线性规划模型。
对于问题一,本文建立了两个模型:模型I:硬时间窗车辆路径规划模型首先根据题目所给条件,对运货所需的车辆数进行预估,然后结合货物运输量小于汽车载重量、一个客户点的货物仅由一辆车配送等约束条件,同时考虑线路的连通性和汽车到达客户点的时间范围,采用0-1规划法建立使总运行里程最小的车辆路径规划模型。
模型II:软时间窗车辆路径规划模型在模型I硬时间窗车辆路径规划模型的基础上,将模型I中的关于时间范围的约束条件,通过设定惩罚函数的系数,变成目标函数的一部分。
本文在考虑路程最短的目标的同时,也要求尽可能在时间范围内到达。
因此,建立了以成本(包括惩罚成本以及行驶过程中带来的成本)最小为目标的函数,以运输量小于汽车载重量以及线路的连通性等为约束条件,建立软时间车辆路径规划模型。
最后运用遗传算法求解模型。
对于问题二,根据题目所提供的数据,利用硬时间窗车辆路径规划模型。
首先,根据货运车的载重量和客户点的需求总量,估计出运货所需车辆数为3,然后,借助Lingo 求解该模型。
得到最优路径的总里程数为910千米,快递公司每天的配送方案应为:每天出动3辆车。
3辆车的行驶路径分别为:0->3->1->2->0,0->6->4->0,0->8->5->7->0关键词: VRPTW 遗传算法 0-1规划法 Lingo目录一、问题重述 (2)二、模型假设和符号说明 (2)三、问题分析 (3)四、模型的建立与求解 (4)4.1问题一的解答 (4)4.1.1模型的准备 (4)4.1.2模型的建立 (4)4.1.3模型的求解 (7)4.2问题二的解答 (8)4.2.1对货运车辆数的估计 (8)4.2.2路线的规划 (8)五、模型的评价与改进 (11)5.1模型的优缺点分析 (11)5.2 模型的改进 (12)六、参考文献 (12)七、附录 (13)一、问题重述某快递公司在某个地区拥有一支货运车队,每台货运车辆的载重量(吨)相同、平均速度(千米/小时)相同,该快递公司用这样的车为若干个客户配送物品,快递公司与客户以及客户与客户之间的公路里程(千米)为已知。
数学建模货物配送问题课程设计
数学建模货物配送问题课程设计安徽工业大学—数学建模论文货物运送问题组 员: 班 级: 指导教师:侯为根2013-7-301、问题重述一公司有二厂,分处 A、B 两市,另外还有 4 间具有存贮机构的库房,分别在 P、Q、R 与 S 市。
公司出 售产品给 6 家客户 C1,C2,…,C6,由各库房或直接由工厂向客户供货。
配送货物的费用由公司负担,单价见下表:表一受货者P 库房 Q 库房 R 库房 S 库房 客户 C1 客户 C2A 市厂 0、5 0、5 1、0 0、2 1、0 ----B 市厂 ---0、3 0、5 0、2 2、0 ----供货者 P 库房 Q 库房---1、51、0 0、5R 库房---1、5S 库房-------客户 C3 客户 C4 客户 C5 客户 C61、5 2、0 ---1、0数学建模货物配送问题课程设计----0、50、5----1、51、0--------0、5----1、0----2、0 ---0、5 1、50、2 1、5 0、5 1、5注:单位元/吨;划“----”表示无供货关系、表 1:单位运输费用(千元/吨)某些客户表示喜欢由某厂或 某库房供货、计有:C1-------- A 市厂受货者 P 库房 Q 库房 R 库房A 基地 0、51 0、2B 基地 0、5 —— 0、2P 库房 Q 库房 R 库房C2-------- P 库房 C5--------Q 库房S 库房 客户甲 客户乙0、6 1——0、4 21、5—— 1、51 0、5—— 0、2C6--------R 库房或 S 库房客户丙 1、5——1——1、5A 市厂月供货量不能超过 150 客户丁——1、50、50、50、5千吨,B 市厂月供货量不能超过 200 千吨。
各库房的月最大流通量千吨数为表二S 库房1、2 0、6 —— 0、5库房PQRS流通量705010040库房 流量表 5:库房容量(吨)PQRS70605050各客户每月所必须满足的供货量为(单位:千吨)表三客户C1C2C3C4C5C6要求货量501040356020表 3:客户需求关系(吨)客户甲乙丙丁需求货量50 30 40 30现假设可以在 T 市与 V 市建新库房,与扩大 Q 市的库房,而库房的个数又不能多于 4 个,必要时可关闭 P 市与 S 市的库房。
数学建模货物配送问题
货物配送问题摘要随着城市经济的发展,现代服务业快速发展,城市配送已经成为支撑城市正常运作和经济发展的重要手段。
货物配送作为物流体系中基本的业务环节。
公司通过制定完善的配送方案来获取较大利益。
本文是针对梦想连锁一家主营鲜猪肉的食品加工公司的2个生产基地对其他23 个销售连锁店所需鲜猪肉的的运输调度问题提出相应的方案。
针对问题一,考虑每个城镇的销售量都是固定的,并且要满足所有连锁店的需求,要求运输成本最低,转化为路径最短的问题。
首先根据所给数据画出全省城镇交通网络图。
采用0-1规划算法,即决策变量能到达为1,否则为0,编写程序,用lingo软件直接得出每个连锁店与生产基地所在地城镇63和城镇120之间距离的最小值和所到连锁店,得最优生产与配送方案:由生产基地120向连锁店1、2、5、9、10、11、13、14、15、19、21、22运送货物,其成本为6532.0313元,由生产基地63向连锁店3、4、6、7、8、12、17、18、20、23运送货物,其成本为4008.86118.元。
因此优化得,总的最低成本为10540.89248元。
针对问题二,对于第一小问,采用描述统计的方法,求得各个城镇需求的平均值、方差,通过分析数据来描述其特征。
对于第二小问,在全省所有城镇年需求量已求的基础上,建立灰色预测模型,然后预测分析2012年以后各年份的需求总量,得出全省需求量达峰值时,时间为2014年2月份,并将出现峰值时所有城镇的需求结果进行排序,求解出需求量较大的前五位城镇分别为120、63、31 、106、 68;需求量较小的后五位城镇为 84、30 、54 、74 、129 。
针对问题三,本题需决定连锁店的增建方案,以使全省销售量最大,这是一个优化问题。
我们将采用先分析后计算,并结合0-1规划的方法。
建立目标函数和约束条件。
并利用lingo软件编写程序,城镇6 8 10 18 31 33 50 54 56 64 68 76 100 101 104 110 116 120 123 125 150 154需要增设连锁店,其中城镇120,31,64,10,123分别含有连锁店的个数是3,2,2,2,2个,其余的城镇连锁店个数为1个,使得全省销售量最大,最大值为919414公斤。
数学建模大赛-货物运输问题
数学建模大赛-货物运输问题问题重述:某港口需要将三种原材料A、B、C分别运往8个公司,运输车有三种型号:4吨、6吨、8吨。
每辆车有固定成本,每次出车也有固定成本。
运输车平均速度为60公里/小时,每日工作不超过8小时。
设计一个方案,使得耗时最少、费用最省。
方案设计:针对问题一,我们首先考虑最小化运输次数,然后根据卸载顺序和载重费用尽量小的原则,提出了较为合理的优化模型。
我们采用顺时针送货(①~④公司)和逆时针送货(⑤~⑧公司)的方案,并将方案分为两步:第一步是使每个车次满载并运往同一个公司;第二步是采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。
最后得出耗时为40.5007小时,费用为4685.6元的方案。
针对问题二,我们加上两个定理及其推论,设计的数学模型与问题一几乎相同,只是空载路径不同。
我们采用与问题一相同的算法,得出耗时为26.063小时,费用为4374.4元的方案。
针对问题三的第一小问,我们排除了4吨货车的使用,并仍旧采用顺时针送货(①~④公司)和逆时针送货(⑤~⑧公司)的方案。
最后在满足公司需求量的条件下,采用不同吨位满载运输方案,分为三步:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。
最后得出耗时为19.6844小时,费用为4403.2元的方案。
建立模型时,需要注意以下几个问题:目标层:在建立模型时,如果将调度车数、车次以及每车次的载重和卸货点都设为变量,会导致模型中变量过多,不易求解。
因此,可以将目标转化为两个阶段的求解过程。
第一阶段是规划车次阶段,求解车次总数和每车次的装卸方案;第二阶段是车辆调度阶段,安排尽量少的车辆数,每车次尽量满载,使总的运费最小。
约束层:1)运输车可以从顺时针或者逆时针方向送货,需要考虑不同方向时的载重用;(2)大小件的卸车顺序要求不同原料搭配运输时,沿途必须有序卸货;(3)每车次的送货量不能超过运输车的最大载重量;(4)满足各公司当日需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X11+X12+X13+X14+X011+X031+X041+X061<=150;
X22+X23+X24+X012<=200;
X023+X033+X043+X063-X11=0;
X014+X024+X034+X044+X054-X12-X22=0;
X025+X035+X055+X065-X13-X23=0;
;
R库房的货物量有A、B厂,运出的货物量为客户C2、C3、C5、C6,由约束条件如下:
;
S库房的货物量有A、B厂,运出的货物量为客户C3、C4、C5、C6,由约束条件如下:
;
总结以上的模型,可得配货的最小运输费用问题实际上为一个线性规划模型:
目标函数:
min=0.5*X11+0.5*X12+1.0X13+0.2*X14+0.3*X22+0.5*X23+0.2*X24+X011+2.0*X012+X014+1.5*X023+0.5*X024+1.5*X025+1.5*X031+0.5*X033+0.5*X034+2.0*X035+0.5*X036+2.0*X041+1.5*X043+X044+1.5*X046+0.5*X054+0.5*X055+0.5*X056+X061+X063+1.5*X065+1.5*X066;
C4客户的月需求量为:
;
客户C5可分别由库房Q、R、S三方供应货物,且配货所需单价分别为0.5、0.5、0。5,则得为C5配货的花费为:
C5客户的月需求量为:
;
客户C6可分别由工厂A以及库房P、R、S四方供应货物,且配货所需单价分别为1.0、1.0、1.5、1.5,则得为C6配货的花费为:
客户C6的月需求量为:
z51、z52、z53、z53、z55、z56;
z61、z62、z63、z64、z65、z66;
由于最多只能用四个客房,故要确定选哪四个,即对P、Q、R、S、T、V五个库房定一个零、五变量:
a1、a2、a3、a4、a5表示库房P、Q、S、T、V的0-1变量:
a1为0表示关闭P库房,为1表示未关闭P库房;
客户
C1
C2
C3
C4
C5
C6
要求货量
50
10
40
35
60
20
工厂和各库房向客户的供应量:
受货者供货者
A
B
P
Q
R
S
C1
X011
X012
X013
X014
X015
X016
C2
X021
X022
X023
X024
X025
X026
C3
X031
X032
X033
X034
X035
X036
C4
X041
X042
X043
X044
X045
X046
C5
X051
X052
X053
X054
X055
X056
C6
X061
X062
X063
X064
X065
X066
问题一、可以得到以下线性方程:
客户C1可分别由工厂A、B以及库房Q三方供应货物,且配货所需单价分别为1.0、2.0、1.0,则得为C1配货的花费为:
C1客户的月需求为:
;
客户C2可分别库房P、Q、R三方供应货物,且配货所需单价分别为1.5、0.5、1.5,则得为C配货的花费为:
C2客户的月需求量为:
;
客户C3可分别由工厂A以及库房P、Q、R、S五方供应货物,且配货所需单价分别为1.5、0.5、0.5、2.0、0.2,则得为C3配货的花费为:
C3客户的月需求量为:
;
客户C4可分别由工厂A以及库房P、Q、S四方供应货物,且配货所需单价分别为2.0、1.5、1.0、1.5,则得为C4配货的花费为:
配送货物的费用由公司负担,单价见下表:
受货者
供货者
A市厂
B市厂
P库房
Q库房
R库房
S库房
P库房
0.5
----
Q库房
0.5
0.3
R库房
1.0
0.5
S库房
0.2
0.2
客户C1
1.0
2.0
----
1.0
----
----
客户C2
----
----
1.5
0.5
1.5
----
客户C3
1.5
----
0.5
0.5
2.0
(3)某些客户表示喜欢由某厂或某库房供货.计有:
C1-------- A市厂
C2-------- P库房
C5--------Q库房
C6--------R库房或S库房
假设顾客与库房之间不存在喜好关系。
(4)在问题的解决过程中,由于这个问题只提及运输费用的问题,而不考虑公司在货物卖出时的收益问题,所以我们只对运输上的经济情况进行讨论,不管运输时各个运输路线的单价如何变化,我们的模型都能将最好的方案给出来。
位于A地的厂向P、Q、R、S地库房供应货物所需运费:
位于B地的厂向P、Q、R、S地库房供应货物所需运费:
各库房货物的月流通量:
库房
P
Q
R
S
流通量
70
50
100
40
则得之,X11<=70,X12+X22<=50,X13+X23<=100,X14+X24<=40;
各客户每月所必须满足的供货量为(单位:千吨)
V
0.4
0.3
C1
1.2
----
C2
0.6
0.4
C3
0.5
----
C4
----
0.5
C5
0.3
0.6
C6
0.8
0.9
2、问题分析
随着经济的发展、交通网络的不断健全以及各项科技的进步。使得各个行业竞争激烈,生产商要在满足客户要求与尽量减少生产成本之间面临更复杂决策。在整个配送问题中,所有的对象有三种,一种就是厂房,它是货物的产源地分别地处A、B两个市,它所生产的货物,可以直接运给客户,也可以放到库房里存放;第二种就是库房,用于存放来自于A、B两个厂房的生产物以及将货物配送给它的顾客,这种库房分别位于P、Q、R、S市;第三种就是客户,接收由工厂或库房提供的货物;
A市厂月供货量不能超过150千吨,B市厂月供货量不能超过200千吨。各库房的月最大流通量千吨数为
表二
库房
P
Q
R
S
流通量
70
50
100
40
各客户每月所必须满足的供货量为(单位:千吨)
表三
客户
C1
C2
C3
C4
C5
C6
要求货量
50
10
40
35
60
20
现假设可以在T市和V市建新库房,和扩大Q市的库房,而库房的个数又不能多于4个,必要时可关闭P市和S市的库房。
X036+X046+X056+X066-X14-X24=0;
A
B
P
Q
R
S
C1
X011
X012
X013
X014
X015
X016
C2
X021
X022
X023
X024
X025
X026
C3
X031
X032
X033
X034
X035
X036
C4
X041
X042
X043
X044
X045
X046
C5
X051
X052
X053
X054
X055
X056
C6
X061
X062
X063
约束条件:
X11<=70;
X12+X22<=50;
X13+X23<=100;
X14+X24<=40;
X011+X012+X014=50;
X023+X024+X025=10;
X031+X033+X034+X035+X036=40;
X041+X043+X044+X046=35;
X054+X055+X056=60;
问题一、在配送过程中,我们需要建立一个数学模型来计算如何配货公司的运输费用最低,如何配送货物,既能满足客户的要求,又能为公司节约足够的资金。当然还要考虑到增加工厂和库房的生产能力对配送费用的影响,费用单价、客户对供应货物的最低要求以及工厂和库房生产能力各微小变化对配货方案的影响等因素来进行方案设计。设计出来的方案还要能体现出公司在什么样的改进下能获得更高的经济效益。
受货者
供货者
A市厂
B市厂
P库房
Q库房
R库房
S库房
P库房
0.5
----
Q库房
0.5
0.3
R库房
1.0
0.5