第七讲 核材料的辐照效应讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CLAM 钢在450 ℃电子辐照时辐照空洞的变化. (a) 0 dpa ; (b) 1.4 dpa ; (c) 3.6 dpa ; (d) 10 dpa ; (e) 11.5 dpa ; (f) 13.2 dpa ; (g) 13.8 dpa ; (h) 15.6 dpa
从图中可以看到,随着辐照损伤量的增加,产 生的空洞越来越多,并且尺寸也越来越大. 辐 照损伤量达到1.4 dpa 时,开始观察到空洞的 存在,这时空洞的尺寸很小、数量有限;当辐 照损伤量达到3.6 dpa 时,空洞的尺寸明显长 大,数量也在增加; 在图 c 中还可以看到有新 的空洞产生;继续增加辐照剂量,空洞的数量 和直径都继续增加,当辐照损伤量达到10 dpa 时,可以看到空洞的数量较多.
辐照对拉伸性能的影响
中子辐照铝的微观结构变化
铝的中子辐照实验是与硅的中子辐照同 时进行的。中子辐照时, 纯铝箔(纯度为99. 999% )包裹着硅。中子辐照实验在核反应 堆中进行, 辐照剂量为1015 —1016 neutron / cm2。辐照试样取出后, 放置一定时间, 等 到放射性降低后再对试样进行分析。利用 扫描电子显微镜( SEM) 、透射电子显微镜 ( TEM)和纳米显微力学硬度计对中子辐照 后的纯铝试样进行分析。
理论计算辐照环境下纳米晶材料的结构变化
A 传统晶态合金
B 纳米晶材料
1 Bai XM, etc., Science, 327, 1631 (2010);
2 Ackland G, Science, 327, 1587 (2010)
一 锆合金的辐照效应
1. 单位体量材料积中位移原子数与原子总数之比 定义为原子位移(dpa),通常以其值来衡的辐 照损伤程度,在典型轻水堆电站中锆合金包壳每 一次循环下所受到的辐照损伤为20(dpa),约相当 于10-7dpa/s,可见很严重。
CLAM 钢在450 ℃电子辐照时的微观结构变化. (a) 0 dpa ; (b) 3.6 dpa ; (c) 10 dpa ; (d) 11.5 dpa ; (e) 13.2 dpa ; (f) 13.8 dpa
图 (a) 是刚刚开始辐照时的微观结构. 从中可以看 出,钢中存在一定数量的均匀分布的位错环,位错环 的平均直径为13 nm. 伴随着辐照损伤量的增加,位 错环不断长大,位错环的密度也在增加,当辐照损伤 量达到11.5 dpa 时(图4.1 ( d) ) ,位错环最大,继续 增加辐照损伤量,最大位错环的大小基本保持不变; 但位错环的数密度增加,比较小的位错环继续长大. 从图4.1 中可以看到,当辐照损伤量达到10 dpa (图 4.1 (c) ) 之前,位错环的数密度增加较慢,当辐照损 伤量达到10 dpa (图4.1 (c) ) 以后,位错环的数密度 迅速增加,以至于辐照损伤量达到13.2dpa (图4.1 (e) ) 以后,看到的位错环的分布密度很大;由于在辐 照过程中的每一时刻产生的间隙原子的数量是一 定的,这将产生“位错环直径增长较快时其数密度 增长较慢、位错环直径增长较慢时其数密度增长 较快”的结果.
辐照前12Cr-ODS钢组织形貌
723K双束辐照后氧化物形貌变化
823K双束辐照后氧化物形貌变化
2低活化铁素体/ 马氏体钢离子辐照后的微观 结构变化
采用100 keV 的氢离子在450 摄氏度对两种成分的低活化 铁素体/ 马氏体钢进行了辐照实验; 同时为了对比研究低活 化铁素体/ 马氏体钢中的合金元素在辐照过程中的行为, 将 Fe-10Cr 合金以及纯铁一起进行了离子辐照. 通过透射电 子显微镜观察发现, 当辐照剂量为1×1017 H + / cm2 时, 在 低活化铁素体/ 马氏体钢中产生了一定数量的位错缺陷, 另 外, 发现有大量富含合金元素Cr 的点状析出物产生.
所致。
二铁合金的粒子辐照效应
1 辐照对12Cr-ODS钢氧化物稳定性影响 利用氢离子(H+)束和电子(e-)束,双束(H+/e-)同时 辐照用化学浸润法制备的新型12Cr-ODS铁素体钢,研究辐 照对12Cr-ODS钢氧化物稳定性的影响。对不同辐照剂量下 原位观察辐照区内氧化物形貌的变化过程发现:辐照前和 15dpa辐照后约10-20nm氧化物的尺寸并没有明显变化,而氧 化物周围出现微小高密度空洞并没有影响氧化物的稳定性。 当辐照温度升高至823K时,大尺寸的氧化物Y2O3与基体的 相界面变得不规则,但氧化物颗粒尺寸并不发生明显变化。 实 弥验散结强果化表相明Y2:O3弥与散铁强素化体相相Y界2O面3尺变寸得稳粗定糙,与无氢明的显存溶在解,现促象进。 铁素体内空位向Y2O3氧化物扩散有关。
5 生铁经离子辐照前后的效应
其注氢前的TEM 照片中除了能看到少许的位 错线存在以外, 几乎没有看到别的缺陷存在, 经过注氢以后在纯铁中产生了大量均匀分布 的位错环缺陷, 位错环的尺寸约为5~ 50 nm, 位错环的数密度约为5.51×1021 / m3 . 与其他 钢材经过注氢以后所观察到的结果不同, 在纯 铁中没有出现上面提到的黑斑.
图 ( a)辐照铝箔(灰面)的形貌, ( b)辐照铝箔(黑面)形貌, ( c)未辐照铝箔的形貌
Zr-4合金的中子辐照生长
对由两厂分别生产的Zr-4包壳管样品在重水
堆内进行中子辐照试验, 辐照温度为610K, 快中
子注量为4.2×1020/cm2(E>1.0MeV)。试验结
果表明, Zr-4管的辐照生长应变随辐照中子注量
增加呈线性增加。两厂生产的Zr-4包壳管的生
长应变可用
表达式描述,
ቤተ መጻሕፍቲ ባይዱ
两者的差异可能是合金元素和杂质的综合影响
锆合金辐照生长
锆合金辐照力学行为的变化
中子辐照对锆合金氧化性能的影响
中子辐照, 尤其是快中子辐照导致氧化膜和金属基 体内产生大量原子移位, 形成大量缺陷, 包括点缺 陷、位错和空洞等。其中最简单, 且浓度最大的是 Frankel 缺陷对。这些缺陷势必对氧离子的迁移产 生影响。此外, 由于金属锆氧化后体积增大, 氧化 膜处于压应力状态, 这将导致位错密度的增加; 中 子辐照下, 水将分解生成H2, H2在氧化膜内聚集使 氧化膜脆化; 中子辐照还导致金属基体的脆化和蠕 变, 直接改变氧化膜的应力状态, 甚至使氧化膜开 裂和脱落。
提高锆合金耐蚀性能的方法
Thorvaldsson用确定累积退火参数A 的最佳范围来制 定最佳热处理工艺; Ogata提出在ASTM 规定的合金元 素成分范围内降低Sn 含量而提高其它合金元素含量可 以提高抗均匀腐蚀和疖状腐蚀的性能; 周邦新提出用最 佳热处理工艺提高锆合金的耐蚀性; Sabo l开发了 ZIRLO 合金, 大幅度提高了耐蚀性能。这一系列方法归 根到底是从改变包壳材料的合金元素分布以提高其耐 蚀性能。为了提高包壳材料的耐蚀性能, 我们既可以进 行耐高温腐蚀的新包壳材料的研制, 又可以对现有包壳 材料进行改进, 如选择最佳热处理工艺、最佳合金成分, 表面激光处理及表面预生膜等方法都是进一步提高锆 合金耐蚀性能的可以尝试的办法。
辐照对铝性能的影响
中子辐照对纯铝和低合金铝的影响较小,这是因为缺陷 的迁移率甚至低到室温时,任然很高。在反应堆中铝在可能 应用温度范围,从室温到300摄氏度, 或者发生或接近发生 再结晶。
同其他金属一样,在辐照时,铝的强度提高,塑性稍许 下降。退火状态的铝以1.5×1022n/m2注量在30摄氏度下经 辐照,其屈服极限提高2倍,强度极限提高70%,而相对延 伸率比原来值减少67%。在同样条件下,加工变形铝辐照后, 强度极限及屈服极限只提高了6~8倍,而延伸率完全没有变 化。
第七讲 核材料的辐照效应
杨亮
南京航空航天大学
反应堆材料的辐照问题
反应堆(特别是堆内)晶态合金材料在长期经受各 种粒子、射线辐照,特别是中子辐照时产生结构和 性能的变化。表现为:辐照生长、肿胀、蠕变加快、 氢脆氧化、应力开裂、塑性和韧性下降等。即结构 不稳定,机械、物理、化学性能逐步下降,影响其 服役寿命。
离子辐照前后实验材料的显微组织
3.450 ℃高能电子辐照对CLAM 钢微观结构 的影响
为了研究低活化马氏体CLAM 钢的抗辐照肿胀性 能,在450 ℃下对CLAM 钢进行大剂量高能电子辐 照的原位动态实验. 利用超高压透射电子显微镜观 察发现,CLAM 钢中产生了大量的间隙原子型位错 环和多面体形状的辐照空洞. 分析了它们的形核和 长大规律以及相关机制. 计算表明,CLAM 钢在高 能电子辐照下的最大肿胀率为0.26 % ,具有较好 的抗辐照肿胀性能.
生铁在离子辐照前后的显微组织: ( a) 离子辐照前; ( b) 离子辐照后
不锈钢的中子辐照问题
1.不锈钢的辐照肿胀 在高通量中子辐照条件下,会引起不
锈钢的肿胀。下图为Cr17Ni12Mo2钢的肿 胀效应,肿胀显著增加的快中子注入量临 界值约1022n/cm2。
2.辐照后的力学性能
在中子注入量超过1022n/cm2之后,随注入量增 加,抗拉强度明显上升,延伸率明显下降。在高于 540摄氏度的高温拉伸性能,其强度不受中子注量 的影响,但总延伸率随注入增加明显减少。不锈钢 的断裂韧性随辐照剂量的增加明显减少,在高温辐 照条件下,当中子剂量大于10dpa后,其断裂韧性 趋于稳定;低温辐照的断裂韧性随着中子剂量增加 也明显下降。
2. 要使锆原子位移就必须向其提供足够的能量, 这一位移能量阈值Ed为25~27ev.而对于1Mev的 入射中子,锆原子接受的反冲能量平均值为 20kev,其最大值可达40kev,显然都远高于锆原 子位移所需的能量,从而出现初级位移原子。
3. 在(2~3)×1019n/cm2的注量后观察到了 空位环和空位间隙,这时产生的空位环主要 是<a>型1/3<1120>环,空位环和间隙环大体 上均衡发展是锆合金的特点,其比例取决于 辐照温度和注量,注量达到 (3~8)×1021n/cm2后还产生<c>型1/6<2023> 环,这只是空位环。与不锈钢不同,中子辐 照下锆合金中未发现空洞的存在。
随着注量提高到4×1026n/m2,牌号1100技术纯铝不断 提高着强度极限和屈服极限,但相对延伸率仍然完全没变化。 甚至在高注量辐照下,也不会使铝明显脆化。加工变形铝的 特点是,辐照不但提高了强度性能,同时还保持了足够高的 塑性,所以铝的性能辐照后可能比辐照前要好
金属材料受中子轰击后,产生许多缺陷及其衍生 物,如Frenkel对缺陷。离位峰、位错环、层错、贫 原子区、微空洞和嬗变元素等,所以会引起材料性 能发生变化。原因是这些辐照缺陷与基体点阵排列 不同,导致晶格产生畸变,阻碍位错运动,从而引 起强度升高,随之伴生塑、韧性下降和脆性增加。 铝合金辐照性能的变化趋势也符合此规律,但诱发 辐照效应的原因与大多数结构材料略有不同。通常 认为快中子辐照是引起结构材料性能恶化的主要原 因,对铝合金却是热中子比快中子的影响大,如铝 合金在高注量辐照下,除了快中子产生辐照缺陷造 成的硬化外,热中子使Al 嬗变成Si被认为起主要作 用。
核材料的辐照效应本质
粒子辐照,特别是中子辐照时,粒子与原子的各种 碰撞效应导致受激发原子的自由迁移,再通过撞击 其他原子导致级联效应的产生。在此过程中,缺陷 萌生、长大,并集中于晶界,甚至于材料表面。微 观的空位、空穴等缺陷长大、集中,发展为介观到 宏观尺度的空洞,最终导致材料的结构变化和损伤, 性能失效。因此,被激发原子的随机迁移性与晶体 内部结构的有序性之间的矛盾是制约晶态合金耐辐 照性的最根本原因。
相关文档
最新文档