5 格林公式及其应用
格林公式及其应用
§10.3 格林公式及其应用一、格林公式一元微积分学中最基本的公式 — 牛顿、莱布尼兹公式'=-⎰F x dx F b F a ab ()()()表明:函数'F x ()在区间[,]a b 上的定积分可通过原函数F x ()在这个区间的两个端点处的值来表示。
无独有偶,在平面区域D 上的二重积分也可以通过沿区域D 的边界曲线L 上的曲线积分来表示,这便是我们要介绍的格林公式。
1、单连通区域的概念设D 为平面区域,如果D 内任一闭曲线所围的部分区域都属于D ,则称D 为平面单连通区域;否则称为复连通区域。
通俗地讲,单连通区域是不含“洞”(包括“点洞”)与“裂缝”的区域。
2、区域的边界曲线的正向规定设L 是平面区域D 的边界曲线,规定L 的正向为:当观察者沿L 的这个方向行走时,D 内位于他附近的那一部分总在他的左边。
简言之:区域的边界曲线之正向应适合条件,人沿曲线走,区域在左手。
3、格林公式【定理】设闭区域D 由分段光滑的曲线L 围成,函数P x y (,)及Q x y (,)在D 上具有一阶连续偏导数,则有()∂∂∂∂Q x Py dxdy Pdx Qdy DL -=+⎰⎰⎰ (1)其中L 是D 的取正向的边界曲线。
公式(1)叫做格林(green)公式。
【证明】先证 -=⎰⎰⎰∂∂Py dxdy Pdx D L假定区域D 的形状如下(用平行于y 轴的直线穿过区域,与区域边界曲线的交点至多两点)易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域D 给予证明即可。
D a x b x y x :,()()≤≤≤≤ϕϕ12[]-=-=-⎰⎰⎰⎰⎰∂∂∂∂ϕϕϕϕP y dxdy dx P y dy P x y dx D a b x x abx x 1212()()()()(,)=--⎰{[,()][,()]}P x x P x x dxabϕϕ21另一方面,据对坐标的曲线积分性质与计算法有Pdx Pdx Pdx Pdx PdxLABBCCEEA⎰⎰⎰⎰⎰=+++弧弧=+++⎰⎰P x x dx P x x dx ab ba[,()][,()]ϕϕ1200=--⎰{[,()][,()]}P x x P x x dxabϕϕ21因此 -=⎰⎰⎰∂∂Py dxdy Pdx D L再假定穿过区域D 内部且平行于x 轴的直线与的D 的边界曲线的交点至多是两点,用类似的方法可证∂∂Qx dxdy Qdx D L ⎰⎰⎰=综合有当区域D 的边界曲线与穿过D 内部且平行于坐标轴( x 轴或y 轴 )的任何直线的交点至多是两点时,我们有-=⎰⎰⎰∂∂P y dxdy Pdx D L , ∂∂Q x dxdy Qdx D L ⎰⎰⎰=同时成立。
格林公式及其应用
证明: 设 D 是 X 型区域,
D {( x , y ) a x b , 1 ( x ) y 2 ( x )}
P ( x , y )dx
L
L1
L2
L3
P ( x , y ) dx
L4
Pdx
L1 a b
Pdx
2( y)
1
x 1( y)
y
D
L3
L4
c
x 2( y)
[
c
D
Q ( x , y ) x
( y)
dx ]dy (把Q( x , y )看作x的函数
x dxdy .
Q
用牛顿 莱布尼兹公式)
如果D既是X型又是Y 型,则
L
P ( x , y ) dx
P y
,
则曲线积分 Pdx Qdy在该区域内与路径无关 .
L
( 2 ) 如果
Q x
P y
在复连通域内成立,则
曲线积分
不一定与路径无关。
前例,
xdy ydx x y
2 2
.
L
( 3)由定理的证明过程可知 u ( x, y)
( x, y) ( x 0 , y0 )
P ( x , y ) d x Q( x , y ) d y .
L3
( L2 , L4上 dx 0)
b a
L1 y ( x ) 2
L2
P ( x , 2 ( x )) dx
b a
P ( x , 1 ( x )) dx
格林公式及其应用
Pdx Qdy Pdx Qdy
L2
Pdx Qdy Pdx Qdy 0,
L1 L1 ( L2 ) L2
Pdx Qdy 0
此时L1 ( L2 )为有向闭曲线,故结论成立, 反之也成立.
3、定理2
设区域G是一个单连通域,函数P( x, y )、Q( x, y ) 在G内具有一阶连续偏导数,则曲线积分 Pdx Qdy
Q y2 x2 P 2 2 2 x ( x y ) y 则
L
xdy ydx x y
2 2
0
(2) 原点在D内时
选取适当小的r 0, 作位于D内的圆周l x2 y2 r 2 记L与l所围的闭区域为D1;
即D1为复连通区域,
l的方向取逆时针方向 有 , xdy ydx x y
P 因 连续,故第一式左边 y 2 ( x ) P ( x, y ) P b dy dx y dxdy a 1 ( x ) y D a Px, 2 ( x) Px,1 ( x)dx
b
第一式右边 Pdx Pdx Pdx
第三节
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径 无关的条件 三、二元函数的全微分求积
一、 格林公式
平面单连通区域: 设D为平面区域,如果D内任一闭曲线所围的部
分都属于D,则称D为平面单连通区域,否则称为复连
通区域.
通俗的说,平面单连通区域是不含有“洞”的区
域.
例如 圆形区域: x, y ) x 2 y 2 1} {(
Pdx Qdy
ABPA
Q P x y dxdy Pdx Qdy D3 BCNB
高等数学-格林公式及其应用.ppt
l D1
O D2
x
1
2π
d
1 2π
π
20
2
l :4x2 y2 2
法二
l
ydx xdy 4x2 y2
l
ydx
2
xdy
1
2
ydx xd y
l
格林公式
D2是由l 所围区域
4x2 y2 2
所以 I 0 π
π.
1
2
1
2
(1
D2
(2)
π
2
1)dxdy
2
π
25
10.3 格林公式及其应用
Pdx Qdy
L
(L1, L2, L3对D来说为正方向)
8
10.3 格林公式及其应用
(3) 对复连通区域证明:
对若复区连域通不区止域由D一, 格条林闭公曲式线
的右所曲端围线应成积 包.添分 括加,沿且直区边线域界段D的的A方全B向,部CE对边.区界 G D
域则DD来的说边都界是曲正线向由. AB, L2 , BA,
2π 0
格林公式
sin d(
2
(Q P )dxdy D1 x y 0
cos ) cos d(
2
2
0 sin
)
24
10.3 格林公式及其应用
l
ydx xdy 4x2 y2
2π
sin
d(
2
cos
)
2
cos
d(
sin
)
0
2
2 0
π
2
2
sin
2
2
2
2
cos2
d
y L: x2 y2 4
格林公式及其应用
o
Dn x
n
Pd界)
L Pdx Qdy
证毕
格林公式
D
Q x
P y
dxd
y
L
P
dx
Q
d
y
推论: 正向闭曲线 L 所围区域 D 的面积
A
1 2
L
xd y
y
dx
例如, 椭圆
L
:
x
y
a cos b sin
,
0 2
所围面积
1 2 (abcos2 absin2 ) d ab 20
例1. 设 L 是一条分段光滑的闭曲线, 证明
2xy dx x2 dy 0 L
证: 令 P 2xy, Q x2, 则
利用格林公式 , 得
针方向, 记 L 和 lˉ 所围的区域为 D1 , 对区域 D1 应用格
林公式 , 得
y
xdy ydx l x2 y2
xdy ydx Ll x2 y2
0d xdy 0
D1
lL
o
x
D1
2
0
r2
cos2 r 2
r2
sin2
d
2
二、平面上曲线积分与路径无关的等价条件
即 d u(x, y) P dx Q dy (4) 在 D 内每一点都有 P Q .
y x
证明 (1)
(2)
设 L1, L2 为D 内任意两条由A 到B 的有向分段光滑曲
格林公式及其应用
格林公式及其应用
本节,我们将会讨论曲线积分与二重积分之间的关系.格林公式就是 连接两种积分的桥梁.
1.1 格林公式
格林公式给出了平面闭区域上二重积分与该闭区域边界曲线上第二类曲线积分之 间的关系.在介绍它们之间的关系前,我们首先给出单连通区域和复连通区域的定义.
定义 设 D 为平面区域,如果 D 内任意一条闭曲线所围成的部分都属于 D ,则称 D 为平面单连通区域(即 D 内部不含有“洞”),否则称为复连通区域.
1.1 格林公式
定理 1(格林公式) 设函数 P(x ,y) , Q(x ,y) 在闭区域 D 上具有一阶连续偏 导数,则有
D
Q x
P y
dxdy
L
Pdx
Qdy
,
其中 L 为 D 的正向边界曲线.
(12-4)
1.1 格林公式
证 将区域 D 分为单连通区域和复连通区域两种情形来证明.
(1)如果 D 是单连通区域,则分以下两种情况讨论.
例 如 , 区 域 {(x ,y) | x2 y2 1} 和 (x ,y) | y x 是 单 连 通 区 域 ; 环 状 区 域
{(x ,y) |1 x2 y2 4} 是复连通区域.
1.1 格林公式
关于平面区域 D 边界曲线的正负向规定如下:设平面区域 D 的边界曲线为 L , 当沿着边界曲线 L 运动时,平面区域总在其左侧,此运动方向即为 L 的正向,此时 的反向即为 L 的负向.对于单连通区域来说,逆时针方向为正向.对于如图所示的 复连通区域来说,图中的箭头指向即为边界正向.
b a
P
(
x
,2
(
x))dx
b a
P
(
x
高等数学-格林公式及其应用
(2) L为正方形 x y 1 的正向.
作位于 D内圆周 l : x2 y2 a2 ,
取顺时针方向。
记 D1由 L和 l所围成, 应用格林公式,得
L
xdy x2
ydx y2
xdy ydx Ll x2 y2
xdy ydx l x2 y2
,
0 2
所围面积
1 2 (abcos2 absin2 ) d ab 20 14
例5 计算抛物线 ( x y)2 ax(a 0) 与 x 轴所围成
的面积.
解 ONA为直线 y 0.
曲线 AMO 由函数
y ax x, x [0,a]表示,
M
N
A(a,0)
1
A xdy ydx
计算
L
xdy x2
ydx , y2
(1) L为圆周(x 1)2 ( y 1)2 1的正向.
(2) L为正方形 x y 1的正向.
解 记 L所围成的闭区域为 D,
令
P
y x2 y2
,
Q
x2
x
y2
,
则当
x2 y2 0
时,有
Q x
y2 x2 ( x2 y2 )2
P .
y
(1) L为圆周(x 1)2 ( y 1)2 1的正向.
高等数学
第二十讲
第三节
第十一章
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径无关的 等价条件
一、 格林公式
区域 D 分类 单连通区域 ( 无“洞”区域 )
L
多连通区域 ( 有“洞”区域 )
D
域 D 边界L 的正向: 域的内部靠左
第三节_格林公式及其应用
第三节_格林公式及其应用
格林公式是一个重要的微积分计算工具,用于计算微分方程在给定边
界条件下的解。
它可以用来解决一类非常有用的问题,例如求解复杂的微
分方程组、积分变分形式的物理问题。
此外,格林公式还可以应用于计算
微分函数在任意区间上的有限性以及在一些特定情况下的无穷性。
格林公式的主要思想是,给定边界以及满足一些条件的控制变量,可
以将一个微分方程组的解表示为不同常量的线性组合。
因此,可以通过解
决有限个简单的常系数非齐次线性微分方程来求解更复杂的微分方程组。
其中,常系数非齐次线性微分对应的格林公式是:
y(t) = A*exp(αt) + B*exp(βt)
其中,A、B是常数,α、β是解的根。
这个公式可以用来求解不同
类型的微分方程,包括拉普拉斯方程、伯努利方程、线性齐次微分方程组等。
应用:
1、求解拉普拉斯方程
拉普拉斯方程是一类重要的常微分方程,它可以用来描述物理系统的
传播过程以及电、热等物理场的扩散等现象。
拉普拉斯方程的一般形式为:y"+αy'+βy=f(t)
这里,α、β是常数,f(t)是一个任意函数。
可以用格林公式来求
解这个方程的解:
y(t) = A*exp(αt) + B*exp(-αt) + [1/α]*∫exp(-αt)f(t)dt
其中,A、B是常数,α是解的根。
2、求解伯努利方程。
《格林公式及其应用》PPT课件
n (cos,cos).
v nds L
(P cos Q cos)ds
L
由格林公式
Pdy Qdx =========
(P Q )d .
L
D y x
(格林公式的另一种形式)
称函数
为平面向量场 v (P(x, y),Q(x, y))
的散度.物理意义:稳定流体通过某一闭曲线的流量,等
于其散度在该闭曲线所的区域上的二重积分之值.
(x y)dx (x y)dy
( L )
x2 y2
0dxdy 0.
D1
首页
上页
返回
下页
结束
铃
这里(L ) 表示多连通区域 D1的正向边界曲线 .这时L按 逆时针方向,而按顺时针方向.因而
(x y)dx (x y)dy
( L )
x2 y2
(x y)dx (x y)dy (x y)dx (x y)dy,
(x y)dx (x y)dy
L
x2 y2
1 r2
2 [r2 (cost sin t)(sin t) r2 (cost sin t)(cost)]dt
0
2
0 1dt 2.
例 4 设函数u(x,y)在有界闭区域D上有连续的二阶
偏导数,L 为D 的边界且逐段光滑.证明:
u
L
u n
ds
y
x
(x2 y)dx (x y2 sin3 y)dy, AO
oA
(x2 y)dx (x y2 sin3 y)dy
AO
0 x2dx 8 .
2
3
首页
上页
返回
下页
结束
铃
当曲线积分 (x2 y)dx (x y2 sin3 y)dy 与路径无 AB
格林公式及其应用格林公式
格林公式及其应用格林公式格林公式是向量分析中的一个重要定理,也被称为格林-斯托克斯定理。
它是由爱尔兰数学家乔治·格林在19世纪提出的,用于计算一个曲线或曲面上的环流和散度之间的关系。
格林公式的应用非常广泛,可以用来求解流体力学、电磁学和热力学等领域的问题。
下面将介绍格林公式的表达形式,以及它在常见问题中的具体应用。
1.格林公式的表达形式格林公式有两种常见的表达形式,一种是针对平面区域的格林公式,另一种是针对空间曲线的格林公式。
下面将分别介绍这两种格林公式的表达形式。
1.1平面区域的格林公式若D是一个紧致的平面区域,边界为C(C是一个简单、逐段光滑的曲线),向量函数F(x,y)=(P(x,y),Q(x,y))在区域D中具有二阶连续偏导数,则有如下格林公式:∬D(∂Q/∂x-∂P/∂y)dxdy=∮C(Pdx+Qdy)其中,∂P/∂y和∂Q/∂x分别表示P和Q对y和x的偏导数,dxdy表示在D中的面积元素,Pdx+Qdy表示沿着边界C的曲线元素。
1.2空间曲线的格林公式若S是一个有向光滑曲面,它的边界为C(C是一个简单、光滑的曲线),向量函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))在曲面S内具有连续偏导数,则有如下格林公式:∯S(∂R/∂y-Q)dydz+(∂P/∂z-R)dzdx+(∂Q/∂x-P)dxdy=∮C(Pdx+Qdy+Rdz)其中,∂P/∂z、∂Q/∂x和∂R/∂y分别表示P、Q和R对z、x和y的偏导数,dydz、dzdx和dxdy表示在S内的面积元素,Pdx+Qdy+Rdz表示沿着边界C的曲线元素。
2.格林公式的应用格林公式具有广泛的应用,在流体力学、电磁学、热力学等领域都能够找到它的身影。
下面将以几个例子来说明格林公式的具体应用。
2.1流体力学中的应用格林公式在流体力学中常常用于计算流体的环流和散度。
例如,可以利用格林公式来推导速度势函数和流函数之间的关系,进而求解流场中的速度分布。
向量微积分中的格林公式及其应用
向量微积分中的格林公式及其应用在向量微积分中,格林公式是一个非常重要的工具,它可以将曲面积分和线积分相互转化,帮助我们解决许多实际问题。
本文将介绍格林公式的基本原理和应用。
一、格林公式的基本原理格林公式又称为斯托克斯公式,是由英国物理学家斯托克斯在19世纪提出的。
它表述了曲面积分和线积分之间的关系,可以方便地将一个曲面上的积分转化为与其边界线相关的积分。
格林公式的一般形式可以表示为:∮L Pdx + Qdy + Rdz = ∫∫S ( ∂R/∂y - ∂Q/∂z)dydz + ( ∂P/∂z - ∂R/∂x)dzdx + ( ∂Q/∂x - ∂P/∂y)dxdy其中,P、Q、R为三个实函数,L为一条分段光滑的简单闭曲线,S为L的内部区域。
这个公式看起来比较复杂,但实际上它很容易理解。
左边是一条曲线积分,可以想象为通过这条曲线的一个有向面积。
右边是一个曲面积分,表示该曲面上某个向量场在该曲面上的通量。
两个积分的关系就是斯托克斯公式所表述的内容。
格林公式有很多不同的形式,但无论哪种形式,它都可以将曲面积分和线积分联系起来,提供一个便捷的方法来解决许多实际问题。
二、格林公式的应用1. 平面曲线的长度我们可以应用格林公式来求解一个平面曲线的长度。
假设我们有一个平面曲线L,它的参数方程为x=f(t)、y=g(t),其中t∈[a,b]。
我们可以定义一个向量场F=(f’,g’),它的通量就可以表示这条曲线的长度。
然后应用斯托克斯公式,我们可以得到:∮L x dx + y dy = ∫∫U ( ∂y/∂x - ∂x/∂y)dxdy = ∫a^b√(f’^2+g’^2) dt这样我们就可以通过格林公式计算出平面曲线的长度。
2. 静电场的通量另一个应用格林公式的例子是计算静电场的通量。
假设我们有一个静电场,它的电场强度为E(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))。
我们可以定义一个曲面S,它的边界为一条简单闭曲线L。
《格林公式及其应用》课件
特殊型格林公式
特殊形式的格林公式适用于计算具有特殊形 状的曲线或曲面上的积分,如圆形、椭圆形 等。
格林公式的应用
1 线积分的计算
通过格林公式,我们可以计算曲线上的积分,从而得到与曲线相关的物理量,如流量、 环流等。
2 面积的计算
利用格林公式,我们可以计算平面上的闭合曲线所围成的面积,为测量和计算提供了方 便。
3 体积的计算
基于格林公式,我们可以计算由曲线围成的立体图形的体积,为求解三维图形的体积提 供了便利。
格林公式的计算方法
1
极坐标系下的计算方法
当曲线在极坐标系下表达时,我们可以利用极坐标的性质,简化格林公式的计算 过程。
2
直角坐标系下的计算方法
当曲线在直角坐标系下表达时,我们可以借助直角坐标系的符号和定义,求解格 林公式中的各个参数。
格林公式及其应用
本课件介绍格林公式的形式、应用场景及计算方法,以及灵活应用格林公式 的技巧。让我们一起探索格林公式的奥秘!
什么是格林公式
格林公式是一个在向量分析中常用的定理,它将二重积分与线积分、面积积分联系起来。了解它的基本 原理对于理解多变量微积分至关重要。
格林公式的形式
一般型格林公式
一般形式的格林公式在计算线积分与面积积 分时特别有用,它将曲线的内部区域与曲线 的边界联系起来。
例题分析
给定一个曲线和一个区域,我们将应用格林公式来计算相关的积分和物理 量,以解决问题。
总结
格林公式的优势与不足
格林公式在解决某些问题中非常有用,但在特定场景下可能有其局限性,我们需理解其应用ቤተ መጻሕፍቲ ባይዱ范围和限制。
如何灵活应用格林公式
学习了格林公式的基本原理和计算方法后,我们可以尝试将其巧妙应用于实际问题中,创造 性地解决难题。
格林公式及其应用
P dxdy
b
dx
2 ( x) P dy
D y
a
1( x) y
y
b
a{P[ x,2( x)] P[ x,1( x)]}dx.
L2 : y 2( x)
D
Pdx Pdx Pdx
L
L1
L2
L1 : y 1( x)
Oa
bx
b
a
a P[ x,1( x)]dx b P[ x,2( x)]dx
L l
xdy ydx 4x2 y2
0,
于是I
L
xdy ydx 4x2 y2
l
xdy ydx 4x2 y2
1 a2
xdy ydx
l
2 a2
(l所围的椭圆区域的面积)
2 a2
a2π 2
π.
感谢下 载
I1 I2
由格林公式
I1
D
Q x
P y
dxdy
D
(b
a)dxdy
(b
a)
πa 2 2
由于OA在x轴上, y 0, dy 0,
故I2
2a
(bx)dx
2a 2b,
0
于是
I
I1
I2
π 2
2 a 2b
πa3. 2
(2)简化二重积分
例4 计算 e y2dxdy, D :以O(0,0), A(1,1), B(0,1)
线y 2ax x2到点O(0,0)的有向弧段.
解 Q e x cos y a, x P ex cos y b, y
y
D
O
Ax
Q x
P y
b
a,
添加辅助线OA,
格林公式及其应用
格林公式及其应用格林公式是微积分中的一个重要工具,用于计算其中一区域内的面积和体积。
它是由德国数学家格林(Carl Friedrich Gauss)在19世纪初提出的,被广泛应用于物理、工程、经济等领域的计算中。
格林公式的一般形式如下:$$\oint_C (Pdx + Qdy) = \iint_D ( \frac{{\partialQ}}{{\partial x}} - \frac{{\partial P}}{{\partial y}} ) dA $$其中,$C$表示封闭曲线,$D$表示被封闭曲线围成的区域,$P$和$Q$是$D$内的函数,$\frac{{\partial P}}{{\partial y}}$表示$P$对$y$求偏导数,$\frac{{\partial Q}}{{\partial x}}$表示$Q$对$x$求偏导数,$dA$表示面积元素。
格林公式的应用有以下几个方面:1.计算曲线积分:格林公式将曲线积分转化为了面积积分,使得计算曲线积分更加简便。
通过计算封闭曲线上其中一函数和微分形式 $Pdx + Qdy$ 的积分,可以得到围成该区域的面积。
2.计算平面区域的面积:通过格林公式可以计算出封闭曲线围成的平面区域的面积。
将面积元素 $dA$ 替换为 $1$,$Pdx + Qdy$ 替换为$dx$,然后对曲线积分进行计算,即可得到该区域的面积。
3.计算体积:对于封闭曲线$C$,通过格林公式可以计算出围成该曲线的曲面的面积。
再通过计算该曲面旁切平面上函数的面积积分,就可以得到该曲面的体积。
4.计算电场:格林公式在物理学中应用广泛,特别是在电场计算中。
当电场满足一些条件时,可以通过格林公式计算出电场的其中一参数。
例如,在静电学中,可以通过格林公式计算电场的电势差,从而得到电场的分布。
5.计算流体的流量:格林公式在流体力学中也有重要应用。
通过格林公式,可以计算流体从一个闭合曲面流出的流量,从而得到流体的流速和流量。
格林公式及其应用
x 2 ( y) Cy 1 ( x ) x b
Q( 2 ( y ), y ) d y Q( 1 ( y ), y ) d y c
CBE
Q( x, y )d y
EAC
Q( x, y )d y
即 同理可证
①
② ①、②两式相加得:
Q P D x y d xd y L Pd x Qd y
例31.8. 计算 I
B(2,0)的路径.
AOB
(12 xy e y )dx (cos y xe y )dy ,
其中AOB为由点A(1,1)沿y x 2到O(0,0),再沿y 0到
解: 添加辅助线: 直线段BC与CA.
y A
O
I sin 1 e 1.
C
B
x
(2) 若D不满足以上条件,则可通过加辅助线将其分割
为有限个上述形式的区域 , 如图 Q P D x y d xd y
y
D2
D1
L
Dn
k 1 n
n
Dk
Q P d xd y x y
o
x
k 1
Dk
P dx Qd y
(Dk 表示 Dk 的正向边界 )
(1)
其中L取正向.
公式(1)称为格林公式.(Green formula)
证明: (1) 若D 既是 X - 型区域 , 又是 Y - 型区域 , 且
1 ( x) y 2 ( x) D: a xb
y
d x 1 ( y) A
E
y 2 ( x)
D
B
格林公式及其应用
一、格林公式
第八章
二、平面上曲线积分与路径无关的 等价条件
(一)、区域连通性的分类
设D为平面区域, 如果D内任一闭曲线所围 成的部分都属于D, 则称D为平面单连通区域, 否则称为复连通区域. D
D
单连通区域
复连通区域
(二)、格林公式
定理1
设闭区域 D 由分段光滑的曲线 L 围
0 e sin xdx
ex (sin x cos x ) |0 2 1 1 e . 2 2
x
xdy ydx 例 4 计算 ,其中 L为一条无重点, 2 2 L x y 分段光滑且不经过原点的连续闭曲线, L的方
向为逆时针方向.
解
记 L所围成的闭区域为 D ,
3 3
D
L
1
Q P Q P ( x y )dxdy D D ( x y )dxdy D D
1 2 3
Q P Q P Q P ( x y )dxdy ( x y )dxdy ( x y )dxdy D D D
D {( x , y ) 1 ( x ) y 2 ( x ), a x b} D {( x , y ) 1 ( y ) x 2 ( y ), c y d }
d ( y ) Q Q x dxdy c dy ( y ) x dx D
,C : x 2 y 2 1, 逆时针 例 5 计算 I C 4 x2 y2 方向。 y x ,Q 2 , 解: P 2 4 x y2 4 x y2
Q ( 4 x 2 y 2 ) x 8 x 4 x 2 y 2 , 2 2 2 2 2 2 x ( 4x y ) ( 4x y )
格林公式及其应用
2. 质点M 沿着以AB为直径的半圆, 从 A(1,2) 运动到 点B(3, 4),在此过程中受力 F 作用, F 的大小等于点 M
到原点的距离, 其方向垂直于OM, 且与y 轴正向夹角为
锐角, 求变力 F 对质点M 所作的功.
( 1990 考研 )
解: 由图知 F ( y , x) , 故所求功为
注:若存在连续可微函数 ( x, y) 0 , 使 为全微分方程, 则称 ( x, y )为原方程的积分因子. 在简单情况下, 可凭观察和经验根据微分倒推式得到
思考: 如何解方程
积分因子.
内容小结
1. 格林公式 2. 等价条件
Q P d xd y L P d x Q d y D x y
D L O 1 2x
2. 设
提示: d u ( x, y ) ( x 4 xy ) dx (6 x y 5 y ) d y
4 3 2 2 4
( x 4 xy ) dx (6 x y 5 y )d y C
x 4 y x d x (6 x 2 y 2 0 0
4
3
(5 x 4 3x y 2 y3 ) d x (3x 2 y 3x y 2 y 2 ) d y 0 P 2 Q 6x y 3y , 故这是全微分方程. 解: 因为 y x 法1 取 x0 0, y0 0, 则有
2 2 2 u ( x, y ) 5 x d x 0 (3 x y 3x y y ) d y 4 0 x y
思考与练习
1. 设
2
y
l
且都取正向, 问下列计算是否正确 ? xd y 4y d x l x2 y2 1 1 x d y 4 y d x 5 d 5 π 4 l 4 D 2 2 x y 0时 提示 : xd y yd x Q P l x2 y2 (1) x y 1 1 x d y yd x 2 d Q P 4 D 4 l (2) x y 2π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
P d x Qd y 0 .
(ii) 对D 中任一按段光滑曲线 L, 曲线积分 与路径无关, 只与 L 的起点及终点有关.
L
P d x Qd y
的全微分,
(iii)
是 D 内是某一函数 即 d u ( x, y ) P d x Q d y
(iv) 在 D 内处处成立
P Q . y x
曲线积分 Pdx Qdy 在 G 内与路径无关相当于沿 G 内任
L
意闭曲线 C 的曲线积分 Pdx Qdy 等于零
L
这是因为 设L1和L2是G内任意两条从 点A到点B的曲线 则L1(L2)是G内一条任 意的闭曲线 而且有
L Pdx Qdy L Pdx Qdy
1 2
设L为D中任一分段光滑闭曲线, 由条件(iv), 在 D 上处处成立
D
P Q y x
利用格林公式 , 得
Q P L P d x Q d y ( x y )d xd y 0
证毕
由上述证明可看到,在定理的条件下,二元函数:
u ( x, y)
P(x, y)dx Q(x, y)dy
y y0 x
u(x, y) P(x, y0)dx Q(x, y)dy
x0 y
u(x, y) Q(x0, y)dy P(x, y)dx
y0 x0
应用定理2应注意的问题 (1)区域G是单连通区域 (2)函数P(x y)及Q(x y)在G内具有一阶连续偏导数 如果这两个条件之一不能满足 那么定理的结论不能保 证成立
AO ,
原式
L AO ( x 3 y) dx ( y x) d y 2 2 ( x 3 y ) d x ( y x) d y OA 4 2 y 4 d xd y x dx L 0 D
2 2
64 8 3
D
o
Ax
xdy ydx 例 4 计算 2 2 其中 L 为一条无重点、分段光滑且 L x y 不经过原点的连续闭曲线 L的方向为逆时针方向 解 记L所围成的闭区域为D
(1) 当(0 0)D时
由格林公式得
xdy ydx L x2 y2 0
y 这里 P 2 2 Q 2 x 2 x y x y 当x2y20时 有 Q y 2 x2 2 2 2 P x ( x y ) y
提示:
xdy ydx 例 4 计算 2 2 其中 L 为一条无重点、分段光滑且 L x y 不经过原点的连续闭曲线 L的方向为逆时针方向
( x, y) ( x0 , y0 )
P ( x , y ) d x Q( x , y ) d y
具有性质:d u = P dx + Q dy
称 u( x, y ) 为 P dx + Q dy 在域 D 内的一个原函数.
求原函数的公式
u(x, y)
(x, y)
(x0 , y0 ) x
证明 (i) 设 线, 则
(ii)
L1 , L2 为D 内任意两条由A 到B 的有向分段光滑曲
L1
P d x Qd y P d x Qd y L2
L2
B
L1
A
L 1 L 2
P d x Qd y
L2
(根据条件(i))
所以
P d x Qd y
证明 (ii)
在单连通开区域 上 P ( x , y ), Q( x , y ) 具有 D 连续的一阶偏导数,则以下四个命题成立.
等 价 命 题
(1) 在D内 Pdx Qdy与路径无关
L
(2)
Pdx Qdy 0,闭曲线C D
C
(3) 在D内存在U ( x, y)使du Pdx Qdy
L PdxQdy L PdxQdy
1 2
恒成立 就说曲线积分 Pdx Qdy 在 G 内
L
与路径无关 否则说与路径有关
说明: 积分与路径无关时, 曲线积分可记为
AB
Pd x Qd y Pd x Qd y A
B
二、平面上曲线积分与路径无关的条件
曲线积分与路径无关
取圆弧 AB : x
2
cos , y
2
sin ( :
2
0)
W
k
AB
r
2
( y dx x d y)
y
A L
2
o
k
B x
思考: 积分路径是否可以取 无关 !
AO OB ? 为什么?
注意, 本题只在不含原点的单连通区域内积分与路径
机动
目录
上页
下页
返回
结束
小结 与路径无关的四个等价命题 条 件
D
例3 求椭圆xacos ybsin 所围成图形的面积A
解
设L是由椭圆曲线 则
1 xdy ydx 1 22 1 (absin2 abcos2 )d 1 xdy A (absin2 abcos2 )d A 2 LL 2 20 2 0 1 ab d 1 ab 22d ab 0 ab 22 0
移动到 由 A( 0, )
2
y
k ( y dx x d y) 2 r
解: W
L F d s L
2 2
A L
令
则有
o
( x2 y2 0 )
B x
P k ( x y ) Q 4 x y r
可见, 在不含原点的单连通区域内积分与路径无关.
机动 目录 上页 下页 返回 结束
(4) 在D内, P Q y x
x 2 y 2 a 2 从点 (0, a) 依逆时针 备用题 1. 设 C 为沿 到点 (0,a) 的半圆, 计算 y2 dx a x 2 y ln( x a 2 x 2 ) d y a2 x2 C y 解: 添加辅助线如图 , 利用格林公式 . a C D C 原式 = C C C o x 2y a d xd y D a2 x2 a (2 y ln a) d y
§6.4.3 格林公式及其应用
一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积
一、格林公式
单连通与复连通区域 设D为平面区域 如果D内任一闭曲线所围的部分都属于 D 则称D为平面单连通区域 否则称为复连通区域
单连通区域
在他的左边.
复连通区域
边界曲线的正向: 当观察者沿边界行走时,区域D总
解 记L所围成的闭区域为D (2) 当(0 0)D时在D内取一圆周l: x2y2r2(r>0) 记L及l所围成的复连通区域为D1 应用格林公式得
xdy ydx Q ( P )dxdy 0 Ll x2 y2 x y D
1
其中l的方向取顺时针方向 于是 2 r 2 cos 2 r 2 sin 2 xdy ydx xdy ydx d 2 L x2 y2 l x2 y2 0 2 r
则
L
2xydx x2dy 2xydx x2dy 2xydx x2dy
OA AB 1 0
12 dy1
例6 验证 2xydxx2dy在整个xOy平面内是某一函数u(x y)的
全微分 并求这样的一个u(x y).
解 :这里 Q 2x P x y
定理1 设闭区域D由分段光滑的曲线L围成 函数P(x y)及Q(x y) 在D上具有一阶连续偏导数 则有
(
D
Q P )dxdy Pdx Qdy ——格林公式 L x y
其中L是D的取正向的边界曲线
应注意的问题: 对复连通区域D 格林公式右端应包括 沿区域D的全部边界的曲线积分 且边界的 方向对区域D来说都是正向
证明 (iii)
(iv)
设存在函数 u ( x , y ) 使得 则
du P dx Qd y u P ( x , y ), x
u Q( x , y ) y
P, Q 在 D 内具有连续的偏导数, 所以
从而在D内每一点都有
P Q y x
证明 (iv)
(i) 所围区域为
用格林公式计算二重积分
例 2 计算 e
D
y2
dxdy 其中 D 是以 O(0 0) A(1 1) B(0 1)
为顶点的三角形闭区域
解 令 P0 Q xe 因此 由格林公式有 提示:
Q P y 2 2 e 只需 P0 Q xe y 要使 x y
( x x , y ) ( x, y )
Pd x
P( x x, y)x xu u lim P( x x, y ) P( x , y ) lim x x 0 x x 0 u 同理可证 Q( x , y), 因此有 d u P d x Q d y y
例 5 计算 2xydx x2dy 其中 L 为抛
L
物线yx2上从O(0 0)到B(1 1)的一段弧 解 这里P2xy Qx2
P Q 2x 因为 所以积分 y x
L
2xydx x2dy 与路径无关
选择从O(0 0)到A(1 0)再到B(1 1)的折线作为积分路线
y2
Q P y 2 则 e x y
例 2 计算 e
D
y2
dxdy 其中 D 是以 O(0 0) A(1 1) B(0 1)
为顶点的三角形闭区域
解 令 P0 Q xe 因此 由格林公式有