五年级数学强化专题专讲-[第16讲]蝴蝶模型

合集下载

数学专项复习小升初典型奥数之蝴蝶模型

数学专项复习小升初典型奥数之蝴蝶模型

数学专项复习小升初典型奥数之蝴蝶模型在小升初的奥数学习中,蝴蝶模型是一个非常重要的知识点。

它不仅能够锻炼我们的逻辑思维能力,还能帮助我们在解决几何问题时更加得心应手。

接下来,就让我们一起深入了解一下蝴蝶模型吧。

首先,我们来看看什么是蝴蝶模型。

蝴蝶模型是一种在四边形中出现的几何模型,其形状就像一只蝴蝶。

一般来说,在一个梯形中,如果连接两条对角线,就会形成蝴蝶模型。

蝴蝶模型有几个非常重要的结论。

第一个结论是:在梯形中,两条对角线相交,上底与下底的比等于上下两个三角形面积的比。

比如说,如果梯形的上底为 a,下底为 b,那么上面三角形的面积与下面三角形的面积之比就是 a : b。

第二个重要结论是:在梯形中,两条对角线相交,左右两个三角形的面积相等。

这是因为这两个三角形的底分别是梯形的上下底,高相同,所以面积相等。

第三个结论是:在一个任意四边形中,连接两条对角线,相对的两个三角形面积之积相等。

为了更好地理解蝴蝶模型,我们来看几个具体的例子。

例 1:有一个梯形,上底是 6 厘米,下底是 10 厘米,高是 8 厘米。

求对角线把梯形分成的四个三角形的面积。

我们先根据梯形的面积公式:(上底+下底)×高 ÷ 2,求出梯形的总面积为(6 + 10)× 8 ÷ 2 = 64 平方厘米。

因为上底与下底的比是 6 : 10 = 3 : 5,所以上面三角形的面积占总面积的 3 /(3 + 5) = 3 / 8,下面三角形的面积占总面积的 5 /(3 + 5) = 5 / 8。

上面三角形的面积为 64 × 3 / 8 = 24 平方厘米,下面三角形的面积为 64 × 5 / 8 = 40 平方厘米。

又因为左右两个三角形面积相等,所以它们的面积均为(64 24 40)÷ 2 = 0 平方厘米。

例 2:在一个任意四边形 ABCD 中,对角线 AC 和 BD 相交于点 O,三角形 AOB 的面积是 12 平方厘米,三角形 COD 的面积是 27 平方厘米。

小学奥数-几何五大模型(蝴蝶模型)..

小学奥数-几何五大模型(蝴蝶模型)..

模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。

如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。

AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

小学奥数几何模型 之 蝴蝶模型+沙漏模型 非常完整版讲义 例题+作业 带答案

小学奥数几何模型 之 蝴蝶模型+沙漏模型  非常完整版讲义  例题+作业 带答案

小学几何模型之蝴蝶模型准备练习梯形中的蝴蝶模型梯形的两个翅膀相等。

左=右例题1如图:在梯形ABCD中,AD平行于BC,对角线AC和BD相交于点O。

已知三角形AOD 与三角形DOC的面积分别是16平方厘米与24平方厘米,求梯形ABCD的面积。

△AOB的面积为24cm2△BOC的面积:24×24÷16=36(cm2)梯形ABCD的面积:16+24+24+36=100(cm2)练习1如图:在梯形ABCD中,AD平行于BC,对角线AC和BD相交于点O。

已知三角形DOC 与三角形BOC的面积分别是35平方厘米与49平方厘米,求三角形AOD的面积。

△AOB的面积为35平方厘米△AOD的面积:35×35÷49=25(cm2)例题2如图:长方形ABCD被一些直线分成了若干部分。

已知三角形ADG的面积是7平方厘米,三角形BCH的面积是9平方厘米,求四边形EGFH的面积。

连接EF四边形EGFH的面积:7+9=16(cm2)练习2如图:长方形ABCD被一些直线分成了若干部分。

已知三角形ADG的面积是24平方厘米,三角形BHC的面积是17平方厘米,求四边形GEHF的面积。

连接EF四边形EGFH的面积:24+17=41(cm2)风筝模型例题3如图:一个不规则四边形被两条对角线分成四个小三角形。

已知其中三个小三角形的面积,求三角形CDG的面积。

△CDG的面积:3×8÷4=6(cm2)练习3如图:一个不规则四边形被两条对角线分成四个小三角形。

已知其中三个小三角形的面积,求三角形ABG的面积。

△ABG的面积:8×6÷12=4(cm2)例题4如图:四边形ABCD的对角线AC和BD相交于点O。

已知三角形ABD的面积是30平方厘米,三角形ABC的面积是48平方厘米,三角形BCD的面积是50平方厘米,求三角形BOC的面积。

OC:OA=50:30=5:3△BOC和△AOB是等高模型面积比为5:3△BOC的面积为:48÷(5+3)×5=30(cm2)练习4如图:一个园林形状如四边形ABCD,现测得三角形BCD的面积是25公顷,三角形ABC 的面积是24公顷,三角形ABD的面积是15公顷。

小学奥数-几何五大模型(蝴蝶模型)知识讲解

小学奥数-几何五大模型(蝴蝶模型)知识讲解

小学奥数-几何五大模型(蝴蝶模型)模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。

如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。

ABCDOH GA BCD O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

多边形的面积几何模型篇风筝模型和蝴蝶模型【五大考点】-2024-2025学年五年级数学上册(解析版)

多边形的面积几何模型篇风筝模型和蝴蝶模型【五大考点】-2024-2025学年五年级数学上册(解析版)

篇首寄语我们每位老师都希望把最好的教学资料留给学生使用,所以在平时教学时,能够快速找到高质量、高效率、高标准的资料显得十分重要。

编者以前常常游走于各大学习网站寻找自己所需的资料,可却总在花费大量时间与精力后才能找到自己心仪的那份,这样费时费力不讨好,实在有些苦恼。

正因如此,每次在寻找资料时,编者就会想,如果是自己来创作一份资料那又该如何呢?那么这份资料应该首先满足自身教学需要,并达到我的高标准要求,然后才能为他人提供参考。

于是,本着这样的想法,在结合自身教学需求和学生实际情况后,最终酝酿出了一个既适宜课堂教学,又适应课后作业,还适合阶段复习的大综合系列。

《2024-2025学年五年级数学上册典型例题系列》,它基于教材知识和常年真题进行总结与编辑,该系列主要分为典型例题篇、专项练习篇、单元复习篇、思维素养篇、分层试卷篇等五个部分。

1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。

3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精练高效,实用性强。

4.思维素养篇,新的学年,新的篇章,从课本到奥数,从方法到思维,从基础技能到核心素养,其优点在于由浅入深,思维核心,方法易懂。

5.分层试卷篇,根据试题难度和水平,主要分为A卷·基础巩固卷、B卷·素养提高卷、C卷·思维拓展卷,其优点在于考点广泛,分层明显,适应性广。

时光荏苒,转眼之间,《典型例题系列》已经历三个学年三个版本,在过去,它扬长补短,去粗取精,日臻完善;在未来,它承前启后,不断发展,未有竟时。

黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我,欢迎您的使用,感谢您的支持!101数学创作社2024年9月16日第二单元多边形的面积·几何模型篇·风筝模型和蝴蝶模型【五大考点】【考点一】风筝模型(任意四边形模型)问题一:基础应用 (3)【考点二】风筝模型(任意四边形模型)问题二:进阶应用 (4)【考点三】风筝模型(任意四边形模型)问题三:拓展应用 (7)【考点四】蝴蝶模型(梯形蝶形定理)问题一:基本应用 (8)【考点五】蝴蝶模型(梯形蝶形定理)问题二:添加辅助线构建蝴蝶模型 (11)【第三篇】典型例题篇【考点一】风筝模型(任意四边形模型)问题一:基础应用。

蝴蝶模型经典必会题赏析

蝴蝶模型经典必会题赏析

蝴蝶模型经典必会题赏析这是一道非常经典的几何题,有代数和几何两种精彩解法。

题目请看下图:求阴影面积有大小两个正方形,小正方形的边长是4,求阴影面积。

题目构思巧妙,没有冗余条件,只有一个数据。

下图是库库数学提供的代数解法。

代数解法这个代数解法很漂亮,但是有的同学看懂了,有的同学则是一脸茫然。

上面的解答图暗藏蝴蝶模型,把它画出来,可以帮助大家理解代数解法的道理。

请看下图:蝴蝶模型在梯形ABCD中,AB=AD=b=大正方形的边长,CD=a=4=小正方形的边长。

梯形的两条对角线相交于点E。

设DE=x,则AE=B-x。

两条对角线把梯形分为四个三角形,按顺时针方向,依次把三角形面积标记为S₁至S₄请看下图的解析解析上图解释了代数解法的第一步是怎么来的,第二步大家看懂了吗?比例的基本性质大家都知道比例式的内项乘积等于外项乘积,把第一步的比例式交叉相乘,再整理就得到了第二步。

即:ab-ax=bxab=ax+bxab=(a+b)x把上式的两边都乘以a+b的倒数,x的系数就变成了1,就得到了第二步。

第三步也很好理解,把a-x看作分数的减法就行了。

a的分母是1,把第二步带入x,x就是个分数。

然后分母通分,分子做减法,就得到第三步的结果。

最终结论就是用众所周知的三角形面积公式得出的,答案是8。

库库数学解完题后说:如图,随手解完一道题后,好奇有没有纯几何的挪移之法?评论区回复:@tangmingbing: 你这个做复杂了,先把右边的三角形右下顶点平移到右上,然后增加右边的对角线(45 度),和左边45度平行,所以右上顶点可以平移到右边正方形的左下点。

这样就是左边正方形的一半。

优雅的几何解法请看下图:解法1如图添加辅助线后,构造出了蝴蝶模型。

第一步:因为ΔBHE和ΔBHF同底等高,所以面积相等。

下图的三个三角形面积相等,为什么呢?关键在于图中的两条直线是平行线。

它们的底边都是CE,第三个顶点只要在平行线上,无论如何平移,因为高不变,得到的三角形面积都是相等的。

小学奥数几何五大模型蝴蝶模型

小学奥数几何五大模型蝴蝶模型

模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。

如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。

【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。

小学奥数几何五大模型之蝴蝶模型与相似模型

小学奥数几何五大模型之蝴蝶模型与相似模型

板块一 任意四边形模型任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?A【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?例题精讲任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGCS ⨯=⨯,那么6BGCS=;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABDBCDSS=,这可以向模型一蝴蝶定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题. 解法一:∵::1:3ABD BDC AO OC S S ∆∆==, ∴236OC =⨯=, ∴:6:32:1OC OD ==.解法二:作AH BD ⊥于H ,CG BD ⊥于G .∵13ABD BCD S S ∆∆=,∴13AH CG =,∴13AOD DOC S S ∆∆=,∴13AO CO =,∴236OC =⨯=, ∴:6:32:1OC OD ==.【例 3】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGF ECBA【解析】 ⑴根据题意可知,BCD △的面积为244616+++=,那么BCO △和CDO ∆的面积都是1628÷=,所以OCF △的面积为844-=;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862-=, 根据蝴蝶定理,::2:41:2COE COF EG FG S S ∆∆===,所以::1:2GCE GCF S S EG FG ∆∆==,那么11221233GCE CEF S S ∆∆==⨯=+.【例 4】 图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?7676EDCBA【解析】 在ABE ,CDE 中有AEB CED ∠=∠,所以ABE ,CDE 的面积比为()AE EB ⨯:()CE DE ⨯.同理有ADE ,BCE 的面积比为():()AE DE BE EC ⨯⨯.所以有ABES×CDES=ADES×BCES,也就是说在所有凸四边形中,连接顶点得到2条对角线,有图形分成上、下、左、右4个部分,有:上、下部分的面积之积等于左右部分的面积之积. 即6ABE S ⨯=7ADE S ⨯,所以有ABE 与ADE 的面积比为7:6,ABE S =7392167⨯=+公顷,ADE S =6391867⨯=+公顷.显然,最大的三角形的面积为21公顷.【例 5】 (2008年清华附中入学测试题)如图相邻两个格点间的距离是1,则图中阴影三角形的面积为 .BDBD【解析】 连接AD 、CD 、BC .则可根据格点面积公式,可以得到ABC ∆的面积为:41122+-=,ACD ∆的面积为:331 3.52+-=,ABD ∆的面积为:42132+-=. 所以::2:3.54:7ABC ACD BO OD S S ∆∆===,所以44123471111ABO ABD S S ∆∆=⨯=⨯=+.【巩固】如图,每个小方格的边长都是1,求三角形ABC 的面积.D【解析】 因为:2:5BD CE =,且BD ∥CE ,所以:2:5DA AC =,525ABC S ∆=+,510277DBC S ∆=⨯=.【例 6】 (2007年人大附中考题)如图,边长为1的正方形ABCD 中,2BE EC =,CF FD =,求三角形AEG的面积.ABCDEF GABCDEFG【解析】 连接EF .因为2BE EC =,CF FD =,所以1111()23212DEF ABCD ABCDS S S∆=⨯⨯=.因为12AED ABCD S S ∆=,根据蝴蝶定理,11::6:1212AG GF ==,所以6613677414AGD GDF ADF ABCD ABCD S S S S S ∆∆∆===⨯=.所以132221477AGE AED AGD ABCD ABCD ABCD S S S S S S ∆∆∆=-=-==,即三角形AEG 的面积是27.【例 7】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF GABCD EF G【解析】 连接AE ,FE .因为:2:3BE EC =,:1:2DF FC =,所以3111()53210DEFABCD ABCD S S S =⨯⨯=长方形长方形. 因为12AEDABCD SS =长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==平方厘米,所以12AFDS =平方厘米.因为16AFD ABCD S S =长方形,所以长方形ABCD 的面积是72平方厘米.【例 8】 如图,已知正方形ABCD 的边长为10厘米,E 为AD 中点,F 为CE 中点,G 为BF 中点,求三角形BDG 的面积.ABAB【解析】 设BD 与CE 的交点为O ,连接BE 、DF .由蝴蝶定理可知::BEDBCDEO OC S S=,而14BED ABCDSS =,12BCDABCDSS =,所以::1:2BEDBCDEO OC SS==,故13EO EC =.由于F 为CE 中点,所以12EF EC =,故:2:3EO EF =,:1:2FO EO =.由蝴蝶定理可知::1:2BFD BED S S FO EO ==,所以1128BFD BED ABCD S S S ==,那么1111010 6.2521616BGD BFD ABCD S S S ===⨯⨯=(平方厘米).【例 9】 如图,在ABC ∆中,已知M 、N 分别在边AC 、BC 上,BM 与AN 相交于O ,若AOM ∆、ABO ∆和BON ∆的面积分别是3、2、1,则MNC ∆的面积是 .NM OCBA【解析】 这道题给出的条件较少,需要运用共边定理和蝴蝶定理来求解.根据蝴蝶定理得 31322AOM BON MON AOB S S S S ∆∆∆∆⨯⨯===设MON S x ∆=,根据共边定理我们可以得ANM ABMMNC MBCS S S S ∆∆∆∆=,33322312xx ++=++,解得22.5x =.【例 10】 (2009年迎春杯初赛六年级)正六边形123456A A A A A A 的面积是2009平方厘米,123456B B B B B B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.B 4B A 6A 54A 3A AB 4B A 6A 54A 3A A【解析】 如图,设62B A 与13B A 的交点为O ,则图中空白部分由6个与23A OA ∆一样大小的三角形组成,只要求出了23A OA ∆的面积,就可以求出空白部分面积,进而求出阴影部分面积. 连接63A A 、61B B 、63B A .设116A B B ∆的面积为”1“,则126BAB ∆面积为”1“,126A A B ∆面积为”2“,那么636A A B ∆面积为126A A B ∆的2倍,为”4“,梯形1236A A A A 的面积为224212⨯+⨯=,263A B A ∆的面积为”6“,123B A A ∆的面积为2.根据蝴蝶定理,12632613:1:6B A B A A B B O A O S S ∆∆===,故23616A OA S ∆=+,123127B A A S ∆=, 所以23123612::12:1:77A OA A A A A S S ∆=梯形,即23A OA ∆的面积为梯形1236A A A A 面积的17,故为六边形123456A A A A A A 面积的114,那么空白部分的面积为正六边形面积的136147⨯=,所以阴影部分面积为32009111487⎛⎫⨯-= ⎪⎝⎭(平方厘米).板块二 梯形模型的应用梯形中比例关系(“梯形蝴蝶定理”):A BCDO ba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明)【例 11】 如图,22S =,34S =,求梯形的面积.【解析】 设1S 为2a 份,3S 为2b 份,根据梯形蝴蝶定理,234S b ==,所以2b =;又因为22S a b ==⨯,所以1a =;那么211S a ==,42S a b =⨯=,所以梯形面积123412429S S S S S =+++=+++=,或者根据梯形蝴蝶定理,()()22129S a b =+=+=.【巩固】(2006年南京智力数学冬令营)如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.3525OABCD【解析】 根据梯形蝴蝶定理,2::25:35AOBBOCSS a ab ==,可得:5:7a b =,再根据梯形蝴蝶定理,2222::5:725:49AOBDOCSSa b ===,所以49DOCS =(平方厘米).那么梯形ABCD 的面积为25353549144+++=(平方厘米).【例 12】 梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形BOC 面积的23,求三角形AOD 与三角形BOC 的面积之比.OA BC D 【解析】 根据梯形蝴蝶定理,2::2:3AOBBOCSSab b ==,可以求出:2:3a b =, 再根据梯形蝴蝶定理,2222::2:34:9AODBOCSSa b ===.通过利用已有几何模型,我们轻松解决了这个问题,而没有像以前一样,为了某个条件的缺乏而千辛万苦进行构造假设,所以,请同学们一定要牢记几何模型的结论.【例 13】 (第十届华杯赛)如下图,四边形ABCD 中,对角线AC 和BD 交于O 点,已知1AO =,并且35ABD CBD =三角形的面积三角形的面积,那么OC 的长是多少?ABCDO【解析】 根据蝴蝶定理,ABD AO CBD CO =三角形的面积三角形的面积,所以35AO CO =,又1AO =,所以53CO =.【例 14】 梯形的下底是上底的1.5倍,三角形OBC 的面积是29cm ,问三角形AOD 的面积是多少?A BCDO【解析】 根据梯形蝴蝶定理,:1:1.52:3a b ==,2222::2:34:9AOD BOC S S a b ∆∆===,所以()24cm AOD S ∆=.【巩固】如图,梯形ABCD 中,AOB ∆、COD ∆的面积分别为1.2和2.7,求梯形ABCD 的面积.ODCBA【解析】 根据梯形蝴蝶定理,22::4:9AOBACODSSa b ==,所以:2:3a b =,2:::3:2AODAOBSSab a b a ===,31.2 1.82AOD COB S S ==⨯=,1.2 1.8 1.82.77.5ABCD S =+++=梯形.【例 15】 如下图,一个长方形被一些直线分成了若干个小块,已知三角形ADG 的面积是11,三角形BCH的面积是23,求四边形EGFH 的面积.HG FE DCB AHG FEDCB A【解析】 如图,连结EF ,显然四边形ADEF 和四边形BCEF 都是梯形,于是我们可以得到三角形EFG 的面积等于三角形ADG 的面积;三角形BCH 的面积等于三角形EFH 的面积,所以四边形EGFH 的面积是112334+=.【巩固】(人大附中入学测试题)如图,长方形中,若三角形1的面积与三角形3的面积比为4比5,四边形2的面积为36,则三角形1的面积为________.321 321【解析】 做辅助线如下:利用梯形模型,这样发现四边形2分成左右两边,其面积正好等于三角形1和三角形3,所以1的面积就是4361645⨯=+,3的面积就是5362045⨯=+.【例 16】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.BA【解析】 因为M 是AD 边上的中点,所以:1:2AM BC =,根据梯形蝴蝶定理可以知道22:::1:12:12:21:2:2:4AMG ABG MCG BCG S S S S =⨯⨯=△△△△()(),设1AGM S =△份,则123MCD S =+=△ 份,所以正方形的面积为1224312++++=份,224S =+=阴影份,所以:1:3S S =阴影正方形,所以1S =阴影平方厘米.【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.A BCDEF【解析】 连接DE ,根据题意可知:1:2BE AD =,根据蝴蝶定理得2129S =+=梯形()(平方厘米),3ECD S =△(平方厘米),那么12ABCDS=(平方厘米).【例 17】 如图面积为12平方厘米的正方形ABCD 中,,E F 是DC 边上的三等分点,求阴影部分的面积.DA【解析】 因为,E F 是DC 边上的三等分点,所以:1:3EF AB =,设1OEF S =△份,根据梯形蝴蝶定理可以知道3AOE OFB S S ==△△份,9AOB S =△份,(13)ADE BCF S S ==+△△份,因此正方形的面积为244(13)24+++=份,6S =阴影,所以:6:241:4S S ==阴影正方形,所以3S =阴影平方厘米.【例 18】 如图,在长方形ABCD 中,6AB =厘米,2AD =厘米,AE EF FB ==,求阴影部分的面积.DD【解析】 方法一:如图,连接DE ,DE 将阴影部分的面积分为两个部分,其中三角形AED 的面积为26322⨯÷÷=平方厘米.由于:1:3EF DC =,根据梯形蝴蝶定理,:3:1DEOEFOS S=,所以34DEODEFSS =,而2D E FA D ESS ==平方厘米,所以32 1.54DEOS=⨯=平方厘米,阴影部分的面积为2 1.5 3.5+=平方厘米. 方法二:如图,连接DE ,FC ,由于:1:3EF DC =,设1O E F S =△份,根据梯形蝴蝶定理,3OED S =△份,2(13)16EFCD S =+=梯形份,134ADE BCF S S ==+=△△份,因此416424ABCD S =++=长方形份,437S =+=阴影份,而6212ABCD S =⨯=长方形平方厘米,所以 3.5S =阴影平方厘米【例 19】 (2008年”奥数网杯”六年级试题)已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米.则阴影部分的面积是 平方厘米.BB【解析】 连接AC .由于ABCD 是平行四边形,:3:2BC CE =,所以:2:3CE AD =, 根据梯形蝴蝶定理,22:::2:23:23:34:6:6:9COEAOCDOEAODS SSS=⨯⨯=,所以6AOCS=(平方厘米),9AODS=(平方厘米),又6915ABCACDSS==+=(平方厘米),阴影部分面积为61521+=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【分析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=. 根据蝴蝶定理,4936OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故236OCD S ∆=, 所以6OCD S ∆=(平方厘米).【巩固】(2008年三帆中学考题)右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【解析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=.根据蝴蝶定理,2816OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故216OCD S ∆=,所以4OCD S ∆=(平方厘米).另解:在平行四边形ABED 中,()111681222ADE ABED S S ∆==⨯+=(平方厘米),所以1284AOE ADE AOD S S S ∆∆∆=-=-=(平方厘米),根据蝴蝶定理,阴影部分的面积为8244⨯÷=(平方厘米).【例 20】 如图所示,BD 、CF 将长方形ABCD 分成4块,DEF ∆的面积是5平方厘米,CED ∆的面积是10平方厘米.问:四边形ABEF 的面积是多少平方厘米?FABCD E105 FAB CDE105【分析】 连接BF ,根据梯形模型,可知三角形BEF 的面积和三角形DEC 的面积相等,即其面积也是10平方厘米,再根据蝴蝶定理,三角形BCE 的面积为1010520⨯÷=(平方厘米),所以长方形的面积为()2010260+⨯=(平方厘米).四边形ABEF 的面积为605102025---=(平方厘米).【巩固】如图所示,BD 、CF 将长方形ABCD 分成4块,DEF ∆的面积是4平方厘米,CED ∆的面积是6平方厘米.问:四边形ABEF 的面积是多少平方厘米?64AB CDEF64AB C DEF【解析】 (法1)连接BF ,根据面积比例模型或梯形蝴蝶定理,可知三角形BEF 的面积和三角形DEC 的面积相等,即其面积也是6平方厘米,再根据蝴蝶定理,三角形BCE 的面积为6649⨯÷=(平方厘米),所以长方形的面积为()96230+⨯=(平方厘米).四边形ABEF 的面积为3046911---=(平方厘米).(法2)由题意可知,4263EF EC ==,根据相似三角形性质,23ED EF EB EC ==,所以三角形BCE 的面积为:2693÷=(平方厘米).则三角形CBD 面积为15平方厘米,长方形面积为15230⨯=(平方厘米).四边形ABEF 的面积为3046911---=(平方厘米).【巩固】(98迎春杯初赛)如图,ABCD 长方形中,阴影部分是直角三角形且面积为54,OD 的长是16,OB的长是9.那么四边形OECD 的面积是多少?B【解析】 因为连接ED 知道ABO △和EDO △的面积相等即为54,又因为169OD OB ∶=∶,所以AOD △的面积为5491696÷⨯=,根据四边形的对角线性质知道:BEO △的面积为:54549630.375⨯÷=,所以四边形OECD 的面积为:549630.375119.625+-=(平方厘米).【例 21】 (2007年”迎春杯”高年级初赛)如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A B CDEF?852O A BCD EF【解析】 连接DE 、CF .四边形EDCF 为梯形,所以EOD FOC S S∆=,又根据蝴蝶定理,EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅,所以2816EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅=⨯=,所以4EOD S ∆=(平方厘米),4812ECD S ∆=+=(平方厘米).那么长方形ABCD 的面积为12224⨯=平方厘米,四边形OFBC 的面积为245289---=(平方厘米).【例 22】 (98迎春杯初赛)如图,长方形ABCD 中,AOB 是直角三角形且面积为54,OD 的长是16,OB的长是9.那么四边形OECD 的面积是 .ABCDEOABCDEO【解析】 解法一:连接DE ,依题意1195422AOBSBO AO AO =⨯⨯=⨯⨯=,所以12AO =, 则1116129622AODSDO AO =⨯⨯=⨯⨯=. 又因为154162AOB DOE S S OE ===⨯⨯,所以364OE =,得113396302248BOE S BO EO =⨯⨯=⨯⨯=,所以()3554963011988OECD BDC BOE ABD BOE S S S S S =-=-=+-=.解法二:由于::16:9AOD AOB S S OD OB ==,所以1654969AOD S =⨯=,而54DOE AOB S S ==,根据蝴蝶定理,BOE AOD AOB DOE S S S S ⨯=⨯,所以3545496308BOE S =⨯÷=,所以()3554963011988OECD BDC BOE ABD BOE S S S S S =-=-=+-=.【例 23】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?BB【解析】 由于DEFG 是正方形,所以DA 与BC 平行,那么四边形ADBC 是梯形.在梯形ADBC 中,BDK ∆和ACK ∆的面积是相等的.而:1:3AK KB =,所以ACK ∆的面积是ABC ∆面积的11134=+,那么BDK ∆的面积也是ABC ∆面积的14. 由于ABC ∆是等腰直角三角形,如果过A 作BC 的垂线,M 为垂足,那么M 是BC 的中点,而且AM DE =,可见ABM ∆和ACM ∆的面积都等于正方形DEFG 面积的一半,所以ABC ∆的面积与正方形DEFG 的面积相等,为48.那么BDK ∆的面积为148124⨯=.【例 24】 如图所示,ABCD 是梯形,ADE ∆面积是1.8,ABF ∆的面积是9,BCF ∆的面积是27.那么阴影AEC ∆面积是多少?【解析】 根据梯形蝴蝶定理,可以得到AFB DFC AFD BFC S S S S ∆∆∆∆⨯=⨯,而AFB DFC S S ∆∆=(等积变换),所以可得99327AFB CDF AFD BFC S S S S ∆∆∆∆⨯⨯===,并且3 1.8 1.2AEF ADF AED S S S ∆∆∆=-=-=,而::9:271:3AFB BFC S S AF FC ∆∆===, 所以阴影AEC ∆的面积是:4 1.24 4.8AEC AEF S S ∆∆=⨯=⨯=.【例 25】 如图,正六边形面积为6,那么阴影部分面积为多少?【解析】 连接阴影图形的长对角线,此时六边形被平分为两半,根据六边形的特殊性质,和梯形蝴蝶定理把六边形分为十八份,阴影部分占了其中八份,所以阴影部分的面积886183⨯=.【例 26】 如图,已知D 是BC 中点,E 是CD 的中点,F 是AC 的中点.三角形ABC 由①~⑥这6部分组成,其中②比⑤多6平方厘米.那么三角形ABC 的面积是多少平方厘米?⑥⑤④③②①BFED CA【解析】 因为E 是DC 中点,F 为AC 中点,有2AD FE =且平行于AD ,则四边形ADEF 为梯形.在梯形ADEF 中有③=④,②×⑤=③×④,②:⑤=2AD : 2FE =4.又已知②-⑤=6,所以⑤=6(41)2÷-=,②=⑤48⨯=,所以②×⑤=④×④=16,而③=④,所以③=④=4,梯形ADEF 的面积为②、③、④、⑤四块图形的面积和,为844218+++=.有CEF 与ADC 的面积比为CE 平方与CD 平方的比,即为1:4.所以ADC 面积为梯形ADEF 面积的44-1=43,即为418243⨯=.因为D 是BC 中点,所以ABD 与ADC 的面积相等,而ABC 的面积为ABD 、ADC 的面积和,即为242448+=平方厘米.三角形ABC 的面积为48平方厘米.【例 27】 如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为 .【解析】 本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.【例 28】 如图,在正方形ABCD 中,E 、F 分别在BC 与CD 上,且2CE BE =,2CF DF =,连接BF 、DE ,相交于点G ,过G 作MN 、PQ 得到两个正方形MGQA 和PCNG ,设正方形MGQA 的面积为1S ,正方形PCNG 的面积为2S ,则12:S S =___________.QPN MABC D E FGQPNMABCD E FG【解析】 连接BD 、EF .设正方形ABCD 边长为3,则2C E C F ==,1BE DF ==,所以,222228EF =+=,2223318BD =+=.因为22281814412EF BD ⋅=⨯==,所以12EF BD ⋅=.由梯形蝴蝶定理,得22::::::8:18:12:124:9:6:6GEF GBD DGF nBGE S S S S EF BD EF BD EF BD =⋅⋅==△△△,所以,66496625BGE BDFE BDFE S S S ==+++△梯形梯形.因为93322BCD S =⨯÷=△,2222CEF S =⨯÷=△,所以52BCD CEF BDFE S S S =-=△△梯形,所以,6532525BGE S =⨯=△.由于BGE △底边BE 上的高即为正方形PCNG 的边长,所以362155CN =⨯÷=,69355ND =-=,所以::3:2AM CN DN CN ==,则2212::9:4S S AM CN ==.【例 29】 如下图,在梯形ABCD 中,AB 与CD 平行,且2CD AB =,点E 、F 分别是AD 和BC 的中点,已知阴影四边形EMFN 的面积是54平方厘米,则梯形ABCD 的面积是 平方厘米.DD【解析】 连接EF ,可以把大梯形看成是两个小梯形叠放在一起,应用梯形蝴蝶定理,可以确定其中各个小三角形之间的比例关系,应用比例即可求出梯形ABCD 面积.设梯形ABCD 的上底为a ,总面积为S .则下底为2a ,()13222EF a a a =+=.所以3::2:32AB EF a a ==,3::23:42EF DC a a ==.由于梯形ABFE 和梯形EFCD 的高相等,所以()()33:::25:722ABFE EFCD S S AB EF EF DC a a a a ⎛⎫⎛⎫=++=++= ⎪ ⎪⎝⎭⎝⎭梯形梯形,故512ABFE S S =梯形,712EFCD S S =梯形.根据梯形蝴蝶定理,梯形ABFE 内各三角形的面积之比为222:23:23:34:6:6:9⨯⨯=,所以99534669251220E MF ABFE S S S S ==⨯=+++梯形;同理可得99739121216491228ENF S S S S ==⨯=+++梯形EFCD ,所以339202835EMFN EMF ENF S S S S S S =+=+=,由于54EMFN S =平方厘米,所以95421035S =÷=(平方厘米).【例 30】 (2006年“迎春杯”高年级组决赛)下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,()m n +的值等于 .BEE【解析】 左、右两个图中的阴影部分都是不规则图形,不方便直接求面积,观察发现两个图中的空白部分面积都比较好求,所以可以先求出空白部分的面积,再求阴影部分的面积. 如下图所示,在左图中连接EG .设AG 与DE 的交点为M . 左图中AEGD 为长方形,可知AMD ∆的面积为长方形AEGD 面积的14,所以三角形AMD 的面积为21111248⨯⨯=.又左图中四个空白三角形的面积是相等的,所以左图中阴影部分的面积为111482-⨯=.BEE如上图所示,在右图中连接AC 、EF .设AF 、EC 的交点为N . 可知EF ∥AC 且2AC EF =.那么三角形BEF 的面积为三角形ABC 面积的14,所以三角形BEF 的面积为21111248⨯⨯=,梯形AEFC 的面积为113288-=.在梯形AEFC 中,由于:1:2E F A C =,根据梯形蝴蝶定理,其四部分的面积比为:221:12:12:21:2:2:4⨯⨯=,所以三角形EFN 的面积为3118122424⨯=+++,那么四边形BENF 的面积为1118246+=.而右图中四个空白四边形的面积是相等的,所以右图中阴影部分的面积为111463-⨯=. 那么左图中阴影部分面积与右图中阴影部分面积之比为11:3:223=,即32m n =,那么325m n +=+=.板块三 相似三角形模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.【例 31】 如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长度是多少?FEDCBA【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD ,所以::4:161:4BF FC BE CD ===,所以410814FC =⨯=+.【例 32】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大?605040302010EAD C B【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米.【例 33】 如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________.A ED CB【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=,22:2:54:25ADE ABC S S ==△△,设4ADE S =△份,则25ABC S =△份,255315BEC S =÷⨯=△份,所以:4:15ADE ECB S S =△△.【例 34】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADE DEGF FGCB S S S =△四边形四边形 .EGF A D CB【解析】 设1ADE S =△份,根据面积比等于相似比的平方,所以22::1:4ADE AFG S S AD AF ==△△,22::1:9ADE ABC S S AD AB ==△△,因此4AFG S =△份,9ABC S =△份,进而有3DEGF S =四边形份,5FGCB S =四边形份,所以::1:3:5ADE DEGF FGCB S S S =△四边形四边形【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【解析】 由金字塔模型得:::2:5AD AB AE AC DE BC ===,所以42510AC =÷⨯=【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 .Q E GNMF PA D CB【解析】 设1ADE S =△份,22::1:4ADE AFG S S AD AF ==△△,因此4AFG S =△份,进而有3DEGF S =四边形份,同理有5FGNM S =四边形份,7MNQP S =四边形份,9PQCB S =四边形份.所以有::::1:3:5:7:9ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形【总结】继续拓展,我们得到一个规律:平行线等分线段后,所分出来的图形的面积成等差数列.【例 35】 已知ABC △中,DE 平行BC ,若:2:3AD DB =,且DBCE S 梯形比ADE S △大28.5cm ,求ABC S △.A ED CB【解析】 根据金字塔模型::2:(23)2:5AD AB DE BC ==+=,22:2:54:25ADE ABC S S ==△△,设4ADE S =△份,则25ABC S =△份,25421D B C E S =-=梯形份,D B C E S 梯形比ADE S △大17份,恰好是28.5c m ,所以212.5c m ABC S =△【例 36】 如图:MN 平行BC , :4:9MPN BCP S S =△△,4cm AM =,求BM 的长度NMPA C B【解析】 在沙漏模型中,因为:4:9MPN BCP S S =△△,所以:2:3MN BC =,在金字塔模型中有:::2:3AM AB MN BC ==,因为4cm AM =,4236AB =÷⨯=cm ,所以642cm BM =-=【巩固】如图,已知DE 平行BC ,:3:2BO EO =,那么:AD AB =________.OED C BA【解析】 由沙漏模型得::3:2BO EO BC DE ==,再由金字塔模型得::2:3AD AB DE BC ==.【例 37】 如图,ABC ∆中,14AE AB =,14AD AC =,ED 与BC 平行,EOD ∆的面积是1平方厘米.那么AED ∆的面积是 平方厘米.A B CDEO【解析】 因为14AE AB =,14AD AC =,ED 与BC 平行, 根据相似模型可知:1:4ED BC =,:1:4EO OC =,44COD EOD S S ∆∆==平方厘米, 则415CDE S ∆=+=平方厘米,又因为::1:3AED CDE S S AD DC ∆∆==,所以15533AED S ∆=⨯=(平方厘米).【例 38】 在图中的正方形中,A ,B ,C 分别是所在边的中点,CDO 的面积是ABO 面积的几倍?ABCDO E FA BCD O【解析】 连接BC ,易知OA ∥EF ,根据相似三角形性质,可知::OB OD AE AD =,且::1:2O A B E D A D E ==,所以C D O 的面积等于CBO 的面积;由1124OA BE AC ==可得3C O O A=,所以3C D O C B O A B OS S S ==,即CDO 的面积是ABO 面积的3倍.【例 39】 如图,线段AB 与BC 垂直,已知4AD EC ==,6BD BE ==,那么图中阴影部分面积是多少?A BDA BDA BD【解析】 解法一:这个图是个对称图形,且各边长度已经给出,不妨连接这个图形的对称轴看看.作辅助线BO ,则图形关于BO 对称,有ADOCEOS S=,DBOEBOSS=,且:4:62:3ADODBOSS==.设ADO 的面积为2份,则DBO 的面积为3份,直角三角形ABE 的面积为8份.因为610230ABES=⨯÷=,而阴影部分的面积为4份,所以阴影部分的面积为308415÷⨯=.解法二:连接DE 、AC .由于4AD EC ==,6BD BE ==,所以DE ∥AC ,根据相似三角形性质,可知::6:103:5DE AC BD BA ===, 根据梯形蝴蝶定理,()()22:::3:35:35:59:15:15:25DOEDOACOECOASSSS=⨯⨯=,所以()():1515:915152515:32ADEC S S =++++=阴影梯形,即1532ADECS S=阴影梯形; 又11101066=3222ADEC S =⨯⨯-⨯⨯梯形,所以151532ADEC S S ==阴影梯形.【例 40】 (2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.GECBA【解析】 因为FGHE 为平行四边形,所以//EC AG ,所以AGCE 为平行四边形.:3:1BG GC =,那么:1:4GC BC =,所以1116444AGCE ABCD S S =⨯=⨯=.又AE GC =,所以::1:3AE BG GC BG ==,根据沙漏模型,::3:1FG AF BG AE ==,所以334344FGHE AGCE S S ==⨯=.【例 41】 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【解析】 已知:2:1AF FC =,且EF ∥BC ,利用相似三角形性质可知::2:3EF BC AF AC ==,所以23EF BC =,且:4:9AEF ABC S S =. 又因为E 是BD 的中点,所以EG 是三角形DBC 的中位线,那么12EG BC =,12::3:423EG EF ==,所以:1:4GF EF =,可得:1:8CFG AFE S S =,所以:1:18CFG ABC S S =,那么18CFG aS =.【例 42】 已知正方形ABCD ,过C 的直线分别交AB 、AD 的延长线于点E 、F ,且10cm AE =,15cm AF =,求正方形ABCD 的边长.FAEDCB【解析】 方法一:本题有两个金字塔模型,根据这两个模型有::BC AF CE EF =,::DC AE CF EF =,设正方形的边长为cm x ,所以有1BC DC CE CF AF AE EF EF +=+=,即11510x x+=,解得6x =,所以正方形的边长为6cm .方法二:或根据一个金字塔列方程即151015x x-=,解得6x =【例 43】 如图,三角形ABC 是一块锐角三角形余料,边120BC =毫米,高80AD =毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?HGNPAD CB【解析】 观察图中有金字塔模型5个,用与已知边有关系的两个金字塔模型,所以有PN AP BC AB =,PH BPAD AB=,设正方形的边长为x 毫米,PN PH BC AD +=1AP BP AB AB +=,即112080x x+=,解得48x =,即正方形的边长为48毫米.【巩固】如图,在ABC △中,有长方形DEFG ,G 、F 在BC 上,D 、E 分别在AB 、AC 上,AH 是ABC △边BC 的高,交DE 于M ,:1:2DG DE =,12BC =厘米,8AH =厘米,求长方形的长和宽.E H GMFAD CB【解析】 观察图中有金字塔模型5个,用与已知边有关系的两个金字塔模型,所以DE AD BC AB =,DG BDAH AB=,所以有1DE DG AD BD BC AH AB AB +=+=,设DG x =,则2D E x =,所以有21128x x +=,解得247x =,4827x =,因此长方形的长和宽分别是487厘米,247厘米.【例 44】 图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,已知这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?ABCD E FGNMABCDE FG【解析】 根据题中条件,可以直接判断出EF 与DC 平行,从而三角形GEF 与三角形GDC 相似,这样,就可以采用相似三角形性质来解决问题. 做GM 垂直DC 于M ,交AB 于N .因为EF ∥DC ,所以三角形GEF 与三角形GDC 相似,且相似比为:4:121:3EF DC ==, 所以:1:3GN GM =,又因为12MN GM GN =-=,所以()18GM cm =,。

小学奥数-几何五大模型(蝴蝶模型)分解

小学奥数-几何五大模型(蝴蝶模型)分解

模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?A BCDG321【解析】 ⑴根据蝴蝶定理,123BGCS ⨯=⨯,那么6BGCS=;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. ()任意四边形、梯形与相似模型【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。

如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。

AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

看到题目中给出条件:1:3ABDBCDSS=,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。

关于数学的知识--蝴蝶模型

关于数学的知识--蝴蝶模型

蝴蝶模型☺知识总览一、蝴蝶模型1、任意四边形中的比例关系(“蝴蝶定理”):①S S S S 3421::=或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

2、梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.O DCBA s 4s 3s 2s 1A BCDO baS 3S 2S 1S 41、图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?☺典例精讲2、如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?EDCB A76OCDBA3、如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵AG:GC=?☺跟踪练习3、如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.CBOGF EDC BA4、如图,22S =,34S =,求梯形的面积。

随堂练习:如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.☺典例精讲5、梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形BOC 面积的23,求三角形AOD 与三角形BOC 的面积之比.3525OABCDO ABCD6、如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.☺跟踪练习6、如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O 。

五年级奥数.几何.蝴蝶模型

五年级奥数.几何.蝴蝶模型

四边形模型任意四边形中的比例关系(“蝴蝶定理”):O DCBA s 4s 3s 2s 1①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A BC DO ba S 3S 2S 1S 4一、任意四边形【例 1】 图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角例题精讲知识框架蝴蝶模型形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?76EDCBA76【巩固】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGF EDC BA【例 2】 如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?OCDBA【巩固】 一个矩形分成4个不同的三角形(如右图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?黄绿15%【例 3】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC的面积;⑵:AG GC =?321GDCBA【巩固】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.OADC B【例 4】 如图相邻两个格点间的距离是1,则图中阴影三角形的面积为 .BA【巩固】如图,每个小方格的边长都是1,求三角形ABC 的面积.A B【例 5】 如图,边长为1的正方形ABCD 中,2BE EC =,CF FD =,求三角形AEG 的面积.ABCDEF GABCDEF G【巩固】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF G【例 6】 正六边形123456A A A A A A 的面积是2009平方厘米,123456B B B B B B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.B 6B 54B 3B 2B A 6543A A【巩固】 如图,ABCD 是一个四边形,M 、N 分别是AB 、CD 的中点.如果△ASM 、△MTB 与△DSN 的面积分别是6、7和8,且图中所有三角形的面积均为整数,则四边形ABCD 的面积为 .NM STDCBA【例 7】 已知ABCD 是平行四边形,:3:2BC CE ,三角形ODE 的面积为6平方厘米。

5年级奥数秋季同步课程-07 蝴蝶模型

5年级奥数秋季同步课程-07 蝴蝶模型

蝴蝶模型主讲:五豆等积变换基本蝴蝶模型梯形蝴蝶模型等积变换等积变换B C AD B CA D EF当两个三角形同高或等高时,它们的面积比等于对应底之比当两个三角形同底或等底时,它们的面积比等于对应高之比【例题】如图,已知长方形ADEF 的面积是16,三角形ADB 的面积是2,三角形ACF 的面积是4.请问:三角形ABC 的面积是多少?等积变换D EA FB C【例题】图中的四边形土地的总面积是52公顷,两条对角线把它分成了四个小三角形,其中两个小三角形的面积分别是6公顷和7公顷,求四个三角形中最大的一个的面积。

等积变换D EA BC67基本蝴蝶模型基本蝴蝶模型面积与线段的比例关系:S△ABD S△CBD =S△ADOS△CDO=S△ABOS△CBO=AOOCS△ADCS△ABC=S△ADOS△ABO=S△DCOS△BCO=DOOB交叉相乘相等:S△ADO×S△BCO=S△ABO×S△DCO基本蝴蝶模型【例题】图中四边形ABCD的对角线AC和BD交于O点,如果三角形ABD 的面积是30平方厘米,三角形ABC的面积是48平方厘米,三角形BCD的面积是50平方厘米。

请问:三角形BOC 的面积是多少?基本蝴蝶模型【例题】如图,三角形ABC的面积是6,三角形BCD的面积是5,三角形ACD的面积是9,那么三角形ABD 的面积是多少?ADB C梯形蝴蝶模型梯形蝴蝶模型梯形蝴蝶模型两翼三角形面积相等梯形蝴蝶模型【例题】如图,梯形ABCD 的AB 平行于CD ,对角线AC 、BD 交于O ,已知△AOB 与△BOC 的面积分别为25平方厘米与35平方厘米,那么梯形ABCD 的面积是多少平方米?AB C DO 2535梯形蝴蝶模型【例题】如图,梯形ABCD中,三角形ABE的面积是60平方米,AC的长是AE的4倍,梯形ABCD的面积是多少平方米?。

小升初奥数 几何(蝴蝶模型)

小升初奥数  几何(蝴蝶模型)

S4
S3 B
① S2 S4 ② S1 : S3 a 2 : b2 ③ S1 : S3 : S2 : S4 a 2 : b2 : ab : ab ④ S 的对应份数为 a b .
2
b
C
基础篇: 【一】 如图,某公园的外轮廓是四边形 ABCD,被对角线 AC、BD 分成四个部分,△AOB 面积为 1 平方千米, △BOC 面积为 2 平方千米, △COD 的面积为 3 平方千米, 公园由陆地面积是 6.92 平方千米和人工湖组成,求人工湖的面积是多少平方千米?
A 2 B C 1 G 3 D
【分析】 ⑴根据蝴蝶定理, S
BGC
1 2 3 ,那么 S
BGC
6;
⑵根据蝴蝶定理, AG : GC 1 2 : 3 6 1: 3 . 【三】 图中的四边形土地的总面积是 52 公顷,两条对角线把它分成了四个小三角形,其中两个小 三角形的面积分别是 6 公顷和 7 公顷,求四个三角形中最大的一个的面积。
C
B O A D
【分析】 根据蝴蝶定理求得 S△ AOD 3 1 2 1.5 平方千米,公园四边形 ABCD 的面积是
1 2 3 1.5 7.5 平方千米,所以人工湖的面积是 7.5 6.92 0.58 平方千米
【二】 如图, 四边形被两条对角线分成 4 个三角形, 其中三个三角形的面积已知, 求: ⑴三角形 BGC 的面积;⑵ AG : GC ?
米), SECD 4 8 12 (平方厘米).那么长方形 ABCD 的面积为 12 2 24 平方厘 米,四边形 OFBC 的面积为 24 5 2 8 9 (平方厘米).
【八】 如图,正方形 ABCD 面积为 3 平方厘米, M 是 AD 边上的中点.求图中阴影部分的面积. C B

五年级奥数小升初五大模型之蝴蝶模型的应用练习题PPT课案

五年级奥数小升初五大模型之蝴蝶模型的应用练习题PPT课案
根据蝴蝶模型:S1×S3=S2×S4 则:S∆AOD× S∆BOC= S∆AOB× S∆COD 得: S∆BOC= S∆AOB× S∆COD ÷S∆AOD 所以: S∆BOC=8×8÷4=16
答:三角形BOC的面积是16。
五年级奥数小升初五大模型之蝴蝶模型 的应用练习题PPT课案
典题解析
例2.如图,在平行四边形中,△ABN的面积是36平方厘米,四边形EMFN的 面积是64平方厘米,则丙的面积是多少平方厘米?
连接EF,得到梯形ABFE和梯形CDEF 根据蝴蝶模型: S2 = S4 则: S∆ABN = S∆EFN 和 S∆EFM = S∆CDM 得: S∆CDM = S∆EFN + S∆EFM - S∆ABN 所以:S∆CDM = 64-36 = 28(平方厘米) 答:丙的面积是28平方厘米。
五年级奥数小升初五大模型之蝴蝶模型 的应用练习题PPT课案
五年级奥数小升初五大模型之蝴蝶模型 的应用练习题PPT课案
蝴蝶模型:
如果四边形ABCD是梯形,如下图,可以得出结论:
A
D
S1
S2 O S4
S2=S4
S3
S1×S3=S2×S4
B
C
五年级奥数小升初五大模型之蝴蝶模型 的应用练习题PPT课案
典题解析
例1.梯形ABCD中,三角形AOB的面积是8,三角形AOD的面积是4,三角 形DOC的面积是8,求三角形BOC的面积。
典题解析
例3.如图所示,BD、CE将长方形ABCD分成4块,三角形DEF的 面积是4平方厘米,三角形CDF的面积是6平方厘米,四边形 ABEF的面积是多少平方厘米?
连接CE,得到梯形BCDE
根据蝴蝶模型: S2 = S4
A
则: S∆BEF = S∆CDF =6(平方厘米)

小学数学蝴蝶模型含答案

小学数学蝴蝶模型含答案

蝴蝶模型知识框架四边形模型任意四边形中的比例关系(“蝴蝶定理”):O DCBA s 4s 3s 2s 1①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A BC DO ba S 3S 2S 1S 4例题精讲一、任意四边形【例 1】 图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?76EDCBA76【考点】任意四边形模型 【难度】2星 【题型】解答【解析】 在ABE ,CDE 中有AEB CED ∠=∠,所以ABE ,CDE 的面积比为()AE EB ⨯:()CE DE ⨯.同理有ADE ,BCE 的面积比为():()AE DE BE EC ⨯⨯.所以有ABES×CDES=ADES×BCES,也就是说在所有凸四边形中,连接顶点得到2条对角线,有图形分成上、下、左、右4个部分,有:上、下部分的面积之积等于左右部分的面积之积. 即6ABES ⨯=7ADES⨯,所以有ABE 与ADE的面积比为7:6,ABE S=7392167⨯=+公顷,ADE S =6391867⨯=+公顷. 显然,最大的三角形的面积为21公顷.【答案】21。

【巩固】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGF EDC BA【考点】任意四边形模型 【难度】3星 【题型】解答【解析】 ⑴根据题意可知,BCD △的面积为244616+++=,那么BCO △和CDO ∆的面积都是1628÷=,所以OCF △的面积为844-=;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862-=, 根据蝴蝶定理,::2:41:2COE COF EG FG S S ∆∆===,所以::1:2GCE GCF S S EG FG ∆∆==, 那么11221233GCE CEF S S ∆∆==⨯=+. 【答案】23。

几何五大模型-蝴蝶模型

几何五大模型-蝴蝶模型
例3如图, , ,求梯形的面积。
【举一反三】
1、如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知 与 的面积分别为25平方厘米与35平方厘米,那么梯形ABCD的面积是________平方厘米.
例4如图,梯形ABCD的对角线AC与BD交于点O,已知梯形上底为2,且三角形ABO的面积等于三角形BOC面积的 ,求三角形AOD与三角形BOC的面积之比.
求:⑴三角形BGC的面积;⑵AG:GC=?
例2如图,四边形ABCD的对角线AC与BD交于点O(如图所示)。如果三角形ABD的面积等于三角形BCD的面积的 ,且AO=2,DO=3,那么CO的长度是DO的长度的_________倍。
【举一反三】
1、如图,平行四边形ABCD的对角线交于O点, 、 、 、 的面积依次是2、4、4和6。求:⑴求 的面积;⑵求 的面积。
7、如图,正方形 面积为 平方厘米, 是 边上的中点.求图中阴影部分的面积.
8、如图面积为 平方厘米的正方形 中, 是 边上的三等分点,求阴影部分的面积.
9、如图,正六边形面积为 ,那么阴影部分面积为多少?
2、图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。那么最大的一个三角形的面积是多少公顷?
板块二梯形模型的应用
【知识梳理】
梯形中比例关系(“梯形蝴蝶定理”):

② ;
③ 的对应份数为 .
梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明)
3、梯形的下底是上底的1.5倍,三角形OBC的面积是 ,问三角形AOD的面积是多少?

几何五大模型-蝴蝶模型

几何五大模型-蝴蝶模型
板块一任意四边形模型
【例题精讲】
例1如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?
【举一反三】
1、如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知。
4如图梯形abcd中的面积分别为12和27求梯形abcd的面积5如下图一个长方形被一些直线分成了若干个小块已知三角形的面积是三角形的面积是求四边形的面积6长方形中若三角形1的面积与三角形3的面积比为4比5四边形2的面积为36则三角形1的面积为7如图正方形面积为平方厘米是边上的中点求图中阴影部分的面积8如图面积为平方厘米的正方形中是边上的三等分点求阴影部分的面积9如图正六边形面积为那么阴影部分面积为多少
例3如图, , ,求梯形的面积。
【举一反三】
1、如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知 与 的面积分别为25平方厘米与35平方厘米,那么梯形ABCD的面积是________平方厘米.
例4如图,梯形ABCD的对角线AC与BD交于点O,已知梯形上底为2,且三角形ABO的面积等于三角形BOC面积的 ,求三角形AOD与三角形BOC的面积之比.
_________________个性化辅导讲义
年 级:
时间
年月日
课 题
蝴蝶模型
教学目标
1.熟记蝴蝶模型,
2.学会使用蝴蝶模型解决问题。
3.学着对平面图形进行对比,培养发现特征的能力。
教 学 内 容
【温故知新】
默写公式:
【知梳理】
模型三蝴蝶模型
任意四边形中的比例关系(“蝴蝶定理”):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蝴蝶模型
如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?
如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知△AOB与△BOC的面积分别为25平方厘米与35平方厘米,那么梯形ABCD的面积是多少平方厘米?
如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC的面积为_____平方厘米。

如图,长方形中,若三角形1的面积与三角形3的面积比为4比5,四边形2的面积为36,则三角形1的面积为______。

★★
★★★(2007年“迎春杯”高年级初赛) ★★★
★★★( 06年南京智力数学冬令营)。

相关文档
最新文档