第七章振动有答案习题

第七章振动有答案习题
第七章振动有答案习题

汽车振动分析试题1

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2 1121y m T = m 2动能:2222222 22 222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 323 33)2 1(21))(21(212 1y m R y R m J T === ω 系统势能: 2 21)21(21)21( y k y g m gy m V + +-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =+ +-++= +2 212 321) 2 1(2 12 1)2 13 1(2 1 上式求导,得系统的微分方程为: E y m m m k y '=+ + +) 2 131(4321 固有频率和周期为: ) 2 131(43210m m m k + + = ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2 212 1x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 2 1= ,角速度为x R 21=ω,转过的角度为x R 21= θ。轮子动能: )83(21)41)(21(21)4 1( 2 12 1212 122 21212 2 12x m x R R m x m J v m T c =+= + = ω 系统势能: x

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

振动和波典型例题

【例1】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为() A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g 【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振 子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的 位置.初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平 衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x1=2 mg/k,在振动过程中的平衡位置时的伸长量为x2=mg/k,故振子振动过程中的振幅为 A=x2-x1= mg /k D物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,因为D振动过程中的平衡位置在弹簧自由长度以下mg/k处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg.出当振子速度为零时的位置,这两个位置间的距离就是振幅.本题侧重在弹簧振子运动的对称性.解答本题还能够通过求D物运动过程中的最大加速度,它在最高点具有向下的最大加速度,说明了这个系统有部分失重,从而确定木箱对地面的压力 【例2】在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为μ,O 点为弹簧原长位置,将细绳烧断后,m、M开始运动.求:①当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?并简要说明速度为最大的理由.②判断m与M的最 终运动状态是静止、匀速运动还是相对往复的运动? 【解析】①在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于f.m相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动.当F=f时车速达到最大值,此时m必在O点左侧。设此时物体在O点左侧x处, 则kx=μmg。所以,当x=μmg/k时,小车达最大速度. ②小车向左运动达最大速度的时刻,物体向右运动也达最大速度,这时物体还会继续向右运动,但它的运动速度将减小,即小车和物体都在做振动.因为摩擦力的存有,小车和物体的振动幅度必定持续减小,设两物体最终有一共同速度v,因两物体组成的系统动量守恒,且初始状态的总动量为零,故v=0,即m与M的最终运动状态是静止的

河海大学力学08级振动力学结构动力学试卷

一、 1.在单自由度振动系统中,结构振动响应的频率与外加荷载的频率无关(×) 2.在含有阻尼的单自由度振动系统中,结构振动的固有频率与阻尼无关(×) 3.对于图示简支梁,不计梁的质量,分别将物体M 从在距梁中点正上方高H1和H2处 自由释放,H1=2H2,则振动的频率是一样的(√) 二、 1.如图所示,除支撑不同外,其余均相同。(B ) A.图a 振动周期大 B.图b 振动周期大 C.振动周期一样 D.不能判断 2.一物体从高度为h 的地方落下,系统振动频率是(C ) A.h 越大,频率越大 B.h 越大,频率越小 C.与h 无关 D.不能断定 3.对于一个有阻尼的单自由度强迫振动系统来讲,振动响应频率(C ) A.仅由外荷载频率确定 B.仅由系统固有频率确定 C.在系统振动响应一段时间后,仅与外荷载频率有关 D.在系统振动响应一段时间后,仅与系统固有频率有关 4.对于多自由度系统来讲,假设无重频现象,则两个不同的振型φi 和φj 的关系为(C ) A.j T i φφ?一定为零 B.j T i φφ?一定不为零 C.j T i M φφ一定为零 D.j T i K φφ可能不是零 5.对于一个三自由度系统,设某阶段振型为[]T 1,2,1=φ,骑广义质量为4,则其正则振型为(A )

A.[]T 5,0,1,5.0=φ B.[]T 25.0,5.0,25.0=φ C. []T 1,2,1=φ D.[]T 2,4,2=φ 三、一个单自由度振动系统,自由振动试验测得经过6周后振幅降为原来的1/10,试求阻尼比和在简谐荷载作用下发生共振时的放大系数(15) 解:ξπδm y y m i i y 2ln '==+ m=6 ∴10ln ln 6 =+i i y y ∴0611.06210ln =?=πξ 197.821==ξ μ 四、试写出图示结构的运动方程和位移动力系数(EI 为常数, t F t F θsin )(=) 解:a 12=F a 2 11=F 2____ M 1____M EI a 38311=δ EI a 65312=δ )(16 5)(1112t F t F Fe ==δδ )(16 5t F ky y m =+?? 3 383)2(3a EI a EI k == 383ma EI m k ==ω 211βμ-= EI ma 322θω?β== 32833a m EI EI θμ-= 五、如图所示结构,层间高度均为L ,m1=m2=m ,求系统的固有圆

汽车振动练习题

判断题 1、系统作与激振力同频率的简谐振动,振幅决定于激振力的幅值、频率以及系统本身的物理特性。 A.对 2、当初始条件为零,即==0时,系统不会有自由振动项。 A.错 3、隔振系统的阻尼愈大,则隔振效果愈好。 A.对 4、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。B.错 5、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。对 6、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。错 7、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。对 8、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。对 9、无阻尼振动的固有频率只与质量和刚度有关,是系统的固有特性,与外界初始激励(初始条件)无关。对 10、对数衰减系数可以用来求阻尼比。() A.对 11、单自由度系统在简谐激励力作用下,系统将产生一个与激励力相同频率的简谐振动,但滞后一个相角。 A.对 12、线性系统内各个激励产生的响应是互不影响的。 A.对 13、两个同频率的简谐振动在同方向的合成运动是该频率的简谐振动。 A.对 14、简谐振动的加速度,其大小与位移呈正比,而方向与位移相反,始终指向平衡位置。 A.对 15、所有表示周期振动的周期函数都可以展开成Fourier级数的形式。 B.错 16、广义坐标必须能完整地描述系统的运动。 A.对 17、在欠阻尼和过阻尼的情况下,运动都将衰减为零。()对 18、对于无阻尼系统,速度超前位移90度。() A.对 19、瑞利法的基础是能量守恒定律。() A.对 20、有阻尼系统自由振动的频率有可能是零。() A.对 21、有阻尼系统自由振动的频率有时大于无阻尼系统的固定频率。() A.对 22、能量守恒定律可用于推导有阻尼系统和无阻尼系统的运动微分方程。() A.对 23、当质量块在垂直方向振动时,推导运动微分微分方程时都可以不计重力。() A.对 24、对于单自由度系统而言,无论质量是在水平面还是在斜面上运动,运动微分方程都是相同的。 A.对 25、在空气中振动的系统可以看作是一个阻尼系统。() A.对 26无阻尼系统的振幅不随时间变化。() A.对 27、离散系统和集中参数系统是相同的。() A.对 28、广义坐标不一定是笛卡尔坐标。() A.对 29、几个不同位置质量的等效质量可以用动能等效得到。() A.对 30、简谐运动是周期运动。() A.对

机械行业振动力学期末考试试题(doc-11页)(正式版)

… 2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角: 系统动能: % m 1动能: m 2动能: m 3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ~ ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 21=,角速度为x R 21=ω,转过的角度为x R 21 = θ。轮子动能: )83 (21)41)(21(21)41(212121212221212212x m x R R m x m J v m T c =+=+=ω \ x

随机过程习题答案

1、 已知X(t)和Y(t)是统计独立的平稳随机过程,且它们的均值分别为mx 和my ,它们的自 相关函数分别为Rx()和Ry()。(1)求Z(t)=X(t)Y(t)的自相关函数;(2)求Z(t)=X(t)+Y(t)的自相关函数。 答案: (1)[][])()()()()()()(t y t x t y t x E t z t z E R z ττττ++=+= [][] ) ()()()()()()()()(τττττy x z R R t y t y E t x t x E R t y t x =++== :独立的性质和利用 (2)[]()()[])()()()()()()(t y t x t y t x E t z t z E R z +?+++=+=ττττ [])()()()()()()()(t y t y t x t y t y t x t x t x E ττττ+++++++= 仍然利用x(t)和y(t)互相独立的性质:)(2)()(τττy y x x z R m m R R ++= 2、 一个RC 低通滤波电路如下图所示。假定输入是均值为0、双边功率谱密度函数为n 0/2 的高斯白噪声。(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。 答案: (1) 该系统的系统函数为RCs s X s Y s H +==11)()()( 则频率响应为Ω +=ΩjRC j H 11)( 而输入信号x(t)的功率谱密度函数为2 )(0n j P X =Ω 该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为: ()2 20212/)()()(Ω+=ΩΩ=ΩRC n j H j P j P X Y 对)(Ωj P Y 求傅里叶反变换,就得到输出的自相关函数: ()??∞ ∞-Ω∞ ∞-ΩΩΩ+=ΩΩ=d e RC n d e j P R j j Y Y ττππτ22012/21)(21)( R C 电压:y(t) 电压:x(t) 电流:i(t)

振动习题

例1: 提升机系统重物重量N W 51047.1?=钢丝绳的弹簧刚度 cm N k /1078.54 ?=重物以v=15m/s 的速度匀速下降时求:绳的上端突然被卡住时,(1)重物的振动频率,(2)钢丝绳中的最大张力。 解:振动频率s rad W gk /6.190== ω 重物匀速下降时处于静平衡位置,若将坐标原点取在绳被卡住瞬时重物所在位置 则 t=0 时,有: 00=x v x =0 振动解: )()6.19sin(28.1)sin()(00 cm t t v t x == ωω )s i n ()c o s ()(00 000t x t x t x ωωω + = 振动解: )( )6.19sin(28.1)sin()(00 cm t t v t x == ωω 绳中的最大张力等于静张力与因振动引起的动张力之和 : )(1021.21074.01047.1555max N kA W kA T T s ?=?+?=+=+= 由于km v v k kA ==0 ω 为了减少振动引起的动张力,应当降低升降系统的刚度 例2: 重物落下,与简支梁做完全非弹性碰撞 梁长 L ,抗弯刚度 EJ 求:梁的自由振动频率和最大挠度 解:取平衡位置以梁承受重物时的静平衡位置为坐标原点建立坐标系 静变形λ 由材料力学 :

EJ m gl 483 = λ 自由振动频率为 : λωg =0348ml EJ = 撞击时刻为零时刻,则 t=0 时,有: λ-=0x gh x 20= 则自由振动振幅为 : 2 002 0? ??? ??+=ωx x A λλh 22+= 梁的最大扰度: λλ+=A max ) sin()cos()(00 000t x t x t x ωωω + = 例:圆盘转动 圆盘转动惯量 I θk 为轴的扭转刚度, 定义为使得圆盘产生单位转角所需的力矩 在圆盘的静平衡位置上任意 选一根半径作为角位移的起点位置 由牛顿第二定律:0=+θθθk I 扭振固有频率 020=+θωθ I k /0θω= 由上例可看出,除了选择了坐标不同之外,角振动与直线振动的数学描述是完全相同的。 如果在弹簧质量系统中将 m 、k 称为广义质量及广义刚度,则弹簧质量系统的有关结论完全适用于角振动。以后不加特别声明时,弹簧质量系统是广义的 。

最新随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

高考复习——《机械振动》典型例题复习

九、机械振动 一、知识网络 二、画龙点睛 概念 1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。 (2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。 (3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动 (1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 (2)振动形成的原因 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。 (4)简谐运动的力学特征 ①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。 ②动力学特征:回复力F与位移x之间的关系为 F=-kx 式中F为回复力,x为偏离平衡位置的位移,k是常数。简谐运动的动力学特征是判断物体是否为简谐运动的依据。 ③简谐运动的运动学特征 a=-k m x 加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 简谐运动加速度的大小和方向都在变化,是一种变加速运动。简谐运动的运动学特征也可用来判断物体是否为简谐运动。 例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。 证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得 x0=mg/k 当振子向下偏离平衡位置x时,回复力为 F=mg-k(x+x0) 则F=-kx 所以此振动为简谐运动。 3、振幅、周期和频率 ⑴振幅 ①物理意义:振幅是描述振动强弱的物理量。 ②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。 ③单位:在国际单位制中,振幅的单位是米(m)。

振动习题答案分解

《振动力学》——习题 第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

随机过程补充例题

随机过程补充例题 例题1 设袋中有a 个白球b 个黑球。甲、乙两个赌徒分别有n 元、m 元,他们不知道那一种球多。他们约定:每一次从袋中摸1个球,如果摸到白球甲给乙1元,如果摸到黑球乙给甲1元,直到两个人有一人输光为止。求甲输光的概率。 解 此问题是著名的具有两个吸收壁的随机游动问题,也叫赌徒输光问题。 由题知,甲赢1元的概率为b p a b =+,输1元的概率为 a q a b =+,设n f 为甲输光的概率,t X 表示赌t 次后甲的赌金, inf{:0 }t t t X or X m n τ===+,即τ 表示最终摸球次数。如果 inf{:0 }t t t X or X m n τ===+=Φ(Φ为空集),则令τ=∞。 设A =“第一局甲赢”,则()b p A a b = +,()a p A a b = +,且第一局甲赢的条件下(因甲有1n +元),甲最终输光的概率为1n f +,第一局甲输的条件下(因甲有1n -元),甲最终输光的概率为1n f -,由全概率公式,得到其次一元二次常系数差分方程与边界条件 11n n n f pf qf +-=+ 01f =,0m n f += 解具有边界条件的差分方程 由特征方程 2()p q p q λλ+=+

(1)当q p ≠时,上述方程有解121,q p λλ==,所以差分方程的 通解为 212()n q f c c p =+ 代入边界条件得 1()11()n n n m q p f q p +-=- - (2)当q p =时,上述方程有解121λλ==,所以差分方程的通解为 12n f c c n =+ 代入边界条件得 1n n f n m =- + 综合(1)(2)可得 1()11() 1n n m n q p p q q f p n p q n m +? -?- ≠?? -=?? ?-=? +? 若乙有无穷多的赌金,则甲最终输光概率为 () lim 1n jia n m q p q p p f p q →∞ ?>?==??≤? 由上式可知,如果赌徒只有有限的赌金,而其对手有无限的赌金,当其每局赢的概率p 不大于每局输的概率q ,即p q ≤时,

振动力学期末考试试题和答案

振动力学期末考试试题和答案 振动力学(试题) 2008 一、填空(每空2分) 1、设周期振动信号的周期为,则其傅里叶级数的展开的基频为,T ,,, 2、单自由度粘性阻尼系统的阻尼因子与阻尼系数的关系为,,, , 作用下系统响应的稳态振3、单自由度粘性阻尼系统在简谐力ptsin,0 动的幅值为,,, 4、粘性阻尼一周期内所消耗的能量与频率成,,,比。 5、无阻尼多自由度系统的主振型正交关系为,,,,,, 6、写出多自由度系统再频率域的输入与输出之间的关系,,,,, 7、写出瑞利商的表达式,,,,,, r8、多自由度系统中共存在个主固有频率,其相应的主振型,,, 正交。 9、无阻尼多自由度系统,利用里兹法计算出的主振型关于M、K是 否正交,,,,(答是或否) 10、写出如图T-1所示梁的左端边界条件,,,,,,,,,, y L x K 图T-1 二、(20分)系统如图T-2所示,杆AB为刚性、均质,长度为,总L 质量为,弹簧刚度为,阻尼系数为。求系统的固有频率及阻mck

尼因子。 图T-2 三、系统如图T-3所示。求系统的固有频率与主振型。 k k k k k m m m X X X 123 图T-3 四、 五、(20分)简支梁如图T-5所示,弹性模量为E,质量密度为,, 横截面积为A,截面惯性矩为J。求梁在中央受集中弯矩M下的响应。(假设梁的初始状态为零)

图T-5 答案 一、填空(每空2分) 1、周期振动信号的周期为,则其傅里叶级数的展开的基频为 T2/,T 2、单自由度粘性阻尼系统的阻尼因子与阻尼系数的关系为, c ,, 2mk 作用下系统响应的稳态振3、单自由度粘性阻尼系统在简谐力ptsin,0 p10动的幅值为 ,,B222k,,,,,(1)(2) 4、粘性阻尼一周期内所消耗的能量与频率成,正,比。 5、无阻尼多自由度系统的主振型正交关系为加权(M,K)正交: 0()ij,0()ij,,,TTTT ,,,,M,K,,,ijijMij(),Kij(),pipi,, 6、写出多自由度系统在频率域的输入与输出之间的关系 21,其中 xHP()()(),,,,HKMiC()(),,,,,, TXKX7、写出瑞利商的表达式 ()RX,TXMX r8、多自由度系统中共存在个重固有频率,其相应的主振型,,加 权(M,K)正交。 MK9、无阻尼多自由度系统,利用里兹法计算出的主振型关于、是

上海交通大学2008年振动力学期末考试试题

上海交通大学2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C的质量m1,匀质杆AB的质量m2,长为L,匀质轮O的质量m3,弹簧的刚度系数k。当AB杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C的位移y作为系统的广义坐标,在静平衡位置时y=0,此时系统的势能为零。 AB转角: 系统动能: m1动能: m2动能: m3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而 有: 上式求导,得系统的微分方程为:

固有频率和周期为: 2、质量为m1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过 定滑轮A连在质量为m2的物块B上;轮心C与刚度系数为k的水平弹簧相连;不计滑轮A,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求 系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B的位移x作为系统的广义坐标,在静平衡位置时x=0,此时系统的势能为零。 物体B动能: 轮子与地面接触点为速度瞬心,则轮心速度为,角速度为,转过的角度为。轮子动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有:上式求导得系统的运动微分方程:

固有频率为: 第二题(20分) 1、在图示振动系统中,重物质量为m,外壳质量为2m,每个弹簧的刚度系数均为k。设外壳只能沿铅垂方向运动。采用影响系数方法:(1)以x1和x2为广义坐标,建立系统的微分方程;(2)求系统的固有频率。 解: 系统为二自由度系统。 当x1=1,x2=0时,有:k11=2k,k21=-2k 当x2=1,x2=1时,有:k22=4k,k12=-2k 因此系统刚度矩阵为: 系统质量矩阵为: 系统动力学方程为: 频率方程为: 解出系统2个固有频率: ,

机械振动基础习题

机械振动分析与应用习题 第一部分问答题 1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。 2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。 3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。 4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么? 5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。 6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。 第二部分计算题 1.求图2-1所示两系统的等效刚度。 图2-1 图2-2 图2-3 2.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。3.如图2-3所示系统,求轴1的等效转动惯量。 图2-4 图2-5 图2-6 图2-7 4.一个飞轮其内侧支承在刀刃上摆动,如图2-4所示。现测得振荡周期为1.2s,飞轮质量为35kg,求飞轮绕中心的转动惯量。(注:飞轮外径100mm,R=150mm。) 5.质量为0.5kg的重物悬挂在细弹簧上,伸长为8mm,求系统的固有频率。 6.质量为m1的重物悬挂在刚度为k的弹簧上并处于静平衡位置;另一质量为m2的重物从高度为h处自由降落到m l上而无弹跳,如图2-5所示,求其后的运动。 7.一质量为m、转动惯量为J的圆柱体作自由纯滚动,但圆心有一弹簧k约束,如图2-6所示,求振动的固有频率。 8.一薄长条板被弯成半圆形,如图2-7所示,让它在平面上摇摆,求它的摇摆周期。

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

2008年期末振动力学考试试题

2008年振动力学期末考试试题 大学期末考试https://www.360docs.net/doc/855030465.html, 第一题(20分) 1、在图示振动系统中,已知:重物C的质量m1, 匀质杆AB的质量m2,长为L,匀质轮O的质量 m3,弹簧的刚度系数k。当AB杆处于水平时为 系统的静平衡位置。试采用能量法求系统微振 时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C的位移y作为系统的广义坐标,在静平衡位置时y=0,此时系统的势能为零。 AB转角: 系统动能: m1动能: m2动能: m3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有:

上式求导,得系统的微分方程为: 固有频率和周期为: 2、质量为m1的匀质圆盘置于粗糙水平面上,轮缘 上绕有不可伸长的细绳并通过定滑轮A连在质量 为m2的物块B上;轮心C与刚度系数为k的水平 弹簧相连;不计滑轮A,绳及弹簧的质量,系统自 弹簧原长位置静止释放。试采用能量法求系统的固 有频率。 解:系统可以简化成单自由度振动系统,以重物B的位移x作为系统的广义坐标,在静平衡位置时x=0,此时系统的势能为零。 物体B动能: 轮子与地面接触点为速度瞬心,则轮心速度为,角速度为,转过的角度为。轮子动能: 系统势能:

在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有: 上式求导得系统的运动微分方程: 固有频率为: 第二题(20分) 1、在图示振动系统中,重物质量为m,外壳质量为2m, 每个弹簧的刚度系数均为k。设外壳只能沿铅垂方向运 动。采用影响系数方法:(1)以x1和x2为广义坐标, 建立系统的微分方程;(2)求系统的固有频率。 解: 系统为二自由度系统。 当x1=1,x2=0时,有:k11=2k,k21=-2k 当x2=1,x2=1时,有:k22=4k,k12=-2k 因此系统刚度矩阵为: 系统质量矩阵为:

大学物理振动波动例题习题

精品 振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。 S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。

机械振动习题及答案

第一章概述 1?一简谐振动,振幅为,周期为,求最大速度和加速度。 解: g 1 X max W* X max 2* * f * X max 2* * * A 8.37cm/S X max w 2 * x max (2* * f )2* x max (2* *^)2* A 350.56cm/ s 2 2. —加速度计指示结构谐振在 80HZ 时具有最大加速度 50g ,求振 动的振幅。(g=10m/s2) 解: X max W 2 *X max (2* *f)2*X max x max X max /(2* * f)2 (50*10) /(2*3.14*80) 2 1.98mm 3. 一简谐振动,频率为 10Hz ,最大速度为s ,求谐振动的振幅、周期、最大加速度。 解: x max X max /(2* * f) 4.57/(2*3.14*10) 72.77mm g g X max W * X max 2* * f * X max 2*3.14*10*4.57 4. 机械振动按激励输入类型分为哪几类?按自由度分为哪几类? 答:按激励输入类型分为自由振动、强迫振动、自激振动 按自由度分为单自由度系统、多自由度系统、连续系统振动 1 丄 f 10 0.1s 287.00m/s

5.什么是线性振动?什么是非线性振动?其中哪种振动满足叠加原理? 答:描述系统的方程为线性微分方程的为线性振动系统,如I0&& mga 0 描述系统的方程为非线性微分方程的为非线性振动系统mgas in 线性系统满足线性叠加原理 6.请画出同一方向的两个运动: 捲⑴2sin(4 t),X2(t) 4sin(4 t)合成的的振动波形 7.请画出互相垂直的两个运动: X i(t) 2sin(4 t),X2(t) 2sin(4 t)合成的结果。 如果是x1(t) 2sin(4 t /2),x2(t) 2sin(4 t) 第二章单自由度系统 1. 物体作简谐振动当它通过距平衡位置为0.05m, 0.1处时的速度分别为0.2m/和0.08m/s 求其振动周期、振幅和最大速度 物体放在水平台面上,当台面沿铅垂方向作频率为5Hz的简谐振动时,要使物体不跳离平台, 对台面的振幅有何限制?

大学物理振动习题含答案

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ ] 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π2 1cos(2- +=αωt A x (C) ) π23cos(2- +=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ] 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律 用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ] 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(10 42 π+ π?=-t x (SI)。 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 8 1 (B) s 6 1 (C) s 4 1 (D) s 3 1 (E) s 2 1 [ ] 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21 /cos(π-=t m k A x (C) )π21/(cos + =t k m A x (D) )21/cos(π- =t k m A x (E) t m /k A x cos = [ ] 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 v v 2 1

相关文档
最新文档