小学奥数五年级精讲第33讲 包含与排除(容斥原理)

合集下载

五年级奥数举一反三第33周包含与排除

五年级奥数举一反三第33周包含与排除

五年级奥数举一反三第33周包含与排除专题简析;集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除;先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即;C=A +B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次;64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2;某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数;69-21=48人。

第33周 包含与排除(容斥原理)

第33周  包含与排除(容斥原理)

第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。

五年级奥数分册第33周 包含与排除-名师推荐

五年级奥数分册第33周  包含与排除-名师推荐

第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1 五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。

【小学五年级奥数讲义】包含与排除(容斥原理)

【小学五年级奥数讲义】包含与排除(容斥原理)

【小学五年级奥数讲义】包括与清除(容斥原理)一、专题简析:会合是指拥有某种属性的事物的全体,它是数学中的最基本的观点之一。

如某班全体学生能够看作是一个会合,0、1、2、3、4、5、6、7、8、9 便构成一个数字会合。

构成会合的每个事物称为这个会合的元素。

如某班全体学生组成一个会合,每一个学生都是这个会合的元素,数字会合中有10 个元素。

两个会合中能够做加法运算,把两个会合A、B 归并在一同,就构成了一个新的会合C。

计算会合C的元素的个数的思虑方法主假如包括与清除:先把A、B 的全部元素都“包括”进来加在一同,再“清除”A、B 两会合的公共元素的个数,减去加了两次的元素,即: C=A+B-AB。

在解包括与清除问题时,要擅长使用形象的图示帮助理解题意,搞清数目关系的逻辑关系。

有些语言不易表达清楚的关系,用了适合的图形就显得很直观、很清楚,因此简单进行计算。

二、精讲精练例 1 五年级 96 名学生都订了报纸,有 64 人订了少年报,有 48 人订了小学生报。

两种报纸都订的有多少人?练习一1、一个班的52 人都在做语文和数学作业。

有32 人做完了语文作业,有35 人做完了数学作业。

语文、数学作业都做完的有多少人?2、五年级有 122 人参加语文、数学考试,每人起码有一门功课得优。

此中语文得优的有 65 人,数学得优的有87 人。

语文、数学都得优的有多少人?例 2:某校教师起码懂得英语和日语中的一种语言。

已知有35 人懂英语, 34 人懂日语,两种语言都懂的有21 人。

这个学校共有多少名教师?练习二1、某校的每个学生起码爱体育和娱乐中的一种活动。

已知有900 人喜好体育活动,有 850 人喜好娱乐活动,此中 260 人两种活动都喜好。

这个学校共有学生多少人?2、某班在一次测试中有26 人语文获优,有30 人数学获优,此中语文、数学双优的有 12 人,此外还有 8 人语文、数学均未获优。

这个班共有多少人?例 3:学校展开课外活动,共有 250 人参加。

五年级数学拔高之包含与排除(容斥原理)含答案

五年级数学拔高之包含与排除(容斥原理)含答案

第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1 五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?答案解:(人)答:语文、数学作业都做完的有15人.解析因为每人至少做完一种作业,所以实际52人都参与了写作业,做完数学和语文作业的总人数为:(人),(人),超出了全班人数,超出的部分是两种作业都完成的人数.2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?答案解:(人)答:两门功课都得优的有40人.解析根据“语文得优的有65人,数学得优的有87人”可得两者的总人数:人,这其中把两门功课都得优的人数多计算了一次,所以根据容斥原理可得两门功课都得优的人数是:(人),据3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

五年级数学奥数讲义-包含与排除(学生版)

五年级数学奥数讲义-包含与排除(学生版)

“包含与排除” 学生姓名授课日期 教师姓名授课时长包含与排除是小学奥数中一个非常重要的知识点,很多杯赛和小升初选拔考试中都会有相关考察内容,是考察学生逻辑思维能力,以及理解利用新知识的一个非常重要的方面,其中容斥原理更是最关键的点,而且与数论和几何的综合性题目是历年考察的重点。

一、容斥原理公式1、若已知A 、B 、C 三部分的数量(如图),其中C 为重复部分,则图中的数量等于A+B-C. 即:A ∪B=A+B- A ∩B ,其中A ∩B=C.2、若已知A 、B 、C 三部分的数量(如图), 则图中的数量等于A+B+C-(A 与B 重叠部分+ B 与C 重叠部分+ C 与A 重叠部分)+A 、B 、C 三者重叠的部分.即:A ∪B ∪C=A+B+C-(A ∩B+B ∩C+C ∩A )+ A ∩B ∩C.以上概念中符号解释:“∪”表示并集,“A ∪B ”表示A 并B ,通俗的讲表示所有或属于A 、或属于B 的元素的数量(集合),“A ∪B ∪C ” 通俗的讲表示所有或属于A 、或属于B 、或属于C 的元素数量.“∩”表示交集,“A ∪B ”表示A 交B ,通俗的讲表示所有即属于A 、又属于B 的元素的数量(集合),“A ∩B ∩C ”通俗的讲表示所有即属于A ,又属于B ,还属于C 的元素数量C B A C B A【试题来源】【题目】某小学三年级四班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加。

这个班有多少人参加了语文或数学兴趣小组?【试题来源】【题目】在桌面上放置着三个两两重叠的圆纸片(如图,三个圆等大),它们的面积都是100cm2,并知A、B两圆重叠的面积是20cm2,A、C两圆重叠的面积为45cm2,B、C两圆重叠的面积为31cm2,三个圆共同重叠的面积为15cm2,求盖住桌子的总面积。

【试题来源】【题目】东方大学有外语老师120名,其中教英语的有50名,教日语的45名,教法语的有40名,有15名教师既教英语又教日语,有10名教师既教英语又教法语,有8名教师既教日语又教法语,有4名教师会教英语、日语和法语三门课,求不教这三门课的外教有多少名?【试题来源】【题目】五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数。

五年级奥数分册第33周 包含与排除-精选本

五年级奥数分册第33周  包含与排除-精选本

第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。

五年级奥数专题 包含与排除(学生版)

五年级奥数专题 包含与排除(学生版)

学科培优 数学 “包含与排除” 学生姓名授课日期 教师姓名授课时长 知识定位 包含与排除是小学奥数中一个非常重要的知识点,很多杯赛和小升初选拔考试中都会有相关考察内容,是考察学生逻辑思维能力,以及理解利用新知识的一个非常重要的方面,其中容斥原理更是最关键的点,而且与数论和几何的综合性题目是历年考察的重点。

知识梳理一、容斥原理公式1、若已知A 、B 、C 三部分的数量(如图),其中C 为重复部分,则图中的数量等于A+B-C. 即:A ∪B=A+B- A ∩B,其中A ∩B=C.2、若已知A 、B 、C 三部分的数量(如图), 则图中的数量等于A+B+C-(A 与B 重叠部分+ B 与C 重叠部分+ C 与A 重叠部分)+A 、B 、C 三者重叠的部分.即:A ∪B ∪C=A+B+C-(A ∩B+B ∩C+C ∩A )+ A ∩B ∩C.以上概念中符号解释:“∪”表示并集,“A ∪B ”表示A 并B,通俗的讲表示所有或属于A 、或属于B 的元素的数量(集合),“A ∪B ∪C ” 通俗的讲表示所有或属于A 、或属于B 、或属于C 的元素数量.“∩”表示交集,“A ∪B ”表示A 交B,通俗的讲表示所有即属于A 、又属于B 的元素的数量(集合),“A ∩B ∩C ”通俗的讲表示所有即属于A,又属于B,还属于C 的元素数量C B A C B A例题精讲【试题来源】【题目】某小学三年级四班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加。

这个班有多少人参加了语文或数学兴趣小组?【试题来源】【题目】在桌面上放置着三个两两重叠的圆纸片(如图,三个圆等大),它们的面积都是100cm2,并知A、B两圆重叠的面积是20cm2,A、C两圆重叠的面积为45cm2,B、C两圆重叠的面积为31cm2,三个圆共同重叠的面积为15cm2,求盖住桌子的总面积。

【试题来源】【题目】东方大学有外语老师120名,其中教英语的有50名,教日语的45名,教法语的有40名,有15名教师既教英语又教日语,有10名教师既教英语又教法语,有8名教师既教日语又教法语,有4名教师会教英语、日语和法语三门课,求不教这三门课的外教有多少名?【试题来源】【题目】五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的 3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数。

举一反三——五年级分册第33周 包含与排除

举一反三——五年级分册第33周  包含与排除

第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。

五年级奥数第33周包含与排除

五年级奥数第33周包含与排除

五年级奥数第33周包含(bāohán)与排除专题(zhuāntí)简析:集合是指具有某种属性的事物(shìwù)的全体,它是数学中的最基本的概念之一。

如某班全体学生可以(kěyǐ)看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个(zhè ge)集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边(zuǒbian)的圆表示订少年报的64人,右边的圆表示(biǎoshì)订小学报的48人,中间(zhōngjiān)重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数(rén shù)被统计了两次:64+48=112人,比总人数(rén shù)多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生(xué sheng),在一次测验(cèyàn)中有26人满分,在第二次测验中有21人满分。

小学数学五年级奥数第33讲包含与排除(容斥原理)

小学数学五年级奥数第33讲包含与排除(容斥原理)

小学数学五年级奥数第33讲包含与排除(容斥原理)第33讲包含与排除(容斥原理)一、专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B -AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

二、精讲精练例1 五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1、一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2、五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。

举一反三-五年级奥数分册~第33周 包含与排除

举一反三-五年级奥数分册~第33周  包含与排除

第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。

五年级 数学试题 奥数第33讲 包含与排除(容斥原理) 全国通用 无答案

五年级 数学试题   奥数第33讲  包含与排除(容斥原理) 全国通用  无答案

第33讲包含与排除(容斥原理)一、知识要点集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A +B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

二、精讲精练例1 五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。

小学五年级奥数教案--第33讲-包含与排除(容斥原理)

小学五年级奥数教案--第33讲-包含与排除(容斥原理)

第33讲包含与排除(容斥原理)一、专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

二、精讲精练例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?练习一1、一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2、五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?练习二1、某校的每个学生至少爱体育和文娱中的一种活动。

已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。

这个学校共有学生多少人?2、某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。

这个班共有多少人?例3:学校开展课外活动,共有250人参加。

其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。

第33讲包含与排除

第33讲包含与排除

第33讲包含与排除第33讲是关于容斥原理的内容。

容斥原理是组合数学中的一种技巧,用于计算满足其中一种条件的对象的个数。

它通过逐步包含与排除的方式,能够比较高效地解决一些复杂的计数问题。

首先,我们可以从一个简单的例子开始来理解容斥原理的核心思想。

考虑一个集合A,它包含了n个元素。

现在我们想要计算同时满足k个条件的元素个数,这些条件可以表示为C1,C2,...,Ck。

容斥原理告诉我们,可以通过逐步包含与排除的方式来计算这个数量。

首先,我们计算每个条件C1, C2, ..., Ck单独满足的元素个数。

假设Ci单独满足的个数为ni。

那么,我们可以得到每个条件的个数之和为ni1 + ni2 + ... + nik。

但是,这种计算方式会重复计算同时满足多个条件的元素。

为了解决这个问题,我们将每个条件的交集的个数也计入到之前计算的个数之中。

这样,我们可以得到每个条件的交集的个数之和为ni1i2 + ni1i3 + ... + nik-1ik。

然而,这个计算方式会导致同时满足三个条件的元素被计算了三次。

为了解决这个问题,我们继续将每个条件的交集的交集的个数也计入到之前计算的个数之中,以此类推。

最后,在计算的过程中,我们需要注意奇偶性的计算,因为我们要根据元素是否满足条件来计算最终的结果。

通过逐步包含与排除的方式,我们可以得到满足k个条件的元素个数的准确计数。

这是容斥原理的核心思想。

容斥原理的应用非常广泛,可以解决各种组合数学中的计数问题。

例如,我们可以利用容斥原理计算两个集合的并集的个数。

设集合A包含n个元素,集合B包含m个元素。

我们想要计算A并B的元素个数。

我们可以通过容斥原理得到A并B的元素个数为n+m-A交B的元素个数。

其中,交集的个数可以通过容斥原理计算。

容斥原理也可以应用在集合划分的问题上。

例如,我们想要将n个元素划分为k个集合,每个集合至少包含一个元素。

我们可以通过容斥原理得到可能的划分方法的个数为k的n-1次方减去不满足每个集合至少包含一个元素条件的划分方法的个数。

【小学五年级奥数讲义】包含与排除(容斥原理)

【小学五年级奥数讲义】包含与排除(容斥原理)

【小学五年级奥数讲义】包含与排除(容斥原理)一、专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

二、精讲精练例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?练习一1、一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2、五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?练习二1、某校的每个学生至少爱体育和文娱中的一种活动。

已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。

这个学校共有学生多少人?2、某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。

这个班共有多少人?例3:学校开展课外活动,共有250人参加。

其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。

五年级奥数分册第33周 包含与排除-最新推荐

五年级奥数分册第33周  包含与排除-最新推荐

第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

例1 五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。

显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。

练习一1,一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第33讲包含与排除(容斥原理)
一、专题简析:
集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。

如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。

组成集合的每个事物称为这个集合的元素。

如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。

两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。

计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。

在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。

有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。

二、精讲精练
例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。

两种报纸都订的有多少人?
练习一
1、一个班的52人都在做语文和数学作业。

有32人做完了语文作业,有35人做完了数学作业。

语文、数学作业都做完的有多少人?
2、五年级有122人参加语文、数学考试,每人至少有一门功课得优。

其中语文得优的有65人,数学得优的有87人。

语文、数学都得优的有多少人?
例2:某校教师至少懂得英语和日语中的一种语言。

已知有35人懂英语,34人懂日语,两种语言都懂的有21人。

这个学校共有多少名教师?
练习二
1、某校的每个学生至少爱体育和文娱中的一种活动。

已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。

这个学校共有学生多少人?
2、某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。

这个班共有多少人?
例3:学校开展课外活动,共有250人参加。

其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。

问这250名同学中,象棋组、乒乓球组都不参加的有多少人?
练习三
1、五年级有250人,其中参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。

两个小组都不参加的有多少人?
2、五(1)班有50人,在一次测试中,语文90分以上的有30人,数学90分以上的35人,语文和数学都在90分以上的有20人。

两科都在90分以下的有多少人?
例4实验小学各年级都参加的一次书法比赛中,四年级与五年级共有20人获奖,在获奖者中有16人不是四年级的,有12人不是五年级的。

该校书法比赛获奖的总人数是多少人?
练习四
1、五一小学举行小学生田径运动会,其中24名运动员不是六年级的,28名运动员不是五年级的,已知五、六年级运动员共有32名,求五、六年级和中低年级运动员各有多少名?
2、少年乐团学生中有170人不是五年级的,有135人不是六年级的,已知五、六年级的共有205人,求少年乐团中五、六年级以外的学生共有多少人?
例5 在100个外语教师中,懂英语的有75人,懂日语的有45人,其中必然有既懂英语又懂日语的老师。

问:只懂英语的老师有多少人?
练习五
1、40人都在做加试的两道题,并且至少做对了其中的一题。

已知做对第一题的有30人,做对第二题的有21人。

只做对第一题的有多少人?
2、五年级122名同学参加语文、数学考试,每人至少有一门得优。

已知语文65人得优,数学78人得优,求只有语文一门得优的人数。

三、课后作业
1、某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?
2、第一小组的同学们都在做两道数学思考题,做对第一题的有15人,做对第二题的有10人,两题都做对的有7人,两题都做错的有2人。

第一小组共有多少人?
3、老师在统计考试成绩,数学得90分以上的有25人,语文得90分以上的有21人,两科中至少有一科在90分以上的有38人。

两科都在90分以上的有多少人?
4、六一儿童狼子野心同学们做小花,有24朵不是红色的,有20朵不是黄色的,已知红花和黄花一共有18朵,其他颜色的花一共做了多少朵?
5、全班46名同学,仅会打乒乓球的有28人,会打乒乓球又会打羽毛球的有10人,不会打乒乓球又不会打羽毛球的有6人。

仅会打羽毛球的有多少人?。

相关文档
最新文档