前列腺癌DNA异常甲基化的最新研究成果-医学遗传学论文-基础医学论文-医学论文
基因甲基化与癌症发病风险的关系
基因甲基化与癌症发病风险的关系随着科技的发展,基因与癌症之间的关系越来越受到重视。
其中,基因甲基化是近年来备受关注的领域之一。
据研究表明,基因甲基化与某些癌症的发病风险存在一定的关联。
本文将就此进行较为详细的介绍和探讨。
一、基因甲基化的概念基因甲基化是指DNA分子中的Cytosine(胞嘧啶)碱基与一个甲基(Methyl,CH3)化学键形成,从而改变了该基因的表达。
其主要作用是在基因表达中发挥着重要的调节作用,如在RNA合成中充当巨噬转录因子和辅助转录因子的首席调节因子,在DNA复制和修复过程中也有重要的作用。
二、基因甲基化对癌症发病风险的影响现有研究表明,基因甲基化异常在多种恶性肿瘤中起到了重要的作用。
甲基化异常可导致肿瘤相关基因的表达水平改变,从而使得细胞功能异常增加,增加了癌症的发生风险。
不同种类的癌症有不同的甲基化异常,下面针对一些具体癌症进行介绍。
1.大肠癌大肠癌是由于与肠道黏膜里的细胞发生甲基化异常有关的一种肿瘤。
甲基化异常会影响肿瘤抑制基因的表达,从而促进癌症的发生。
此外,纤维酸酯酶(FDNCS)、骨髓蛋白4(CDX4),一些赖氨酸磷酸酶1(PTPL1)、活化细胞去活化蛋白酶(ADAM)等基因也被发现与大肠癌的发生相关联。
2.肝癌肝癌几乎与丙型肝炎病毒(HCV)感染或B型肝炎病毒(HBV)感染有关。
甲基化异常影响了PTEN、CDKN1C和GSTP1等抗癌基因的表达。
此外,核苷酸酶(Dnmt1)在肝癌细胞中表达水平增加,从而导致了癌细胞分裂速度增加。
3.乳腺癌乳腺癌的发生与雌激素受体有着密切的关系。
研究表明,雌激素会直接影响甲基化异常的女性,从而增加了乳腺癌的发生风险。
同时,FOXF2和FOXQ1与乳腺癌的发生也有关系。
以上三种癌症是基因甲基化异常影响较为明显的三种癌症类型。
事实上,不同种类的癌症如肺癌、胃癌、鼻咽癌、淋巴瘤等都与基因甲基化异常密切相关。
三、影响基因甲基化的因素除了基因内部的因素之外,外部环境也可能影响基因甲基化。
DNA甲基化在肿瘤发生中的作用
DNA甲基化在肿瘤发生中的作用肿瘤是人类健康的头等大事,它是由基因突变和表观遗传学变化引起的遗传疾病。
DNA甲基化是一种常见的表观遗传学变化,它是指DNA分子在胞内繁殖时,通过在在五碳脱氧核糖核苷酸的C5位加上一个甲基基团而产生的一种修饰,它在正常组织中具有调控基因表达,维护基因稳定性,参与细胞分化和应答外源性刺激等多种功能。
但是,在肿瘤发生中,DNA甲基化的模式发生改变,造成癌基因的高度表达或肿瘤抑制基因的沉默,这种表观遗传学的改变往往会引起肿瘤的发生和发展。
因此,深入了解DNA甲基化在肿瘤发生中的作用,对于治疗肿瘤有着重要的意义。
DNA甲基化的机制DNA甲基化是一种简单的化学修饰,它是由甲基转移酶催化丙烷基单元(C1)从S-腺苷甲硫氨酸(AdoMet)转移到细胞内DNA链合成过程中的胞嘧啶(Cyt)的C5核苷酸上。
DNA甲基转移酶(DNMT)是DNA甲基化的关键酶,它包括DNMT1, DNMT3a和DNMT3b三个亚型。
DNMT1是在细胞分裂期间能够保证分子和细胞的遗传稳定性,通过识别和甲基化前一代细胞从父本获得的甲基化DNA,维持其在细胞分裂后的遗传稳定性。
DNMT3a/b通过识别新的DNA序列元素来甲基化胞苷。
然而,过度的DNA甲基化也可能触发继承性的表观遗传学改变,从而引起肿瘤的发生。
DNA甲基化对于肿瘤的发生和发展,具有重要的作用。
它可以通过多种方式参与调节肿瘤细胞的基因表达和功能。
首先,DNA甲基化可以引起癌的基因高度表达,包括促细胞分裂和生长的基因和转录激活因子。
例如,在结肠直肠癌和胃癌中,印迹基因CDKN2A的启动子区域的甲基化状态的改变被认为是这些肿瘤的重要驱动因素。
此外,在癌症中经常出现的促细胞分裂和生长信号通路基因的DNA甲基化也是引起癌症的重要机制之一。
其次,DNA甲基化还可压制肿瘤抑制基因的表达。
肿瘤抑制基因损失或其功能异常的情况下,细胞将失去对癌症的抵抗能力。
例如,在人类胃癌和乳腺癌中,肿瘤抑制基因BRCA1的基因沉默与BRCA1启动子区域的甲基化增加有关联。
前列腺癌组织中多种基因异常甲基化检测及临床意义的开题报告
前列腺癌组织中多种基因异常甲基化检测及临床意义的开
题报告
一、选题背景和意义
前列腺癌是男性常见疾病,也是导致男性死亡的主要原因之一。
早期诊断和治疗对于前列腺癌的治疗效果至关重要。
目前,许多基因异常与前列腺癌的发生和发展密
切相关。
其中,DNA甲基化作为重要的表观遗传学机制,在前列腺癌的发生和发展中
起着重要的作用。
据研究发现,前列腺癌组织中多种基因异常甲基化,如GSTP1、RARβ2、MAGE-A3等基因的甲基化程度明显增高。
因此,检测这些基因的甲基化状态,对于前列腺癌的早期诊断和治疗具有重要的临床意义。
二、研究内容和方法
研究将分两个部分进行。
第一部分:检测前列腺癌组织中多种基因异常甲基化的情况。
本研究将收集前列腺癌患者的组织样本,采用甲基化特异性多聚酶链式反应(MSP)方法,检测GSTP1、RARβ2、MAGE-A3等基因的甲基化状态,同时检测对照组织的甲基化情况。
第二部分:分析基因异常甲基化检测在前列腺癌早期诊断和治疗中的临床意义。
将分析前列腺癌组织中多种基因的甲基化状态与患者的临床病史和其他相关指标进行
关联分析,探讨其在早期诊断、临床分期和治疗监测中的价值和应用前景。
三、研究进展和展望
前列腺癌组织中多种基因异常甲基化检测具有较高的敏感性和特异性,可以用于前列腺癌早期诊断、临床分期和预后评估。
然而,目前该技术的应用还面临一些困难,如样本来源的不确定性、检测方法的标准化等。
未来的研究需要进一步完善该技术的
应用,提高其在前列腺癌的诊断和治疗中的临床应用价值。
DNA甲基化调控信号转导通路分析与功能鉴定
DNA甲基化调控信号转导通路分析与功能鉴定DNA甲基化是一种重要的表观遗传修饰方式,在生物体发育、细胞分化和疾病发生中起着关键作用。
通过DNA甲基化修饰,基因的转录和表达可以被调控,进而影响细胞内的信号转导通路和相应的功能调控。
信号转导通路是细胞内的重要通讯机制,包括多个信号分子、信号受体、信号传导分子和转录因子等组分的相互作用。
信号转导通路对于细胞的生存、生长、分化和死亡等过程起到重要调控作用。
在信号转导通路中,DNA甲基化的修饰可以作为一个重要的调控点,在信号途径的启动、传导和终止中起到关键作用。
DNA甲基化调控信号转导通路主要通过三种方式进行功能鉴定:酶催化、DNA结合蛋白和非编码RNA介导。
首先,DNA甲基转移酶(DNMTs) 可以催化甲基基团与DNA结合,从而影响某些信号分子所在的信号转导通路。
其次,特定的DNA结合蛋白可以结合到DNA甲基化位点上,通过改变染色质的结构和开关,影响信号转导通路的启动和传导。
最后,非编码RNA如miRNA和lncRNA等,可以通过基因座附近的DNA甲基化修饰来调控信号转导通路,改变信号通路的响应和功能。
基于这些功能鉴定方法,我们可以进一步分析和理解DNA甲基化调控信号转导通路的作用机制和功能。
首先,我们可以通过全基因组DNA甲基化分析技术来鉴定哪些信号转导通路的相关基因座发生了甲基化修饰的改变。
然后,可以利用转录组学技术对甲基化修饰的基因座进行进一步分析,了解甲基化修饰对信号分子的表达和功能调控的影响。
此外,还可以利用染色质免疫沉淀技术和DNA甲基化及蛋白质相互作用分析技术,确定特定的DNA结合蛋白以及其与信号转导通路的相关性,以及非编码RNA与甲基化修饰之间的相互关系。
通过对DNA甲基化调控信号转导通路的功能鉴定,我们可以深入了解信号转导通路的调控机制和细胞功能的变化。
此外,这些研究也有助于揭示DNA甲基化在疾病发生和发展中的作用。
例如,DNA甲基化调控信号转导通路的异常可能导致肿瘤发生和发展。
表观遗传学对肿瘤分子诊断的贡献
表观遗传学对肿瘤分子诊断的贡献随着肿瘤学的研究不断深入,我们对于肿瘤的认识越来越深刻。
在过去,人们认为肿瘤是由于基因突变引起的,但是接下来人们发现,除了基因突变之外,表观遗传学也对肿瘤的产生有着至关重要的作用。
表观遗传学指的是指基因表达的非遗传性过程,例如DNA甲基化、组蛋白修饰等。
表观遗传学与肿瘤的关联性备受关注,表观遗传学可以影响癌细胞的分化、增殖以及凋亡等基本过程,进而影响癌症的发生。
肿瘤常见的表观遗传学变化是基因的DNA甲基化和组蛋白修饰。
DNA甲基化通常指的是DNA上五碳糖的甲基化,它是一种可逆、转录过程的表观遗传学修饰,与表观遗传学的其他修饰相比,DNA甲基化是增殖细胞中最稳定、最持久的一种表观遗传学修饰方式。
而组蛋白修饰是指对组蛋白N端氨基酸残基的化学修饰。
组蛋白修饰包括甲基化、磷酸化、乙酰化、泛素化等。
这些修饰可以影响组蛋白染色质的稳定性和空间结构,调控基因的表达水平。
在表观遗传学领域的研究中,发现了许多与肿瘤相关的基因的DNA甲基化和组蛋白修饰变化。
这些变化可能会导致基因的表达水平的改变,进而影响到肿瘤生物学过程。
例如,一个肿瘤抑制基因如果由于DNA甲基化被沉默了,那么就可能会失去对癌细胞的抑制作用。
同时,如果一个促进癌细胞生长的基因由于组蛋白修饰而变得超表达,那么就会促进肿瘤的生长。
因此,探究肿瘤相关基因的表观遗传学变化对于识别肿瘤分子标志物、发展新的癌症治疗方法具有重要的意义。
表观遗传学对肿瘤分子诊断的贡献主要体现在以下几方面:1. 作为肿瘤诊断的生物标志物肿瘤诊断常规的方法是通过组织学检查、病理学检查、血液生化指标等手段来发现。
但是这些方法都有各自的局限性,不能满足高精度的肿瘤诊断需求。
因此,人们开始研究肿瘤的分子标志物,这些分子标志物包括DNA、RNA、蛋白质等。
通过识别肿瘤的分子标志物,可以发展出高灵敏度、高特异性的肿瘤分子诊断方法。
表观遗传学中的DNA甲基化和组蛋白修饰变化就是常见的肿瘤分子标志物。
可变剪接在卵巢癌中的作用研究进展
可变剪接在卵巢癌中的作用研究进展冉黔川;廖德仲【期刊名称】《临床医学进展》【年(卷),期】2024(14)3【摘要】卵巢癌(ovarian cancer, OC)是发生在卵巢的恶性肿瘤性疾病。
卵巢癌大多发病隐匿,进展迅速,加之缺乏高效的早期诊断措施,许多病人初次诊断时已属晚期。
在诊断和治疗方面已取得了一定的进展,但其五年生存率仍然低,所以迫切需要研究OC的发生和发展机制。
中心法则中RNA是由DNA转录而来的,作为一个转录本来源的DNA转录区域却不一定是由某个连续DNA片段提供的,甚至可能有间隔DNA转录区的交叉,不同区域不同顺序的转录产物共同组成一个转录本,极大增加了DNA产生RNA的复杂度。
人类基因组中多数基因都会发生RNA的可变剪接(alternative splicing, AS),AS可实现相同的前信使RNA生成多个mRNA剪接异构体和下游蛋白质亚型。
一个基因的不同编码区可以以不同的方式剪接,导致该基因的多种转录状态,最终的蛋白产物可能具有不同的或相互拮抗的功能和结构特征。
这在很大程度上扩大了人类基因的复杂性和多样性,影响着肿瘤细胞表型和信号通路,从而影响肿瘤的发生、发展。
OC中也发现可变剪接事件,笔者就AS在OC中的作用作综述。
【总页数】6页(P1077-1082)【作者】冉黔川;廖德仲【作者单位】贵州中医院大学基础医学院贵阳【正文语种】中文【中图分类】R73【相关文献】1.DNA异常甲基化在恶性肿瘤发生中的作用及其在卵巢癌中的研究进展2.可变剪接的表观遗传学调控机制及其在脂肪代谢中的作用研究进展3.可变剪接在肌肉发育中的作用研究进展4.可变剪接在基因转录中的作用机制及其在头颈部鳞状细胞癌中的研究进展5.卵巢癌肿瘤干细胞及其标志物在卵巢癌诊疗中作用的研究进展因版权原因,仅展示原文概要,查看原文内容请购买。
肝癌基因甲基化
肝癌基因甲基化肝癌是一种常见的恶性肿瘤,其发生和发展与基因甲基化密切相关。
基因甲基化是指DNA分子上的甲基基团与胞嘧啶(C)结合的化学修饰过程。
肝癌基因的甲基化异常会导致基因的失活或过度激活,从而参与肝癌的发生和进展。
肝癌是一种高度复杂的疾病,其发生和发展是多因素、多基因参与的过程。
研究表明,肝癌的发生与基因组DNA的甲基化状态密切相关。
正常细胞中,甲基化主要发生在基因的启动子区域,通过调控基因的表达来维持细胞的正常功能。
而在肝癌细胞中,基因的甲基化状态发生异常,导致一些关键基因的表达发生改变,从而促进肿瘤的发生和发展。
肝癌基因甲基化的异常会引起关键抑癌基因的失活。
抑癌基因是一类能够抑制肿瘤细胞生长和分化的基因。
研究发现,在肝癌组织中,抑癌基因的启动子区域往往存在甲基化修饰,导致这些基因的表达受到抑制。
例如,肝癌细胞中常见的抑癌基因CDKN2A在其启动子区域发生甲基化,导致该基因的表达下调,失去了抑制肿瘤细胞增殖的功能。
肝癌基因甲基化的异常还会导致一些肿瘤相关基因的过度激活。
肿瘤相关基因是一类能够促进肿瘤细胞增殖和侵袭的基因。
在肝癌组织中,这些基因的启动子区域常常存在甲基化修饰,导致其表达水平上调。
例如,肝癌细胞中常见的肿瘤相关基因FOXM1,在其启动子区域的甲基化状态发生改变后,会导致该基因的过度激活,促进肿瘤细胞的增殖和转移。
肝癌基因甲基化在肿瘤干细胞中也起到重要作用。
肿瘤干细胞是一种能够自我更新和不断分化的细胞群体,具有肿瘤发生和耐药性的能力。
研究发现,肝癌干细胞中的一些关键基因的甲基化状态发生改变,导致这些基因的表达异常。
这些基因的失活或过度激活会导致肿瘤干细胞的异常增殖和分化,进而促进肝癌的发展和转移。
肝癌基因甲基化的异常还与肝癌的临床特征和预后密切相关。
研究表明,肝癌组织中某些特定基因的甲基化程度与肝癌的分型、侵袭性以及预后有关。
例如,肝癌组织中DNA甲基转移酶DNMT3B的高表达与肝癌的侵袭能力和预后密切相关。
表观遗传学的新研究成果
表观遗传学的新研究成果随着科技的发展,人们对遗传学的研究越来越深入,而表观遗传学也成为了研究的热点之一。
表观遗传学是指通过修饰染色体上的化学标记来控制基因表达的现象。
最近,表观遗传学的研究又有了新的进展。
本文将介绍表观遗传学的新研究成果。
一、DNA甲基化对癌症的影响DNA甲基化是指DNA上的甲基化酶作用下在CpG岛上的C位点上加上甲基。
早前的研究发现,DNA甲基化对于基因表达的控制有非常重要的作用。
最近的研究表明,DNA甲基化也会对癌症的发生发挥重要的影响。
研究人员发现,在许多癌症患者的基因组中,DNA甲基化的情况比健康人群更为严重。
这是因为DNA甲基化会导致基因的沉默,使得这些基因无法正常表达,而一些重要抑癌基因被甲基化后就无法发挥作用,从而导致癌症的发生和发展。
二、表观遗传学与人口失智症的关系人口失智症是一种常见的老年疾病,目前其发病机制还不是完全明确。
最新的研究表明,表观遗传学也与人口失智症有关。
研究人员在对大量的人口失智症患者和健康人群进行比较后发现,人口失智症患者的脑细胞中存在较多的表观遗传学变化。
这些变化包括DNA甲基化、组蛋白修饰以及微小RNA的调控等,都会导致基因表达的异常。
这些异常进一步加剧了脑细胞的退化,从而导致人口失智症的发生。
三、表观遗传学对染色体失衡的影响染色体在人体细胞中的数量和结构是非常重要的。
一旦染色体出现数量和/或结构方面的缺陷,就会导致染色体失衡(aneuploidy)的现象。
最近的研究表明,表观遗传学也会影响染色体失衡的发生。
研究人员发现,在许多染色体失衡的人群中,表观遗传学的变化比正常人要大。
这主要体现在DNA甲基化的情况。
DNA甲基化的不均衡会导致基因表达的异常,从而进一步影响染色体的数量和结构,导致染色体失衡的发生。
结论表观遗传学作为一种新兴的遗传学分支,对人类健康的影响越来越受到关注。
目前的研究表明,表观遗传学与许多疾病的发生和发展密切相关,其中包括癌症、人口失智症以及染色体失衡等。
肿瘤DNA甲基化标志物检测及临床应用专家共识(2024版)
肿瘤DNA甲基化标志物检测及临床应用专家共识(2024版)无
【期刊名称】《中国癌症防治杂志》
【年(卷),期】2024(16)2
【摘要】随着生物医学的发展,DNA甲基化(DNA methylation)标志物在癌症诊断、治疗选择及预后评估中的重要性日益凸显。
本专家共识旨在全面梳理DNA甲基化标志物的检测技术、临床应用及其在肿瘤管理中的潜力。
此外,本共识将围绕DNA甲基化标志物的定义、临床意义、检测规范、数据处理及其在肿瘤的筛查、辅助诊断、伴随诊断及复发监测中的应用,结合最新研究进展和实际临床经验,提出一系列关于DNA甲基化标志物检测及应用的共识推荐,旨在提升临床医技人员对这一新兴标志物的认识,规范检测流程,促进其在肿瘤诊疗全程中的应用,从而为患者提供更加精准有效的治疗方案。
【总页数】14页(P129-142)
【作者】无
【作者单位】中国抗癌协会肿瘤标志专业委员会
【正文语种】中文
【中图分类】R730
【相关文献】
1.降钙素原的检测和应用——《感染相关生物标志物临床意义解读专家共识》解读
2.乳腺癌肿瘤组织及血液游离DNA中特异性甲基化生物标志物的临床应用
3.DNA
甲基化相关肿瘤标志物临床研究进展4.《中国肿瘤临床》文章推荐:中国人群肺癌血清标志物临床应用及参考区间建立规范化流程专家共识5.骨肿瘤二代测序及分子检测技术临床应用专家共识
因版权原因,仅展示原文概要,查看原文内容请购买。
DNA甲基化对癌症和疾病发展的影响
DNA甲基化对癌症和疾病发展的影响在科学研究领域,DNA甲基化一直是一个热门的话题。
此过程指的是甲基化酶在DNA上加入一种称为甲基基团的化合物,使某些基因表现出不同的表现型。
这个过程并不是自发的,而是由环境影响所导致的。
值得注意的是,DNA甲基化被证明具有非常重要的作用,与诸多人类疾病如癌症、糖尿病、自闭症以及精神疾病的发展息息相关。
DNA甲基化对癌症的影响DNA甲基化的重要性在癌症研究领域尤为显著。
甲基化可能导致基因的打开或关闭,这会影响某些癌症相关基因的发生。
例如,当癌细胞中的肿瘤抑制基因(TSG)被甲基化时,其不能起到抑制癌细胞增殖的作用,这使得癌症细胞可以不断增殖甚至散播到其他部分。
同样的,如果肿瘤的促进基因被甲基化,则有可能加速细胞的生长与增殖,导致肿瘤的扩大。
此外,一些DNA甲基化酶被发现在癌症早期得以提前表达,这可能导致某些基因被标记为甲基化,进而影响癌细胞的生长和繁殖。
因此,减少或阻止DNA甲基化可能是预防癌症发生的有效方法。
DNA甲基化对糖尿病的影响除了癌症,DNA甲基化还与其他医学领域有着密切的联系。
例如,一些研究发现,对一些基因的甲基化可以导致糖尿病的发生。
糖尿病是由胰岛素产生不足或细胞对胰岛素反应不良所引起的。
胰岛素在细胞中控制葡萄糖的代谢,在身体中维持了葡萄糖平衡。
当有些基因发生菜籽磷甲基化时,它们就可能会失去正常的功能,并且影响体内对胰岛素的反应。
患有糖尿病的人经常表现出血糖稳定性不佳或异常,血液中葡萄糖水平持续升高,进而影响人体的健康以及身体其他器官的功能。
DNA甲基化对自闭症的影响DNA甲基化也是自闭症研究的一个新领域。
自闭症是一种神经发育障碍,患者通常会表现出社交问题、语言障碍以及重复行为等症状。
研究已经显示,自闭症与一些基因的甲基化异常有关。
其中,一些TSG基因的甲基化问题已经在自闭症患者身上被发现。
这些基因正常情况下会在神经元中保护良好的连接。
如果这些基因被甲基化,这些连接就会失去保护,细胞间的交流也可能出现异常。
二代测序技术检测442例甲状腺乳头状癌基因突变及其临床病理学特征
二代测序技术检测442例甲状腺乳头状癌基因突变及其临床病理学特征施栋梁;姚梅宏;吴丹;黄达妮;陈醉;郑宇辉;杨映红【期刊名称】《诊断病理学杂志》【年(卷),期】2024(31)2【摘要】目的探讨甲状腺乳头状癌(PTC)基因改变及其与临床病理学特征的关系。
方法通过二代测序技术对442例PTC患者进行基因检测,同时收集患者的临床病理学资料。
结果(1)442例PTC患者中,423例患者检出基因突变,其中BRAF(385例)、RET(24例)、KRAS(5例)、NTRK3(3例)、NTRK1(3例);(2)BRAF基因突变仅与肿瘤最大径相关(P=0.006);(3)V600E突变丰度与性别、肿瘤最大径、肿瘤单/双侧、腺外侵犯、淋巴结转移、组织学亚型(P均<0.05)相关;(4)V600E不同突变丰度与肿瘤最大径、癌灶分布、腺外侵犯、淋巴结转移、组织学亚型(P均<0.05)相关。
结论应用NGS技术可以明确PTC各驱动基因变异的独特特征,此外BRAF基因V600E突变与多项高危的临床病理学特征相关。
【总页数】5页(P135-139)【作者】施栋梁;姚梅宏;吴丹;黄达妮;陈醉;郑宇辉;杨映红【作者单位】福建医科大学附属协和医院病理科【正文语种】中文【中图分类】R736.1【相关文献】1.二代测序法检测结肠癌基因突变与临床病理特征的关系2.ddPCR技术和Sanger 测序法检测甲状腺乳头状癌患者BRAF V600E基因突变的比较分析3.二代测序探究甲状腺癌基因突变及临床意义4.二代测序技术检测甲状腺乳头状癌RET基因融合及其临床病理特征5.应用二代测序技术检测73例骨髓增生异常综合征患者基因突变的结果及其临床特征与预后关系的研究因版权原因,仅展示原文概要,查看原文内容请购买。
DNA甲基化在肿瘤发生中的作用
DNA甲基化在肿瘤发生中的作用越来越多的研究表明,在肿瘤形成过程中包含两大类机制。
一个是通过DNA核苷酸序列改变而形成突变,即遗传学机制。
肿瘤作为一种遗传学疾病在分子生物学领域已经得到证实。
另外一个就是表观遗传学(epigenetics)机制,即不依赖DNA序列改变导致基因表达水平的变化,它在肿瘤形成过程中的作用越来越受到重视。
遗传学与表观遗传学两种机制相互交叉存在,共同促进了肿瘤的形成。
在肿瘤的发生过程中,调控细胞基因表达的程序经常被打破。
肿瘤细胞的DNA低甲基化状态及HAT、HDAC之间的平衡常发生改变。
因此,对三者之间的平衡关系进行深入研究,有利于明确基因调控的确切分子机制,对阐明及阻断肿瘤发生的始动环节具有重要意义。
基因甲基化与正常胚胎发育、生长等有关,而基因异常甲基化与多种肿瘤的发生和发展密切相关。
根据Hanahan和 Weinberg的理论,细胞癌变需要获得6种新的能力:①无限复制的潜能;②生长信号的自给自足;③对外界生长信号不敏感;④逃避程序性死亡;⑤持续的血管生成;⑥组织侵袭和转移。
除此之外,染色体的不稳定性也有助于肿瘤发生。
参与以上任一过程的基因都可发生甲基化的异常。
基因的异常甲基化在肿瘤发生的早期就可出现,并且在肿瘤逐步发展的过程中,基因异常甲基化的程度增加。
对常见的98种人类原发肿瘤的基因组进行分析,发现每种肿瘤至少有600个异常甲基化的CpG岛。
在肿瘤细胞中,总DNA甲基化水平低于正常细胞,但是某些肿瘤抑制基因及生长调控基因的启动子区甲基化程度却增加了。
引起这种变化的机制尚未明确,可能的机制如下:首先,在正常情况下非甲基化Cp G岛的高甲基化,导致肿瘤抑制基因的失活;其次,CpG甲基化可以促进肿瘤相关基因突变,因为5—甲基胞嘧啶可自发或在S—腺苷蛋氨酸的作用下脱氨而变为胸腺嘧啶,使甲基化的CpG突变为TpG。
这是最常见的突变,在抑癌基因p53中也最常见,是肿瘤相关基因甲基化促进细胞恶变的一种机制。
泛癌甲基化检测项目
泛癌甲基化检测项目
泛癌甲基化检测项目是一种通过检测DNA中的甲基化修饰来
识别肿瘤的早期阶段。
甲基化是一种常见的DNA修饰方式,
它可以影响基因的表达和功能。
在癌症发展过程中,DNA的
甲基化模式会发生变化,从而导致基因的表达异常,进而促进肿瘤的形成。
因此,通过检测DNA的甲基化状态,可以早期
发现肿瘤的存在,甚至预测肿瘤的发生风险。
泛癌甲基化检测项目一般包括从患者的血液或肿瘤组织中提取DNA样本,并利用高通量测序技术对DNA中的甲基化位点进行全面检测和分析。
通过比较正常组织和肿瘤组织中甲基化位点的差异,可以鉴定出与肿瘤相关的甲基化标记物。
这些标记物可以用于肿瘤的早期筛查、诊断和预后预测。
同时,泛癌甲基化检测项目还可通过检测DNA甲基化修饰的动态变化,监
测肿瘤治疗的疗效和预测患者的耐药性。
泛癌甲基化检测项目具有高灵敏度、准确性和可行性的优势,可以为个体化治疗提供重要参考。
然而,该项目仍处于研究阶段,需要进一步的临床验证和优化。
此外,由于泛癌甲基化检测项目的高成本和技术难度,目前尚未广泛应用于临床实践中。
表观遗传学的进展在肿瘤诊断和治疗中的应用
表观遗传学的进展在肿瘤诊断和治疗中的应用概述表观遗传学是研究基因组中非改变DNA序列的遗传变异的科学,它主要着眼于DNA甲基化、组蛋白修饰、非编码RNA 等遗传调控机制。
近年来,随着对表观遗传学的深入研究,人们逐渐认识到表观遗传机制在肿瘤发生、发展和治疗中的重要作用。
本文将探讨表观遗传学在肿瘤诊断和治疗中的应用进展。
1. 表观遗传学在肿瘤诊断中的应用表观遗传学在肿瘤诊断中的应用主要体现在以下几个方面:1.1 DNA甲基化DNA甲基化是表观遗传学研究中最常见的调控方式之一,也是临床研究中应用最广泛的表观遗传学变异类型。
在肿瘤中,DNA甲基化水平的改变与调控基因活性、基因组稳定性以及转录调控等方面密切相关。
通过对肿瘤组织或血液中DNA甲基化的检测,可以帮助早期诊断、预测肿瘤转移风险、评估治疗效果等。
1.2 组蛋白修饰组蛋白修饰是另一种常见的表观遗传调控方式,它涉及到组蛋白乙酰化、甲基化、磷酸化等多种修饰方式。
肿瘤细胞中常常存在组蛋白修饰异常,例如组蛋白乙酰化异常与肿瘤的侵袭性和预后密切相关。
通过检测组蛋白修饰的变化,可以为肿瘤的临床诊断和预后评估提供重要参考。
1.3 非编码RNA非编码RNA包括长链非编码RNA(lncRNA)和微小RNA (miRNA)等,它们在肿瘤的发生和发展中扮演着重要角色。
lncRNA和miRNA可通过多种机制介导基因表达的调节,其中某些非编码RNA已被鉴定为潜在的肿瘤标志物。
因此,检测和分析非编码RNA的表达和功能,对于肿瘤的早期诊断、治疗靶点的发现以及预后评估具有重要意义。
2. 表观遗传学在肿瘤治疗中的应用表观遗传学在肿瘤治疗中的应用主要有以下几个方面:2.1 DNA甲基转移酶抑制剂DNA甲基转移酶抑制剂是指能够抑制DNA甲基转移酶的药物,通过阻断DNA甲基化修饰的添加,从而恢复癌细胞中一些关键基因的表达,抑制肿瘤细胞增殖和转移。
DNA甲基转移酶抑制剂已经在部分肿瘤类型的治疗中取得了一定的进展,例如肺癌、胃癌等。
《肿瘤DNA甲基化标志物检测及临床应用专家共识(2024版)》要点
《肿瘤DNA甲基化标志物检测及临床应用专家共识(2024版)》要点1 DNA甲基化标志物概述DNA甲基化是一种DNA的共价修饰,具体是指DNA甲基转移酶(DNMTs)将甲基加到DNA CpG序列中胞嘧啶的5'碳位,形成5-甲基胞嘧啶的过程。
与传统的肿瘤标志物相比,DNA甲基化标志物具有更早期、更无创、更精准等优点。
因此,可以通过非侵入性方式获得的痰液、血浆、血清或尿液等样本进行DNA甲基化标志物检测。
一些DNA甲基化异常发生在肿瘤形成的初始阶段,通过检测与肿瘤发展相关的甲基化标志物,可以辅助癌症早期诊断、评估进展风险。
DNA甲基化标志物甲基化水平的增加或降低与肿瘤预后密切相关,可用于治疗或根治性手术后评估肿瘤微小残留病灶(MRD)和监测复发。
此外,DNA甲基化标志物还可作为化疗敏感性的标志,某些特定基因的甲基化可能预示着癌症对治疗的反应,可用于判断化疗药物的疗效,以更好地指导治疗方案。
2 DNA甲基化标志物的临床检测2.1 临床样本前处理注意事项细胞基因组与游离DNA(cfDNA)均可用于肿瘤DNA甲基化检测,常采用组织、血液样本,也可采用尿液、浆膜腔积液、灌洗液、粪便、拭子等样本。
专家共识:各类样本经采集后,应尽可能减少转运环节与耗时,及早分离检测组分。
血液样本应避免溶血,不可使用肝素抗凝。
检测游离DNA时,采集量应充足,及早采用两步离心法分离无细胞血浆,分离前不可对含红细胞血样进行冻存。
新鲜体液及灌洗液样本如含较多血液成分可进行抗凝处理。
粪便样本推荐采用含防腐剂保存液。
(推荐等级:强推荐)2.2 DNA甲基化标志物检测技术方法2.2.1 DNA提取与纯化2.2.2 DNA转化2.2.3 DNA甲基化检测平台专家共识:抽提纯化所得DNA应根据样本类型制定质量合格标准并进行评价,包括浓度、纯度和DNA完整性。
cfDNA还应评估片段分布,以排除基因组DNA污染。
DNA甲基化检测需要针对不同的标本类型与检测应用选择适宜的转化方法,并关注转化技术的最新进展。
DNA 甲基化与癌症的关系
DNA 甲基化与癌症的关系癌症是一种严重威胁人类健康的疾病,其发病机制至今尚未完全清楚。
但随着科技的发展,越来越多的研究表明,DNA 甲基化是导致癌症的重要原因之一。
DNA 甲基化是指 DNA 分子上的腺嘌呤和鸟嘌呤碱基的 C5 位被甲基基团(CH3)所取代的化学反应。
这种化学修饰方式是细胞遗传信息传递中的一环,能够影响基因的表达,对细胞分化、生长和代谢等过程产生重要影响。
然而,当 DNA 甲基化出现异常时,便会引发一系列疾病,包括癌症。
DNA 甲基化与癌症的关系已经得到了广泛的研究。
其中最具代表性的工作是美国加州大学旧金山分校 Robert Feinberg 教授的研究。
该研究发现,在肿瘤细胞中,有许多基因的甲基化水平明显增加或减少。
这表明 DNA 甲基化是癌症的一个重要诱因,同时也说明癌症发生后,DNA 的甲基化水平经常发生异常。
DNA 甲基化对癌症的影响有多个层面。
首先,DNA 甲基化可以使肿瘤细胞变得更加稳定。
在正常细胞中,许多基因的表达处于失控状态,需要依靠复杂的调节机制来保持平衡。
但是,当这些基因被甲基化时,它们的表达受到抑制,从而避免了细胞的失控生长。
这一点在肝癌等肿瘤中表现得尤为明显。
其次,DNA 甲基化也会使癌症细胞具有更强的侵袭性。
癌症细胞侵袭周围组织是癌症致死的主要原因之一,而 DNA 甲基化可以促进一些重要蛋白质的合成,这些蛋白质可以使肿瘤细胞更容易穿过组织屏障,从而扩散到其他部位。
另外,DNA 甲基化也有可能对治疗癌症产生负面影响。
目前,医学界主流的癌症治疗方法包括手术、化疗和放疗。
然而,由于DNA 甲基化的存在,肿瘤细胞往往会对这些治疗手段产生抵抗。
例如,一些化疗药物能够破坏癌症细胞的 DNA 分子,但如果这些DNA 分子已经被甲基化了,那么药物很难起到有效的作用。
总的来说,DNA 甲基化和癌症之间的关系非常复杂。
虽然目前还没有完全治愈癌症的方法,但深入了解这一关系可以帮助医学界更好地理解癌症的机制,为癌症的诊断和治疗提供更有效的方法。
Septin9基因甲基化检测在肿瘤患者的应用探讨
Septin9基因甲基化检测在肿瘤患者的应用探讨摘要:在中国肿瘤的发病率与死亡率呈上升趋势,肿瘤的发生、发展是一个多因素影响、多基因参与并需经历多阶段演变的复杂过程,临床症状出现时间晚,国民早期筛查意识差,往往错过最佳治疗期。
早发现、早诊断、早治疗是防治癌症最有效的方式。
Septin9基因甲基化是结直肠癌早筛指标,我院自2018年1月率先引进入疆并投入临床应用,结果发现外周血Septin9基因甲基化在多种肿瘤患者体内有不同程度的表达。
其阳性率分别为结直肠癌组60%(12/20),胰腺恶性肿瘤50%(4/8),肾恶性肿瘤40%(2/5),乳腺恶性肿瘤10.7%(3/28),与同期健康体检组 1.4%(3/128)相比,差异有显著性(P<0.05)。
结论:检测外周血Septin9基因甲基化水平不仅用于结直肠癌的早期筛查,还可在其他肿瘤患者体内有不同程度的阳性表达。
关键词:肿瘤;结直肠癌;Septin9基因;甲基化相较于传统检测方法 (粪便隐血试验和结肠镜检查法) , 近年来基于Septin9基因甲基化的血浆检测方法灵敏性高, 特异性强, 操作简便、低创且患者依从性好, 具有很高的临床应用价值。
结肠镜检查是侵入性的, 需要肠道准备, 以确保大肠管腔视野良好。
另外, 肠镜检查有一系列并发症, 如肠活检部位出血、肠穿孔和感染,该检查有多种禁忌证, 如严重的心脏疾病、心肺功能不全、急性腹泻、严重溃疡性结肠炎、结肠克罗恩病、腹膜炎和妊娠等[2]。
因此, 无论粪潜血还是结肠镜检查, 患者依从性较差。
我院2018年1月引进Septin9基因甲基化检测技术,填补新疆空白,在肿瘤的早期筛查、诊治、疗效评估及高风险患者中推广应用较好。
1.患者的一般资料:选自我院2018年2月至2020年8月在我院进行Septin9基因甲基化检测患者279例,其中结直肠癌患者20例,中医肿瘤科胰腺恶性肿瘤8例,肾恶性肿瘤5例,乳腺恶性肿瘤28例,体检中心健康体检者218例。
表观遗传调控机制在癌症发生发展中的作用概述
表观遗传调控机制在癌症发生发展中的作用概述引言:表观遗传调控是指通过细胞内外环境信号对基因表达的调控,而不涉及DNA序列的改变。
在癌症发生发展中,表观遗传调控机制起着至关重要的作用。
本文将概述表观遗传调控在癌症发生发展中的作用,并重点讨论DNA甲基化、组蛋白修饰以及非编码RNA调控等几个重要的表观遗传调控机制。
第一部分:DNA甲基化在癌症中的调控作用DNA甲基化是指DNA链上的甲基化修饰,其中甲基化在癌症发生发展中具有重要的调控作用。
研究发现,在癌症细胞中,DNA甲基化的模式发生了明显的改变。
一方面,癌细胞的全局DNA甲基化水平下降,导致原本甲基化的基因变为非甲基化状态,进而激活了一些癌症相关基因的表达。
另一方面,癌细胞中一些关键的抑癌基因则出现了异常的高度甲基化,从而导致这些基因的沉默。
这种异常的DNA甲基化模式使得癌细胞在增殖、转移和抵抗药物方面具有明显的优势。
第二部分:组蛋白修饰在癌症中的调控作用组蛋白修饰是指通过对组蛋白进行化学修饰,来调控染色质状态和基因表达的一种机制。
研究发现,癌症中染色质状态存在明显的异常修饰模式。
举例来说,癌细胞中常常出现组蛋白甲基转移酶的过度表达,导致染色质的过度甲基化,从而影响基因的表达。
此外,癌细胞中还存在组蛋白乙酰化、甲酰化等修饰模式的异常,这些错误的修饰模式导致了细胞增殖、转移等恶性特征的获得。
第三部分:非编码RNA在癌症中的调控作用非编码RNA是指在转录过程中产生的不参与蛋白质翻译的RNA分子。
越来越多的研究表明,非编码RNA在癌症发生发展中发挥重要的调控作用。
例如,某些长链非编码RNA可以与DNA、RNA或蛋白质相互作用,调控基因的表达;而某些短链非编码RNA则具有剪切、诱导RNA降解等功能,参与细胞增殖、转移等关键过程。
非编码RNA的异常表达与癌症的发生密切相关,对于癌症的早期诊断和治疗具有重要意义。
结论:在癌症发生发展中,表观遗传调控机制起着至关重要的作用。
DNA甲基化对癌症发生的影响
DNA甲基化对癌症发生的影响癌症是人类面临的重大健康挑战之一,其发生和发展机制至今仍未完全阐明。
研究表明,DNA甲基化在癌症发生和发展过程中扮演着重要的角色。
本文将围绕DNA甲基化对癌症发生的影响展开探讨。
DNA甲基化是指DNA分子中的一种化学修改,即在其CpG二核苷酸上加上一个甲基基团。
这种化学修饰是一种重要的表观遗传修饰方式,能够在基因表达、细胞分化、生长发育等生物过程中发挥关键作用。
然而,如果DNA甲基化紊乱或失去控制,就会导致癌症等疾病的发生。
先从DNA甲基化的变化和癌症的关系说起。
DNA甲基化紊乱常常伴随着癌症的发生。
例如,许多肿瘤细胞的DNA上CpG位点的甲基化状态与正常细胞不同。
一些基因的启动子区域被甲基化后,会导致其转录水平降低或关闭,这在肿瘤细胞中尤其突出。
同时,有些基因的启动子区域则可能因为失去甲基化而发生活化,从而导致肿瘤细胞的生长和分化遭到异常调节。
DNA甲基化在癌症分子诊断和预测中也有着重要的应用。
许多癌症的分子特征都与其DNA甲基化状态密切相关。
例如,许多人类乳腺癌中的蛋白质编码基因缺失了丝氨酸/苏氨酸蛋白激酶(CHK2)基因,其中的一个可能原因是该基因周围的启动子区域被过度甲基化,从而导致该基因的表达水平下降。
此外,DNA甲基化还可以预测癌症患者的预后。
一些依据DNA甲基化水平制定的癌症生存指数已经用于预测基于肺癌、乳腺癌、前列腺癌等的各种癌症的复发和死亡率。
那么,DNA甲基化是如何参与癌症发生和发展的呢?一种可能的机制是,DNA甲基化紊乱导致基因的表达水平改变,从而导致肿瘤细胞的生长和分化失控。
正常细胞的增殖受到多种调控因素的控制,例如细胞因子和生长因子形成的信号通路,这些信号可转录并最终导致细胞周期的不同相。
然而,在肿瘤细胞的细胞周期中,其中至少一个致癌基因或抑癌基因失去功能,导致细胞生长无法受到调控,往往高速和异常细胞分裂。
DNA甲基化紊乱可能是这些致癌基因或抑癌基因功能缺失的原因之一。
前列腺癌的代谢组学研究进展
㊃综述㊃d o i:10.3969/j.i s s n.1671-8348.2024.01.030前列腺癌的代谢组学研究进展*邹前1,郭晓2,唐晨野2,沈瑞林1ә(1.浙江中医药大学嘉兴学院联培基地,浙江杭州310053;2.嘉兴市第二医院泌尿外科,浙江嘉兴314000)[摘要]前列腺癌是目前世界上许多地区最常见的男性恶性肿瘤之一,也是全球范围内男性癌症死亡的第五大原因㊂目前,临床上常用的前列腺癌筛查手段是血清前列腺特异性抗原(P S A)和经直肠超声引导的穿刺活检,但上述两种诊断方式存在假阴性及假阳性导致的过度诊断等相关问题㊂代谢组学是系统生物学的重要组成部分,其可以在肿瘤发生㊁发展过程中识别某些分子代谢物的微小改变㊂本文就如何利用代谢组学的方法发现前列腺癌患者体内三大物质的代谢产物及相关代谢途径的改变展开综述,为临床前列腺癌诊断提供新的思路㊂[关键词]前列腺癌;代谢组学;代谢产物;综述[中图法分类号] R737.25[文献标识码] A[文章编号]1671-8348(2024)01-0155-06 R e s e a r c h a d v a n c e s i n m e t a b o l o m i c s o f p r o s t a t e c a n c e r*Z O U Q i a n1,G U O X i a o2,T A N G C h e n y e2,S H E N R u i l i n1ә(1.C o m b i n e d T r a i n i n g B a s e,J i a x i n g C o l l e g e,Z h e j i a n g U n i v e r s i t y o f T r a d i t i o n a l C h i n e s eM e d i c i n e,H a n g z h o u,Z h e j i a n g310053,C h i n a;2.D e p a r t m e n t o f U r o l o g i c S u r g e r y,J i a x i n gM u n i c i p a l S e c o n d H o s p i t a l,J i a x i n g,Z h e j i a n g314000,C h i n a)[A b s t r a c t] P r o s t a t e c a n c e r i s o n e o f t h e m o s t c o mm o n m a l e m a l i g n a n c i e s i n m a n y p a r t s o f t h e w o r l d a n d a l s o t h e f i f t h l e a d i n g c a u s e o f c a n c e r d e a t h a m o n g m e n w o r l d w i d e.A t p r e s e n t,t h e c o mm o n l y u s e d c l i n i c a l s c r e e n i n g m e t h o d s f o r p r o s t a t e c a n c e r a r e s e r u m p r o s t a t e-s p e c i f i c a n t i g e n(P S A)a n d t r a n s r e c t a l u l t r a s o u n d g u i d e d p u n c t u r e b i o p s y.H o w e v e r,t h e a b o v e t w o d i a g n o s t i c m e t h o d s h a v e s o m e r e l a t e d p r o b l e m s s u c h a s o v e r-d i a g n o s i s c a u s e d b y f a l s e n e g a t i v e a n d f a l s e p o s i t i v e.M e t a b o l o m i c s i s a n i m p o r t a n t c o m p o n e n t o f s y s t e m s b i o l-o g y,w h i c h r e c o g n i z e s m i n o r c h a n g e s i n c e r t a i n m o l e c u l a r m e t a b o l i t e s d u r i n g t u m o r i g e n e s i s a n d d e v e l o p m e n t. T h i s a r t i c l e r e v i e w e d h o w t o u s e t h e m e t h o d o f m e t a b o l o m i c s t o f i n d t h e m e t a b o l i t e s o f t h e t h r e e m a j o r s u b-s t a n c e s i n t h e p a t i e n t s w i t h p r o s t a t e c a n c e r a n d t h e c h a n g e s o f r e l a t e d m e t a b o l i c p a t h w a y s t o p r o v i d e t h e n e w i d e a s f o r t h e c l i n i c a l d i a g n o s i s o f p r o s t a t e c a n c e r.[K e y w o r d s]p r o s t a t e c a n c e r;m e t a b o l o m i c s;m e t a b o l i t e s;r e v i e w据调查,2020年,全世界估计有1930万新发癌症病例(不包括非黑色素瘤皮肤癌)和近1000万癌症死亡病例(不包括非黑色素瘤皮肤癌),前列腺癌发病率位于所有癌症发病率第4位㊂在男性中,前列腺癌发病率仅次于肺癌,居第2位,死亡率则位于第5位[1],寻找一种能够准确诊断前列腺癌的方法十分重要㊂1现有前列腺癌诊断方法缺陷及代谢组学研究方法概述当前,临床上最常用的前列腺癌筛查手段是血清前列腺特异性抗原(p r o s t a t e-s p e c i f i c a n t i g e n,P S A)㊁P S A相关指标及经直肠或会阴超声引导的穿刺活检㊂然而,以上方法进行的前列腺癌筛查均存在局限性: (1)P S A检测的灵敏度低,且不能很好地区分前列腺良㊁恶性增生㊂I L I C等[2]的研究表明,在P S Aɤ4n g/ m L的男性中,约15%的患者可为假阴性并在随后的时间里诊断为前列腺癌,在这其中,约2%为高级别癌㊂另有研究发现,P S A筛查主要发现分化良好的前列腺癌,而一些分化差㊁更致命的前列腺癌患者P S A 水平往往正常[3]㊂(2)P S A检测的特异性低,这意味551重庆医学2024年1月第53卷第1期*基金项目:浙江省数字医学重点实验室开放基金项目(S Z Z D202203);浙江省嘉兴市科技计划项目(2023A Z31001)㊂ә通信作者, E-m a i l:s h e n r l m d@s i n a.c o m㊂着患者可能进行不必要的重复性穿刺活检[4]㊂P S A 筛查可能降低前列腺癌死亡风险,但与假阳性结果㊁过度诊断有关[5]㊂因此,现有的前列腺癌早期筛查,仍待进一步发掘灵敏度和特异性更高的生物标志物㊂代谢组学是测定一个生物或细胞内所有小分子组成并描绘其动态变化,组成代谢图谱,以寻找相关代谢物改变与疾病发生㊁发展的对应关系的方法㊂代谢组学可检测上游生化活动产生的小分子终产物集合,是比基因组学㊁转录组学和蛋白质组学更下游的生理活动体现[6]㊂在前列腺癌的研究中,代谢谱被越来越多地用作识别预测㊁诊断和预后生物标志物的手段㊂前列腺癌细胞在糖酵解㊁三羧酸循环㊁脂肪酸代谢和尿素代谢等方面具有独特的代谢转化特征[7]㊂代谢组学研究过程由三部分组成,分别是样品的收集和制备㊁代谢物检测㊁数据挖掘和提取㊂样品的收集和制备通常使用的是生物体液或组织,其中,在泌尿系统肿瘤研究中较常用到的标本是尿液㊁血液㊁精液及手术后组织㊂代谢物检测方法主要是核磁共振(n u c l e a r m a g n e t i c r e s o n a n c e,NM R)技术和质谱(m a s s s p e c t r u m,M S)技术㊂NM R特别适合于具有临床潜力的代谢组学研究,因为每个样品的成本低,无需衍生化,各实验室间的重现性高,并且能够量化和识别已知和未知代谢物㊂NM R特别适用于复杂溶液(血浆㊁血清㊁尿液等)的表征检测[8]㊂在使用M S之前,气相色谱(g a s c h r o m a t o g r a p h y,G C)或液相色谱(l i q u i d c h r o m a t o g r a p h y,L C)需要衍生化,并对代谢物进行预分离㊂近年来多使用的气相色谱-质谱(g a s c h r o m a t o g r a p h y-m a s s s p e c t r u m,G C-M S)㊁液相色谱-质谱(l i q u i d c h r o m a t o g r a p h y-m a s s s p e c-t r u m,L C-M S)联用技术可提高检测的效率㊁灵敏度和选择性㊂数据挖掘和提取的方法主要包括层次聚类分析(h i e r a r c h i c a l c l u s t e r a n a l y s i s,H C A)㊁主成分分析(p r i n c i p a l c o m p o n e n t a n a l y s i s,P C A)㊁偏最小二乘差分分析(p a r t i a l l e a s t s q u a r e s-d i s c r i m i n a n t a n a l y s i s, P L S-D A)等㊂以上分析方法可以通过发现因变量之间的内在联系从而简化数据,提供数据的可视化显示并与相关代谢库中的代谢物质进行比对,比如人类代谢组数据库㊁代谢物链接数据库㊁京都基因和基因组百科全书㊁麦迪逊代谢组学联盟数据库等[4]㊂2糖代谢糖类物质为生命活动提供能量和碳源,并通过中间代谢产物和脂肪代谢㊁氨基酸代谢相联系㊂2.1糖酵解和W a r b u r g效应W a r b u r g效应指某些增生活跃的组织(比如肿瘤细胞)在有氧条件下仍通过糖酵解生成乳酸,从而避免碳源全部分解为二氧化碳,为肿瘤的增殖积累原料㊂葡萄糖和乳酸是癌症W a r b u r g效应核心㊂临床上,18F-脱氧葡萄糖正电子发射断层扫描就是利用了这一特点,即注入的放射性标记葡萄糖被肿瘤细胞以更高的速率吸收,然后可以在成像中检测到㊂然而有研究表明,早期前列腺癌依赖脂质和其他能量分子产生能量,而不是有氧呼吸㊂因此,W a r b u r g效应在前列腺癌的发病机制中并不一致,因为这些细胞葡萄糖摄取并未增加㊂只有在发生许多突变事件的晚期,前列腺癌才会开始表现出W a r b u r g效应并具有高糖摄取[9]㊂H E V I A等[10]利用褪黑素影响前列腺癌糖酵解的实验也证实了这一点㊂以上早期前列腺癌细胞的生物学行为,与下文所述的前列腺癌细胞使三羧酸循环增强相符㊂2.2三羧酸循环G I S K EØD E GÅR D等[11]的研究结果认为:经直肠超声引导活检的高分辨率魔角旋转磁共振光谱仪分析有可能成为一种额外的诊断工具㊂他们通过手术标本研究发现,柠檬酸盐和精胺浓度降低及临床应用的 总胆碱+肌酸+多胺/柠檬酸盐 比率增加被证明是前列腺癌侵袭性的有效组织生物标志物,且代谢谱与格里森评分(G l e a s o n s c o r e,G S)相关㊂健康人群组和前列腺癌组分离的正确率为86.0%㊂柠檬酸盐浓度可将含有G S=6分的标本与G Sȡ7分的标本区分开,而精胺浓度的差异仅在G S=6分和G Sȡ8分间㊂G S=7分和G S为8~9分的标本的代谢产物差异无统计学意义(P>0.05),这表明G S=7分(中等风险患者)的标本的代谢模式与高级别癌症相似㊂另有研究表明,柠檬酸合酶的上调和活化与前列腺癌细胞侵袭性增强有关㊂前列腺癌组织中柠檬酸合酶的表达水平高于正常前列腺组织㊂柠檬酸合酶表达上调与高G S㊁晚期病理分期和生化复发相关㊂在功能上,柠檬酸合酶表达的升高促进体外前列腺癌细胞增殖㊁集落形成㊁迁移㊁侵袭能力和加快细胞周期,并在体内促进肿瘤生长㊂此外,柠檬酸合酶上调对前列腺癌细胞的脂质代谢和线粒体功能具有潜在的增强作用[12]㊂除此之外,还有基于尿液的代谢组学研究表明,尿液中柠檬酸盐㊁3-羟基苯乙酸盐和色氨酸的改变与癌症p T2向T3期进展有关㊂再有,三羧酸循环代谢产物草酰乙酸和富马酸有助于产生天冬氨酸,天冬氨酸是核苷酸生物合成的底物[8]㊂3脂肪代谢脂质在多种生物功能和细胞过程中发挥重要作用,包括膜组成㊁能量代谢和信号转导㊂3.1脂肪酸代谢651重庆医学2024年1月第53卷第1期MA R K I N等[13]使用血浆标本,基于G C-M S㊁L C-M S联用技术,采取定向和非定向代谢组学的方法分析得出,油酸是区分前列腺癌与前列腺上皮内瘤变(p r o s t a t i c i n t r a e p i t h e l i a l n e o p l a s i a,P I N)和正常前列腺的唯一代谢物㊂而P I N主要表现为类固醇生成和花生四烯酸代谢的改变[13]㊂另有研究表明,在3种雄激素受体抵抗性细胞系中,棕榈酸酯㊁油酸盐和硬脂酸盐的碳13富集显著高于前列腺癌细胞,表明在激素抵抗细胞中由糖酵解驱动的从头脂肪酸合成增加,这可能与晚期前列腺癌W a r b u r g效应有关㊂而3种耐药细胞系均表现出大量甘油三酯持续积聚,尤其是鞘脂和多不饱和脂肪酸[14]㊂此外,癌细胞还可以通过分解循环乳糜微粒和脂蛋白中的甘油三酯,从循环中获取脂肪酸[15]㊂脂肪酸合成酶(f a t t y a c i d s y n t h e t a s e,F A S N)是癌细胞从头合成脂肪酸的第一步所需的酶㊂过去大量研究集中在设计或重新设计F A S N抑制剂,以阻止癌细胞产生自身脂质的能力[16-17]㊂3.2磷脂代谢与胆固醇代谢B U RC H等[18]得出了磷脂酰胆碱㊁磷脂酰乙醇胺和甘油磷脂酰肌醇在前列腺癌细胞中增加的结论㊂他们的研究显示:转移性细胞和正常细胞间最明显的差异出现在磷脂酰乙醇胺类和甘油磷脂酰肌醇类㊂与非恶性和原发性腺癌细胞比较,骨转移性前列腺癌中7种已鉴定磷脂的表达水平明显增加㊂他们认为,磷脂代谢异常和改变很可能与恶性转化㊁致瘤性㊁转移和侵袭性前列腺癌疾病进展有关㊂B U S Z E W S K A-F O R A J T A等[19]基于前列腺癌组织的定向脂质组学研究结果也表明,前列腺癌组织磷脂酰胆碱㊁溶血磷脂酰胆碱㊁鞘磷脂和磷脂酰乙醇胺表达水平较正常前列腺组织增加㊂他们推测磷脂水平的总体增加与前列腺癌的进一步进展及对磷脂的需求增加有关㊂此外,根据B L OMM E等[14]的研究,多种神经酰胺和心磷脂衍生物也在耐药(去势抵抗)的前列腺癌细胞系中富集,而几类磷脂,如磷脂酰胆碱和磷脂酰乙醇胺衍生物,相比之下却在普通前列腺癌中的比例较高㊂T H Y S E L L等[20]使用G C-M S进行血浆样品扫描,并使用化学计量学及生物信息学方法进行数据分析,得出结论:前列腺癌骨转移患者病灶处骨组织中平均胆固醇水平为127.30m g/g,上述患者转移灶旁的正常骨组织中平均胆固醇水平为35.85m g/g(P= 0.0010),而其他来源的骨转移瘤患者(如乳腺癌㊁肾癌骨转移等)骨组织中平均胆固醇水平为81.06 m g/g(P=0.0002),这说明前列腺癌骨转移患者骨病灶处胆固醇水平更高,显示出其特有的代谢组学特征㊂此外,前列腺癌骨转移的免疫组织化学染色显示肿瘤上皮细胞中的羟基甲基戊二酰辅酶还原酶㊁低密度脂蛋白受体和B类1型清道夫受体在骨病灶处转移癌上皮细胞㊁内皮细胞㊁免疫细胞强烈染色,表明胆固醇内流和从头合成的可能性较大㊂4氨基酸代谢氨基酸是蛋白质的基本组成单位,各类免疫细胞㊁免疫因子及肿瘤免疫微环境的组成都离不开氨基酸的合成和代谢㊂近年来,随着分子生物学的发展,与肿瘤相关的基因组学㊁转录组学㊁代谢组学不断发展㊂氨基酸的代谢组学为研究肿瘤的基因㊁R N A及细胞信号转导通路提供了新的方法㊂4.1一碳单位相关氨基酸一碳单位在嘌呤嘧啶合成过程中不可或缺㊂一碳单位主要来自丝氨酸㊁色氨酸㊁组氨酸㊁甘氨酸分解代谢,而苏氨酸也可以转变为甘氨酸产生一碳单位㊂Y A N G等[21]收集了50例前列腺癌患者和50例非癌症个体(对照组)的尿液样本㊂基于氢核磁共振(1H y d r o g e n-n u c l e a r m a g n e t i c r e s o n a n c e,1H-NM R)分析,鉴定出20种代谢物㊂通过P C A㊁P L S-D A和正交P L S-D A寻找代谢物,以区分前列腺癌和正常前列腺组织㊂他们还采用W i l c o x o n试验发现两组间的尿液代谢物水平存在差异,即胍乙酸㊁苯乙酰甘氨酸和甘氨酸在前列腺癌中明显增加,而L-乳酸和L-丙氨酸明显减少㊂这3种增加的代谢物在按G S=6分和G Sȡ7分分层的患者中显示出统计学差异,表明它们可能用于检测严重的前列腺癌㊂通过使用京都基因和基因组百科全书及小分子途径数据库进行的途径富集分析也揭示了 甘氨酸㊁丝氨酸和苏氨酸代谢 在前列腺癌中的潜在参与㊂另外,有对血浆中代谢物的研究显示,在P I N和前列腺癌中受影响的途径是甘氨酸和丝氨酸代谢,甘氨酸增加与前列腺癌细胞的侵袭性有关[13,22]㊂然而也有研究表明高浓度甘氨酸也与适度降低前列腺癌风险有关[23]㊂B R U Z Z O N E等[8]基于1H-NM R分析所得的前列腺癌患者尿液中组氨酸水平较健康者减少,这与G AMA G E D A R A等[24]使用L C-M S检测获得的报告一致㊂有学者对组氨酸相关代谢物4-咪唑乙酸盐的研究显示其在前列腺癌患者的尿液中也被报告为下调[4]㊂F A L E G A N等[25]则是在前列腺癌和良性增生患者精液中采用1H-NM R和正交P L S-D A 的方法对上述人群进行比较,得出结论:氨基酸水平(尤其是赖氨酸和丝氨酸)的变化及糖酵解中间产物的变化是健康对照组和前列腺癌组之间㊁G S=6分和G S=7分标本之间最显著的代谢特征㊂这表明赖氨751重庆医学2024年1月第53卷第1期酸和丝氨酸水平可能区分G S=6分和G S=7分的前列腺癌患者㊂再有,由甘氨酸为骨架合成的含硫氨基酸肌氨酸被认为是预测前列腺癌复发最有希望的候选标志物之一,其余标志物还有磷酰胆碱㊁肌醇㊁精胺㊁谷氨酸㊁半胱氨酸㊁胆碱㊁谷氨酰胺和脂质[26]㊂S R E E K UMA R等[27]分离出肌氨酸作为良性增生和前列腺癌组织标本间的差异代谢物,并进行了进一步实验,表明:不仅癌症组织中的肌氨酸水平增加,患者转移灶组织中的肌氨酸水平也进一步增加㊂4.2尿素循环如前W a r b u r g效应所述,根据B R U Z Z O N E等[8]基于尿液的1H-NMR分析,表明尿液中尿素循环和糖酵解所产生的代谢物减少,这有力地支持了前列腺癌减少氮和碳废物以最大限度地利用以支持癌细胞生长的合成代谢的理念㊂尿液中这种代谢物的减少意味着前列腺癌细胞减少了氮废物的产生,并最大限度地将氮捕获和固定到生物分子中,以支持癌症的生长㊂精氨酸是参与尿素循环的重要氨基酸,精氨酸的高可用性供应是前列腺癌组织持续生长所必需的㊂因此,它已成为一个潜在的治疗目标[28]㊂精氨酸可被3种酶降解:精氨酸酶㊁精氨酸脱羧酶和精氨酸脱胺酶㊂精氨酸可以由鸟氨酸合成,鸟氨酸则是尿素循环的关键成分㊂鸟氨酸氨甲酰转移酶催化氨甲酰磷酸和鸟氨酸生成瓜氨酸,瓜氨酸随后通过精氨琥珀酸合酶转化为精氨酸㊂体外实验表明,普通前列腺癌细胞系产生的鸟氨酸氨甲酰转移酶水平较低,而在鸟氨酸氨甲酰转移酶缺乏的情况下,利用重组人精氨酸酶消除细胞外精氨酸并可导致细胞内精氨酸的消耗㊂此外,精氨酸脱氨酶也已成为治疗前列腺癌的一种常用方法,体外研究表明,精氨酸脱氨酶可以通过饥饿精氨酸细胞杀死易感癌细胞㊂在Ⅱ期临床试验中,精氨酸剥夺与精氨酸脱氨酶联合治疗癌症患者的研究正在进行中[29-30]㊂4.3芳香族氨基酸芳香族氨基酸包括苯丙氨酸㊁酪氨酸㊁色氨酸,其中酪氨酸可以转变为儿茶酚胺,也可以转变为甲状腺激素㊂MA R K I N等[13]对血浆标本研究还发现,P I N 和前列腺癌中的酪氨酸和苯丙氨酸较健康者也明显增加㊂富集分析表明,在P I N和前列腺癌中,儿茶酚胺生物合成和甲状腺激素合成受到高度影响㊂还有证据表明甲状腺激素也与癌症间存在潜在联系[31]㊂对于儿茶酚胺及其受体与前列腺癌的关系,有如下研究㊂A L A S K A R等[32]的最新实验发现,腺苷酸环化酶/蛋白激酶A是前列腺癌的一个主要的信号通路,体外应用10倍摩尔量的β2受体阻滞剂普萘洛尔30 m i n可抑制前列腺癌细胞的蛋白激酶A底物磷酸化,从而抑制前列腺癌的增殖㊂此外,儿茶酚胺可通过激活α1肾上腺素受体参与前列腺细胞功能的控制,交感神经活动的增加与前列腺癌的发生㊁发展有关㊂故C O L C I A G O等[33]提出了一个前列腺癌激素治疗的新靶点,即α1肾上腺素受体㊂他们所研究的针对该受体的药物经实验证实对前列腺癌细胞有剂量依赖性的抗增殖作用,可能涉及诱导G0/G1细胞分裂周期的阻滞,但其不涉及细胞凋亡㊂针对同样的靶点, MA E S T R I等[34]的研究则是通过改变α1肾上腺素受体阻滞剂多沙唑嗪的化学结构,以增加新药物抑制细胞增殖的能力,并可以诱导前列腺癌细胞凋亡㊂5小结与展望代谢组学是发现疾病相关标志物的宝贵工具,因为生物体液中代谢物水平的变化反映了个体生理状态的变化[35-36]㊂该方法可用于了解肿瘤代谢途径,前列腺癌的早期检测㊁预后分层和治疗反应监测,这些代谢标志物可能在未来前列腺癌的早期诊断和治疗中起到至关重要的作用[37]㊂然而,代谢组学的临床应用受到多方面因素限制:(1)代谢组学对于早期前列腺癌往往有很高的灵敏度,但特异度缺乏㊂例如,某些非癌症疾病,包括肝病㊁炎症性肠病或类风湿性关节炎,也可以显示出与癌症相同的代谢产物的水平升高[38]㊂不同肿瘤可能有相同的代谢途径,例如,在乳腺癌㊁食管癌㊁肺癌和肾癌也发现了肌氨酸的升高,说明肌氨酸在前列腺癌细胞中的升高并不特异[20]㊂(2)代谢组的动态性质常常受到诸如饮食㊁药物㊁活动水平㊁压力和昼夜变化等因素影响,所以还需要对关键代谢产物或代谢途径的基线变异性进行更深入的了解[39]㊂(3)用于代谢组学分析的仪器成本较大㊂例如,对于M S而言,即使是提供最基本的低分辨率测量的通用 低成本 质谱仪,其成本也超过10万美元,而最先进的高分辨率仪器的成本往往超过50万美元,除此之外,仪器维护费用和聘请专业的技术人员将进一步增加成本[40]㊂综上所述,前列腺癌的代谢组学研究在主动监测和治疗后监测中都有很大的应用潜力,但如何解决诸多临床应用方面的问题,仍有待进一步探索㊂参考文献[1]S U N G H,F E R L A Y J,S I E G E L R L,e t a l.G l o b a lC a n c e r S t a t i s t i c s2020:G L O B O C A N e s t i m a t e s o fi n c i d e n c e a n d m o r t a l i t y w o r l d w i d e f o r36c a n c e r s i n851重庆医学2024年1月第53卷第1期185c o u n t r i e s[J].C A C a n c e r J C l i n,2021,71(3): 209-249.[2]I L I C D,D J U L B E G O V I C M,J U N G J H,e t a l.P r o s t a t e c a n c e r s c r e e n i n g w i t h p r o s t a t e-s p e c i f i c a n t i g e n(P S A)t e s t:a s y s t e m a t i c r e v i e w a n dm e t a-a n a l y s i s[J].B M J,2018,362:k3519. [3]W E L C H H G,A L B E R T S E N P C.R e c o n s i d e-r i n g p r o s t a t e c a n c e r m o r t a l i t y-t h e f u t u r e o fP S A s c r e e n i n g[J].N E n g l J M e d,2020,382(16):1557-1563.[4]PÉR E Z-R A M B L A C,P U C H A D E S-C A R R A S C O L,G A R CÍA-F L O R E S M,e t a l.N o n-i n v a s i v e u r i n a r ym e t a b o l o m i c p r o f i l i n g d i s c r i m i n a t e s p r o s t a t e c a n c e r f r o m b e n i g n p r o s t a t i c h y p e r p l a s i a[J].M e t a b o l o m i c s, 2017,13(5):52.[5]F E N T O N J J,W E Y R I C H M S,D U R B I N S,e t a l. P r o s t a t e-s p e c i f i c a n t i g e n-b a s e d s c r e e n i n g f o r p r o s t a t e c a n c e r:e v i d e n c e r e p o r t a n d s y s t e m a t i c r e v i e w f o r t h e u s p r e v e n t i v e s e r v i c e s t a s k f o r c e[J].J A M A,2018, 319(18):1914-1931.[6]V A N D E R G R I F T L A,D E C E L L E E A,K U R T H J,e t a l.M e t a b o l o m i c p r e d i c t i o n o f h u m a n p r o s t a t e c a n c e r a g g r e s s i v e n e s s:m a g n e t i c r e s o n a n c e s p e c t r o s-c o p y o f h i s t o l o g i c a l l y b e n i g n t i s s u e[J].S c i R e p, 2018,8(1):4997.[7]F R A N K O A,S HA O Y,H E N I M,e t a l.H u m a n p r o s t a t e c a n c e r i s c h a r a c t e r i z e d b y a n i n c r e a s e i n u r e a c y c l e m e t a b o l i t e s[J].C a n c e r s(B a s e l), 2020,12(7):1814.[8]B R U Z Z O N E C,L O I Z A G A-I R I A R T E A,SÁN-C H E Z MO S Q U E R A P,e t a l.1H NM R-b a s e d u-r i n e m e t a b o l o m i c s r e v e a l s s i g n s o f e n h a n c e d c a r b o n a n d n i t r o g e n r e c y c l i n g i n p r o s t a t e c a n c e r[J].J P r o t e o m e R e s,2020,19(6):2419-2428.[9]E I D E L MA N E,TWUM-AM P O F O J,A N S A R I J,e t a l.T h e m e t a b o l i c p h e n o t y p e o f p r o s t a t ec a n c e r[J].F r o n t O n c o l,2017,7:131.[10]H E V I A D,G O N Z A L E Z-M E N E N D E Z P,F E R-N A N D E Z-F E R N A N D E Z M,e t a l.M e l a t o n i n d e-c r e a s e s g l u c o s e m e t a b o l i s m i n p r o s t a t e c a n c e rc e l l s:a13c s t a b l e i s o t o p e-r e s o l v ed me t a b o l o m i cs t u d y[J].I n t J M o l S c i,2017,18(8):1620.[11]G I S K EØD E GÅR D G F,B E R T I L S S O N H,S E L N-A E S K M,e t a l.S p e r m i n e a n d c i t r a t e a s m e t a b o l i cb i o m a r k e r s f o r a s s e s s i n g p r o s t a t ec a n c e r a g g r e s-s i v e n e s s[J].P L o S O n e,2013,8(4):e62375. [12]C A I Z,D E N G Y,Y E J,e t a l.A b e r r a n t e x p r e s-s i o n o f c i t r a t e s y n t h a s e i s l i n k e d t o d i s e a s e p r o-g r e s s i o n a n d c l i n i c a l o u t c o m e i n p r o s t a t e c a n c e r[J].C a n c e r M a n a g R e s,2020,12:6149-6163.[13]MA R K I N P A,B R I T O A,MO S K A L E V A N,e ta l.P l a s m a m e t ab o l o m ic p r o f i l e i n p r o s t a t i c i n-t r a e p i t h e l i a l n e o p l a s i a a nd p r o s t a te c a n c e r a n d a s s o c i a t i o n s w i t h t h e p r o s t a t e-s p e c if i c a n t ig e n a n d th e G l e a s o n s c o r e[J].M e t a b o l o mi c s,2020, 16(7):74.[14]B L OMM E A,F O R D C A,MU I E,e t a l.2,4-d i-e n o y l-C o A r e d u c t a s e r e g u l a t e s l i p i d h o m e o s t a-s i s i n t r e a t m e n t-r e s i s t a n t p r o s t a t e c a n c e r[J].N a t C o mm u n,2020,11(1):2508. [15]S T O Y K O V A G E,S C H L A E P F E R I R.L i p i dm e t a b o l i s m a n d e n d o c r i n e r e s i s t a n c e i n p r o s-t a t e c a n c e r,a n d n e w o p p o r t u n i t i e s f o r t h e r a p y[J].I n t J M o l S c i,2019,20(11):2626. [16]Z A D R A G,P R I O L O C,P A T N A I K A,e t a l.N e ws t r a t e g i e s i n p r o s t a t e c a n c e r:t a r g e t i n g l i p o g e n i cp a t h w a y s a n d t h e e n e r g y s e n s o r AM P K[J].C l i n C a n c e r R e s,2010,16(13):3322-3228.[17]S C H L A E P F E R I R,R I D E R L,R O D R I G U E S LU,e t a l.L i p i d c a t a b o l i s m v i a C P T1a s a t h e r a-p e u t i c t a r g e t f o r p r o s t a t e c a n c e r[J].M o l C a n c-e r T h e r,2014,13(10):2361-2371.[18]B U R C H T C,I S A A C G,B O O H E R C L,e t a l.C o m p a r a t i v e m e t a b o l o m i c a n d l i p i d o m i c a n a l y-s i s o f p h e n o t y p e s t r a t i f i e d p r o s t a t e c e l l s[J].P L o S O n e,2015,10(8):e0134206. [19]B U S Z E W S K A-F O R A J T A M,P O M A S T O W S K I P,MO N E D E I R O F,e t a l.L i p i d o m i c s a s a d i a g-n o s t i c t o o l f o r p r o s t a t e c a n c e r[J].C a n c e r s(B a-s e l),2021,13(9):2000.[20]T H Y S E L L E,S U R OW I E C I,HÖR N B E R G E,e t a l.M e t a b o l o m i c c h a r a c t e r i z a t i o n of h u m a np r o s t a t e c a n c e r b o n e m e t a s t a s e s r e v e a l s i n-c r e a s e d l e v e l s o f c h o l e s t e r o l[J].P L o S O n e, 2010,5(12):e14175.[21]Y A N G B,Z H A N G C,C H E N G S,e t a l.N o v e l m e t-a b o l i c s i g n a t u r e s o f p r o s t a t e c a n c e r r e v e a l e d b y 1h-n m r m e t a b o l o m i c s o f u r i n e[J].D i a g n o s t i c s(B a s e l),2021,11(2):149.[22]L O C A S A L E J W.S e r i n e,g l y c i n e a n d o n e-c a r-951重庆医学2024年1月第53卷第1期b o n u n i t s:c a n c e r m e t a b o l i s m i n f u l l c i r c l e[J].N a t R e v C a n c e r,2013,13(8):572-583. [23]D E V O G E L S,U L V I K A,M E Y E R K,e t a l.S a r c o s i n e a n d o t h e r m e t a b o l i t e s a l o n g t h e c h o-l i n e o x i d a t i o n p a t h w a y i n r e l a t i o n t o p r o s t a t ec a n c e r:a l a r g e n e s t ed c a s e-c o n t r o l s t u d y w i t h i nt h e J A N U S c o h o r t i n N o r w a y[J].I n t J C a n c e r,2014,134(1):197-206.[24]G A M A G E D A R A S,K A C Z M A R E K A T,J I A N GY,e t a l.V a l i d a t i o n s t u d y o f u r i n a r y m e t a b o l i t e s a sp o t e n t i a l b i o m a r k e r s f o r p r o s t a t e c a n c e r d e t e c t i o n[J].B i o a n a l y s i s,2012,4(10):1175-1183. [25]F A L E G A N O S,J A R V I K,V O G E L H J,e t a l.S e m i n a l p l a s m a m e t a b o l o m i c s r e v e a l s l y s i n e a n d s e r i n e d y s r e g u l a t i o n a s u n i q u e f e a t u r e s d i s-t i n g u i s h i n g b e t w e e n p r o s t a t e c a n c e r t u m o r s o fG l e a s o n g r a d e s6a n d7[J].P r o s t a t e,2021,81(11):713-720.[26]K D A D R A M,HÖC K N E R S,L E U N G H,e t a l.M e t a b o l o m i c s b i o m a r k e r s o f p r o s t a t e c a n c e r:as y s t e m a t i c r e v i e w[J].D i a g n o s t i c s(B a s e l),2019,9(1):21.[27]S R E E K UMA R A,P O I S S O N L M,R A J E N D I-R A N T M,e t a l.M e t a b o l o m i c p r o f i l e s d e l i n e-a t e p o t e n t i a l r o l e f o r s a r c o s i n e i n p r o s t a t e c a n c-e r p r o g r e s s i o n[J].N a t u r e,2009,457(7231):910-914.[28]K I M R H,C O A T E S J M,B OW L E S T L,e t a l.A r g i n i n e d e i m i n a s e a s a n o v e l t h e r a p y f o r p r o s-t a t e c a n c e r i n d u c e s a u t o p h a g y a n d c a s p a s e-i n-d e p e n d e n t a p o p t o s i s[J].C a n c e r R e s,2009,69(2):700-708.[29]T OM L I N S O N B K,T HOM S O N J A,B OMA-L A S K I J S,e t a l.P h a s eⅠt r i a l o f a r g i n i n e d e p r i-v a t i o n t h e r a p y w i t h A D I-P E G20p l u s d o c e t a x e l i np a t i e n t s w i t h a d v a n c e d m a l i g n a n t s o l i d t u m o r s[J].C l i n C a n c e r R e s,2015,21(11):2480-2486.[30]Q I U F,HU A N G J,S U I M.T a r g e t i n g a r g i n i n em e t a b o l i s m p a t h w a y t o t r e a t a r g i n i n e-d e p e n d-e n t c a n c e r s[J].C a n c e r L e t t,2015,364(1):1-7.[31]K R A S H I N E,P I E K I EŁK O-W I T K O W S K A A,E L-L I S M,e t a l.T h y r o i d h o r m o n e s a n d c a n c e r:a c o m-p r e h e n s i v e r e v i e w o f p r e c l i n i c a l a n d c l i n i c a l s t u d i e s[J].F r o n t E n d o c r i n o l(L a u s a n n e),2019,10:59.[32]A L A S K A R A,A B D U L R A Q E B A A,H A S S A NS,e t a l.I n h i b i t i o n o f s i g n a l i n g d o w n s t r e a m o f b e-t a-2a d r e n o c e p t o r b y p r o p r a n o l o l i n p r o s t a t e c a n c e rc e l l s[J].P r o s t a t e,2023,83(3):237-245.[33]C O L C I A G O A,MO R N A T I O,F E R R I N,e t a l.A s e l e c t i v eα1D-a d r e n o r e c e p t o r a n t a g o n i s t i n-h i b i t s h u m a n p r o s t a t e c a n c e r c e l l p r o l i f e r a t i o n a n d m o t i l i t y i n v i t r o [J].P h a r m a c o l R e s, 2016,103:215-226.[34]MA E S T R I V,T A R O Z Z I A,S I MO N I E,e t a l.Q u i n a z o l i n e b a s e dα1-a d r e n o r e c e p t o r a n t a g o-n i s t s w i t h p o t e n t a n t i p r o l i f e r a t i v e a c t i v i t y i nh u m a n p r o s t a t e c a n c e r c e l l l i n e s[J].E u r J M e dC h e m,2017,136:259-269.[35]Z HA N G X W,L I Q H,X U Z D,e t a l.M a s ss p e c t r o m e t r y-b a s e d m e t a b o l o m i c s i n h e a l t h a n dm e d i c a l s c i e n c e:a s y s t e m a t i c r e v i e w[J].R S CA d v,2020,10(6):3092-3104.[36]GÓM E Z-C E B R IÁN N,R O J A S-B E N E D I C T O A,A LB O R S-V A Q U E R A,e t a l.M e t a b o l o m i c s c o n t r i b u t i o n s t o t h e d i s c o v e r y o f p r o s t a t e c a n c-e r b i o m a r k e r s[J].M e t a b o l i t e s,2019,9(3):48.[37]C E R R A T O A,B E D I A C,C A P R I O T T I A L,e ta l.U n t a r g e t e d m e t ab o l o m ic s o f p r o s t a t e c a n c e r z w i t t e r i o n i c a nd p o s i t i ve l y c h a r g e d c o m p o u n d s i n u r i n e[J].A n a l C h i m A c t a,2021,1158: 338381.[38]C H E U N G P K,MA M H,T S E H F,e t a l.T h ea p p l i c a t i o n s o f m e t ab o l o m ic s i n t h e m o l e c u l a rd i a g n o s t i c s o f c a n ce r[J].E x p e r t R e v M o l D i-a g n,2019,19(9):785-793.[39]T R O C K B J.A p p l i c a t i o n o f m e t a b o l o m i c s t o p r o s-t a t e c a n c e r[J].U r o l O n c o l,2011,29(5):572-581.[40]D I N G E S S S,HO HM A,V A N D E R G R I F T LA,e t a l.C a n c e r m e t a b o l o m i c m a r k e r s i n u r i n e:e v i d e n c e,t e c h n i q u e s a n d r e c o mm e n d a t i o n s[J].N a t R e v U r o l,2019,16(6):339-362.(收稿日期:2023-05-18修回日期:2023-10-28)(编辑:姚雪)061重庆医学2024年1月第53卷第1期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前列腺癌DNA异常甲基化的最新研究成果-医学遗传学论文-基础医学论文-医学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——前列腺癌是老年男性最常见的恶性肿瘤之一。
目前,前列腺癌已成为中老年男性癌症发病的第 2 大病因,位居男性癌症致死人数的第 6 位。
前列腺癌的发病机制较为复杂,目前认为遗传和表观遗传机制共同作用导致前列腺癌的发生、发展,其中表观遗传在前列腺癌的形成中起到重要的作用。
表观遗传是指在染色体DNA 序列不发生改变的情况下产生的一种可稳定遗传的表型。
表观遗传机制包括DNA 甲基化、组蛋白修饰和miRNA,它们分别通过转录前和转录后控制基因表达,其中DNA 甲基化在前列腺癌表观遗传机制研究中成果最多,也最为引人注目。
在哺乳动物基因组中,DNA 甲基化通常发生在CpG 双核苷酸的胞嘧啶上,由硫-腺苷-甲硫氨酸(S-adenosylmethionine,SAM)提供甲基供体,在DNA 甲基转移酶(DNA mthyltransferase,DNMT)的催化下,将甲基转移到CpG 双核苷酸胞嘧啶的第5 个碳原子上。
CpG 不是随机分布的,它最常见于基因组CpG 岛的位置,哺乳动物中一半以上的基因都含有CpG 岛,大部分CpG 岛位于基因启动子、非编码区和第一外显子,且在正常细胞内不发生甲基化。
前列腺癌中DNA 异常甲基化主要表现为基因组广泛低甲基化和局部基因启动子区域的高甲基化。
DNA 异常甲基化发生在前列腺癌的形成过程中,且DNA 甲基化能够通过药物发生逆转,因此,前列腺癌DNA 甲基化的早期筛查及前列腺癌去甲基化药物的临床应用,可能会为临床早期诊断和治疗前列腺癌提供新的思路。
本文主要阐述了前列腺癌表观遗传机制中DNA异常甲基化的最新研究成果以及前列腺癌DNA 异常甲基化在临床转化中的应用及存在的问题。
1 DNA 高甲基化基因组中DNA 高甲基化常发生于基因的启动子区域,即富含CpG 的CpG 岛区域。
这些区域在正常细胞中通常是非甲基化的。
这些基因主要参与激素应答,细胞增殖、迁移和侵袭,DNA 修复及转录调控等(表1)。
基因启动子DNA 高甲基化致使相关基因表达沉默是前列腺肿瘤形成的一个重要原因。
根据它们的功能和信号通路不同,主要包括以下相关基因:1.1 激素应答相关基因雄激素受体(Androgen receptor,AR)是类固醇激素受体家族的一个成员,与雄激素结合后与辅助蛋白分离进入细胞核内,刺激雄激素应答基因的转录。
5-氮脱氧胞苷(5-aza-CdR)可逆转前列腺癌干细胞由AR 基因启动子DNA 高甲基化导致的表达沉默,AR 表达上调可降低前列腺癌干细胞特性,导癌细胞的增殖和分化。
视黄酸受体(Retinoic acid receptorbeta,RARB)是甲状腺类固醇激素受体家族成员之一,它与具有生物活性的维生素A-视黄酸结合,参与细胞生长和分化及胚胎形成过程中的信号转导。
RARB 基因启动子区域DNA 高甲基化可发生在多个肿瘤的形成过程中,如前列腺癌、乳腺癌、肺癌、食管癌、甲状腺癌、膀胱癌、结直肠癌、恶性胶质瘤、鼻咽癌等。
因此,我们推断该基因可能在多个肿瘤形成过程中参与调节肿瘤形成的共同传导途径。
G 蛋白偶联受体(Gprotein coupling receptors,GPCRs)能够刺激AR 的雄激素非依赖性激活,是导致激素难治性前列腺癌的发生的重要因素。
G 蛋白信号调节因子 2 (Regulator of G-protein signaling 2,表1 前列腺癌中启动子区域发生DNA 高甲基化的基因RGS2)是一种GTP 酶激活蛋白,能够抑制GPCRs,介导骨髓细胞分化,可能参与白血病的形成。
RGS2 基因启动子DNA 高甲基化异常能够导致雄激素非依赖性前列腺癌细胞生长,表明RGS2 基因可能通过调控GPCRs 参与AR 反式激活通路。
ATP 结合盒亚家族成员1(ATP-binding cassette, sub-family A,member 1,ABCA1)是存在于细胞膜表面的外流性转运蛋白,能够转运细胞内多余的胆固醇,在维持细胞胆固醇稳态方面起到重要作用。
ABCA1基因启动子DNA 高甲基化导致基因表达沉默,它能使前列腺细胞内的胆固醇升高,雄激素合成增加,后者通过AKT 信号通路促进前列腺癌的恶性进展。
1.2 抑癌基因在前列腺癌DNA 高甲基化研究中,最常见的是抑癌基因启动子DNA 高甲基化。
癌甲基化蛋白 1 (Hypermethylated in cancer 1,HIC1)基因表达一种转录阻抑蛋白,在细胞中发挥生长调控和抑癌基因的作用。
前列腺癌细胞系、前列腺组织和血浆中均发现HIC1 基因启动子DNA 高甲基化,在前列腺癌细胞异种移植的小鼠体内导表达沉默的HIC1 基因激活,可以观察到它具有抑制前列腺肿瘤生长、迁移和侵袭的作用。
结肠腺瘤性息肉(Adenomatous polyposis coli,APC) 基因表达一种WNT 信号通路拮抗剂,它参与细胞的迁移、侵袭、转录激活和细胞凋亡,是一种常见的抑癌基因,该基因突变常导致家族性结肠腺瘤性息肉病。
APC 基因启动子区域DNA 高甲基化在前列腺患者组织中常见,且甲基化程度与前列腺癌肿瘤分期和Glison 评分呈正相关。
WNT 抑制因子1 (WNT inhibitory factor 1,WIF1) 基因编码一种胞外信号分子,能够抑制WNT 蛋白,参与胚胎发育。
该基因启动子DNA 高甲基化发生在大多数前列腺癌细胞系中,体外导PC-3 细胞系表达WIF1,可降低细胞迁移和侵袭能力,上调E-钙粘素(E-cadherin,CDH1)、角蛋白-8,18(Keratin-8 and-18,KRT8,18)的表达,从而抑制上皮细胞向间充质细胞转化。
在异种移植小鼠模型发现WIF1表达升高能够抑制前列腺肿瘤生长。
原钙粘附蛋白10(Protocadherin 10,PCDH10)基因属于原钙黏蛋白家族成员,为抑癌基因,编码钙粘素相关蛋白受体,参与脑内特定细胞粘附及其功能联系,也参与前列腺癌的发生、发展。
1.3 信号转导基因WNT 信号通路过度激活与肿瘤发生和肿瘤侵袭相关,分泌性卷曲相关蛋白2(Secretedfrizzled-related protein 2,SFRP2)基因在WNT 信号通路中能够抑制该信号通路过度激活。
SFRP2 基因启动子DNA 高甲基化在前列腺癌组织中的发生率明显高于癌旁、高分级前列腺上皮内瘤和前列腺增生组织。
Ras 相关域家族蛋白1(Ras association domain familymember1,RASSF1)基因编码一种与Ras 效应蛋白相似的蛋白,该基因启动子DNA 高甲基化可在多个肿瘤组织中检测到,如前列腺癌、乳腺癌、膀胱癌、肝癌、非小细胞肺癌、卵巢癌等,该基因同RARB 基因一样,在肿瘤形成过程中参与其共同通路的调节。
配对样同源域转录因子2(Paired-like homeodomain 2,PITX2)基因表达一种转录因子,调控原骨胶原赖氨酸羟化酶(Procollagenlysyl hydroxylase)基因的表达,在促生长激素细胞和催乳素细胞的末端分化中发挥作用,同时也参与眼、牙齿和腹部器官的发育。
在前列腺癌细胞系P69 和M12 中PITX2 基因启动子区域均被甲基化,它可能作为AR 和IGF-1R 基因上游的调节因子,通过异常调节AR 和IGF1-R 通路,影响前列腺细胞的正常生长。
胰岛素样生长因子蛋白7(Insulin-like growth factor binding protein 7,IGFBP7)能够与胰岛素生长因子(Insulin-like growth factor,IGF)结合,参与前列环素的合成及细胞粘附。
IGFBP7 基因启动子DNA 高甲基化在多种前列腺癌细胞系和组织中检测到,但目前其作用机制尚不清楚。
1.4 DNA 修复基因谷胱甘肽S-转移酶1(Glutathione S-transferase pi 1,GSTP1)基因,属于谷胱甘肽S-转移酶基因家族成员,它通过催化疏水性和亲电性基团与还原型谷胱甘肽结合发挥细胞解毒作用。
在对25 例行前列腺切除术的前列腺癌、癌旁基因甲基化水平评估后,发现GSTP1 基因的甲基化水平在癌组织中明显高于癌旁组织。
研究发现:前列腺癌细胞内GSTP1 基因启动子DNA 甲基化所致的表达沉默使胞内活性氧物质(ROS)聚集,DNA 损伤标记物胞内羟基脱氧鸟苷(8-oxo-2-deoxogunosine,8-OHdG)增加,GSTP1 基因表达缺失可增加正常前列腺细胞对氧化应激导的DNA 损伤的敏感性,从而导致前列腺癌形成[32]。
1.5 miRNAmiRNA 是内源性非编码的RNA,能够与靶mRNA 3-UTR (Untranslated region)部分互补结合抑制其翻译或导特定的靶mRNA 降解。
前列腺癌中部分miRNA 的异常调控也是因为表达miRNA 的基因启动子区域发生DNA 高甲基化。
在前列腺癌中启动子区域DNA高甲基化导致miR-31 表达沉默,AR 表达升高,可能是前列腺癌的恶性进展病因学机制之一[33]。
miR-34b 和miR-23b 都具有抑制细胞增殖、迁移和侵袭,以及EMT(上皮间质转化)的作用,miR-34b 和miR-23b 基因高甲基化导致其表达降低,原癌基因Scr 激酶表达升高,前列腺肿瘤细胞恶性增殖,导致患者复发生存期缩短。
此外,miR-205、miR-29a、miR-1256、miR-124、miR-26a、miR-132、miR-145 基因高甲基化也参与前列腺癌形成。
1.6 其他互作蛋白1 样细丝蛋白A(FilaminAinteracting protein 1-like,FILIP1L)基因表达一种细胞血管内皮活性调控因子,FILIP1L 基因启动子高甲基化在前列腺癌中常见,可能与前列腺癌形成过程中肿瘤血管的形成相关。
甲基胞嘧啶双加氧酶TET1(Tetmethylcytosinedioxygenase 1,TET1)基因表达参与胞嘧啶脱甲基的脱甲基酶。
TET1 基因启动子DNA 高甲基化,其mRNA 表达降低,能够下调金属蛋白酶抑制剂1、2(Tissueinhibitor of metalloproteinase 1 and 2,TIMP1、TIMP2)表达,从而促进前列腺癌转移、侵袭。
相关蛋白激酶1(Death-associated protein kinase1,DAPK1)基因参与干扰素(INF-)导的程序性细胞凋亡。