材料科学基础课后习题及答案
材料科学基础课后习题答案
《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。
材料科学基础习题与参考答案(doc 14页)(优质版)
第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。
二、填空题1、材料的键合方式有四类,分别是(),(),(),()。
2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。
3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的金属晶格分别为(),()和()。
5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。
7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。
8、合金的相结构分为两大类,分别是()和()。
9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。
14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是(),(),(),()。
材料科学基础课后习题答案
(3) cosφ
=
n3 ⋅ F | n3 || F
|
=
1 3
cosα
=
b⋅F |b || F
|
=
1 2
由 Schmid 定律,作用在新生位错滑移面上滑移方向的分切应力为:
τ 0 = σ cosϕ cos λ = 17.2 ×
1× 3
1 = 7.0 MPa 2
∴作用在单位长度位错线上的力为:
f = τb = aτ 0 = 10 − 3 N/m 2
滑移面上相向运动以后,在相遇处
。
(B
)
A、相互抵消
B、形成一排空位
C、形成一排间隙原子
7、位错受力运动方向处处垂直与位错线,在运动过程中是可变的,
晶体作相对滑动的方向
。
(C
)
A、亦随位错线运动方向而改变 B、始终是柏氏矢量方向 C、始
终是外力方向
8、两平行螺型位错,当柏氏矢量同向时,其相互作用力
。
(B
二、(15 分)有一单晶铝棒,棒轴为[123],今沿棒轴方向拉伸,请分析:
(1)初始滑移系统; (2)双滑移系统 (3)开始双滑移时的切变量 γ; (4)滑移过程中的转动规律和转轴; (5)试棒的最终取向(假定试棒在达到稳定取向前不断裂)。
三、(10
分)如图所示,某晶体滑移面上有一柏氏矢量为
v b
的圆环形位错环,并受到一均匀
14、固态金属原子的扩散可沿体扩散与晶体缺陷扩散,其中最慢的扩
散通道是:
。
(A)
A、体扩散
B、晶界扩散
C、表面扩散
15、高温回复阶段,金属中亚结构发生变化时,
。
(C)
A、位错密度增大 B、位错发生塞积 C、刃型位错通过攀移和滑移构
材料科学基础课后习题答案
《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
材料科学基础习题及参考答案
材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。
⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。
⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。
常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。
⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。
⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。
结合较弱。
⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。
2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。
3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。
的等价晶面:的等价晶面:的等价晶向:的等价晶向:4立方点阵的某一晶面(hkl)的面间距为M/,其中M为一正整数,为晶格常数。
该晶面的面法线与a,b,c轴的夹角分别为119.0、43.3和60.9度。
请据此确定晶面指数。
h:k:l=cosα:cosβ:cosγ5.Cu具有FCC结构,其密度为8.9g/cm3,相对原子质量为63.546,求铜的原子半径。
=> R=0.128nm。
6. 写出溶解在γ-Fe中碳原子所处的位置,若此类位置全部被碳原子占据,那么试问在这种情况下,γ-Fe能溶解多少重量百分数的碳?而实际上在γ-Fe中最大的溶解度是多少?两者在数值上有差异的原因是什么?固溶于γ-Fe中的碳原子均处于八面体间隙中,且γ-Fe中的八面体间隙有4个,与一个晶胞中Fe原子个数相等,所以:C wt%=12/(12+56)×100%=17.6%实际上C在γ-Fe中的最大溶解度为2.11%两者数值上有较大差异,是因为此固溶体中,碳原子尺寸比间隙尺寸大,会引起点阵晶格畸变,畸变能升高,限制了碳原子的进一步溶解。
材料科学基础课后习题解答
其它为混合位错。
(2)位错受力为 F = τ b ,方向为垂直位错线。
(3)位错线将扩展
(4)τ
=
Gb 2R
2.6
⇒
Rmin
=
Gb 2τ
F
=
−τ 1b2
=
−
Gb1b2 2r
∫ W
=
r1
−
Fdr
=
−
Gb1b2 2Π
ln
3 100
= 1.76 ×10−9 J
r0
2.7 (1)(100)面的螺型位错形成刃型扭折,(001)面的刃型位错 形成刃型割阶 (2)两个面内的位错都形成刃型割阶
材 料 科 学 基 础 部 分 课 后 习 题 参 考 答 案
中南大学 郑子樵
第一章、材料的结构
2.晶体结构=空间点阵+实际原子(原子团等)
3.
原子个数 致密度 配位数 r 与 a 的关系 密排方向 面
fcc
4
0.74
12
3a = 4r {111} <110>
bcc
2
0.68
8
2a = 4r
{,棒轴为[123],今沿棒轴方向拉伸,请分析:
(1)初始滑移系统; (2)双滑移系统 (3)开始双滑移时的切变量 γ; (4)滑移过程中的转动规律和转轴; (5)试棒的最终取向(假定试棒在达到稳定取向前不断裂)。
三、(10
分)如图所示,某晶体滑移面上有一柏氏矢量为
v b
的圆环形位错环,并受到一均匀
用时的反应方向:
(1)
1 2
[10
1]
⇔
1 6
[2
1
1] +
1 6
材料科学基础课后作业及答案(分章节)
第一章8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e ---⨯=共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21(1.00 3.44)4[1]100%77.4%e---⨯=共价键比例为:1-77.4%=22.6%3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e --=-⨯=中离子键含量共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:1、2.有一正交点阵的 a=b, c=a/2。
某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。
材料科学基础课后习题答案
材料科学基础课后习题答案材料科学基础课后习题答案第一章:晶体结构和晶体缺陷1. 什么是晶体?晶体的特点是什么?答:晶体是由有序排列的原子、离子或分子组成的固态材料。
晶体的特点包括有规则的、重复的、周期性的结构,具有明确的晶体面和晶面间角度。
2. 简述晶体中离子束缚以及普通共价键束缚的区别?答:晶体中离子束缚是指由电荷相反的离子通过电磁力相互吸引而形成的结合力,例如NaCl晶体。
普通共价键束缚是由共享电子对形成的,例如金刚石晶体。
离子束缚通常较为强烈,晶体具有高熔点和脆性;而共价键束缚相对较弱,晶体具有低熔点和韧性。
3. 什么是晶体缺陷?列举几种晶体缺陷并简要描述其影响。
答:晶体缺陷是指晶体中排列异常的原子、离子或分子。
常见的晶体缺陷包括点缺陷、线缺陷和面缺陷。
点缺陷指的是晶体中原子位置的缺失或替代,如空位、间隙原子和杂质原子;线缺陷是晶体中晶面上原子位置的错误,如位错和螺旋位错;面缺陷是指晶面之间的错配,如晶界和孪生界。
这些晶体缺陷会影响晶体的物理性质和力学性能。
4. 什么是晶体结构中的定义因素?它们的作用是什么?答:晶体结构中的定义因素包括晶胞和晶格参数。
晶胞是最小重复单元,由一定数量的晶体中的原子、离子或分子组成。
晶格参数描述晶胞的大小和形状。
晶胞和晶格参数共同定义了晶体的结构。
晶胞和晶格参数的作用是确定晶体的晶体面、晶面间角度以及晶体的物理性质。
5. 什么是晶格点?晶格点的种类有哪些?答:晶格点是位于晶体内部的原子、离子或分子的位置。
晶格点的种类包括普通晶格点、间隙晶格点和特殊晶格点。
普通晶格点是晶体中原子、离子或分子的晶格点,如AB型晶体中的A和B原子;间隙晶格点是晶体中没有原子、离子或分子的晶格点,如金刚石中的间隙晶格点;特殊晶格点是具有非普通晶格点性质的晶体中的晶格点,如晶体中的空位或杂质原子。
第二章:物质的结构与性能关系1. 简述晶体结构对物质性能的影响。
答:晶体结构直接影响物质的物理性质和化学性质。
材料科学基础第2版答案
材料科学基础第2版答案
1.什么是金属的加工硬化现象?
石德珂材料科学基础第2版课后题及答案:
金属材料在塑性变形过程中,所施加的流变应力随应变量的增大而不断增大的现象,称为加工硬化。
或金属材料经冷塑性变形后,其强度、硬度升高,塑性、韧性下降的现象,称为加工硬化。
2.金属的加工硬化特性对金属材料的使用带来哪些利弊?
石德珂材料科学基础第2版课后题及答案:
有利方面:作为提高金属材料强度的一种手段;便于金属材料塑性成形;使金属零件得以抵抗偶然过载。
不利方面:使金属难以进一步冷塑性变形。
3.原子的结合键有哪几种?各有什么特点?
石德珂材料科学基础第2版课后题及答案:
原子的结合键有:
(1)离子键。
其特点是:正负离子相互吸引;键合很强,无饱和性,无方向性;熔点、硬度高,固态不导电,导热性差。
(2)共价键。
其特点是:相邻原子通过共用电子对结合;键合强,有饱和性,有方向性;熔点、硬度高,不导电,导热性有好有差。
(3)金属键。
其特点是:金属正离子与自由电子相互吸引;键合较强,无饱和性,无方向性;熔点、硬度有高有低,导热导电性好。
(4)分子键。
其特点是:分子或分子团显弱电性,相互吸引;键合很弱,无方向性;熔点、硬度低,不导电,导热性差。
(5)氢键。
其特点是:类似分子键,但氢原子起关键作用;键合弱,有方向性;熔点、硬度低,不导电,导热性好。
《材料科学基础》习题及参考答案
形核功,还是可以成核的。
答案
(7)测定某纯金属铸件结晶时的最大过冷度,其实测
值与用公式ΔT=0.2Tm计算值基本一致。
答案
(8) 某些铸件结晶时,由于冷却较快,均匀形核率N1
提高,非均匀形核率N2也提高,故总的形核率为N=
N1 +N2。
答案
返回
53
(9) 若在过冷液体中,外加10 000颗形核剂,则结晶
❖ ②比较Cu-10% Sn合金铸件和Cu-30%合金铸件的铸造性能 及铸造组织,说明Cu-10% Sn合金铸件中有许多分散砂眼的 原因。
③ω(Sn}分别为2%,11%和15%的青铜合金,哪一种可进行 压力加工?哪种可利用铸造法来制造机件?
答案
返7回8
❖ 9.如下图所示,已知A,B,C三组元固态完全不互溶,质量 分数分别84%A,,10%B,10%C的O合金在冷却过程中将进 行二元共晶反应和三元共晶反应,在二元共晶反应开始时, 该合金液相成分(a点)为60%A,20%B,20%C,而三元共 晶反应开始时的液相成分(E点)为50%A,10%B,40%C。
答案
返回
6
❖ 6.位错受力后运动方向处处垂直于位错线,在运动
过程中是可变的,晶体作相对滑动的方向应是什么
方向?
答案
❖ 7.位错线上的割阶一般如何形成?
答案
❖ 8.界面能最低的界面是什么界面?
答案
❖ 9. “小角度晶界都是由刃型位错排成墙而构成的”这
种说法对吗?
答案
返回
7
三、综合题
❖ 1. 作图表示立方晶体的(123)(0 -1 -2) (421)晶面及[-102][-211][346]晶向。 答案
❖ 9. 在Fe中形成1mol 空位的能量为104. 67kJ,
西北工业大学《材料科学基础》课后题答案
1. 有关晶面及晶向附图2.1所示。
2. 见附图2.2所示。
3. {100}=(100)十(010)+(001), 共3个等价面。
{110}=(110)十( )+(101)+( )+(011)+( ), 共6个等价面。
{111}=(111)+( )+( )+( ), 共4个等价面。
)121()112()112()211()112()121( )211()121()211()211()121()112(}112{+++++++++++=共12个等价面。
4. 单位晶胞的体积为VCu =0.14 nm3(或1.4×10-28m3)5. (1)0.088 nm ;(2)0.100 nm 。
6. Cu 原子的线密度为2.77×106个原子/mm 。
Fe 原子的线密度为3.50×106个原子/mm 。
7. 1.6l ×l013个原子/mm2;1.14X1013个原子/mm2;1.86×1013个原子/mm2。
8. (1) 5.29×1028个矽原子/m3; (2) 0.33。
9. .9.0.4×10-18/个原子。
10. 1.06×1014倍。
11. (1) 这种看法不正确。
在位错环运动移出晶体后, 滑移面上、下两部分晶体相对移动的距离是由其柏氏矢量决定的。
位错环的柏氏矢量为b, 故其相对滑移了一个b 的距离。
(2) A'B'为右螺型位错, C'D'为左螺型位错;B'C'为正刃型位错, D'A'为负刃型位错。
位错运动移出晶体后滑移方向及滑移量如附图2.3所示。
12. (1)应沿滑移面上、下两部分晶体施加一切应力τ0, 的方向应与de 位错线平行。
(2)在上述切应力作用下, 位错线de 将向左(或右)移动, 即沿着与位错线de 垂直的方向(且在滑移面上)移动。
在位错线沿滑移面旋转360°后, 在晶体表面沿柏氏矢量方向产生宽度为一个b 的台阶。
《材料科学基础》课后答案(1-7章)
第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e ---⨯=共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21(1.00 3.44)4[1]100%77.4%e---⨯=共价键比例为:1-77.4%=22.6%3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e --=-⨯=中离子键含量共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:1、2.有一正交点阵的 a=b, c=a/2。
某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。
《材料科学基础》课后习题及参考答案
绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为2.7g/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、 Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有34.01%),为什么它也很稳定?9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。
材料科学基础习题及参考答案
材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。
⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。
⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。
常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。
⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。
⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。
结合较弱。
⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。
2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。
(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。
{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。
材料科学基础课后习题答案
第四章1.纯 Cu 的空位形成能为 1.5aJ/atom (1aJ=10-18J),将纯Cu 加热至850℃后激冷至室温 (20℃),若高温下的空位全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。
解:平衡空位浓度:expv u C A kT-= 8508502085020201823274.2exp11exp[()]exp1.51011exp[()]1.3810850273.1520273.15uA C u kT u C k T T A kT e ----==---⨯=-⨯++=2.已知银在 800℃下的平衡空位数为 3. 6 ×1023/m 3,该温度下银的密度ρAg = 9. 58g/crn 3 ,银的摩尔质量为M Ag =107. 9g/mol ,计算银的空位形成能。
解:平衡空位浓度:exp v u C A kT-= 1m 3内银原子总数:23602836.02109.5810 5.3410/107.9Ag AgN N m M ρ⨯⨯⨯===⨯2328233.6101exp 5.3410 1.3810(800273.15)u-⨯-=⨯⨯⨯+ 191.7610/u J atom -=⨯4.某晶体中有一条柏氏矢量为a [001]的位错线,位错线的一端露头于晶体表面,另一端与两条位错线相连接,其中一条的柏氏矢量为/2[111]a ,求另一条位错线的柏氏矢量。
答:根据柏氏矢量的守恒性,另一条位错的柏氏矢量为:[110][111][111]22a aa -=5.在图 4-52所示的晶体中,ABCD 滑移面上有一个位错环,其柏氏矢量b 平行于AC(1)指出位错环各部分的位错类型。
(2)在图中表示出使位错环向外运动所需施加的切应力方向。
(3)该位错环运动出晶体后,晶体外形如何变化?答:(1)位错环和与AC 平行的直线相切的部分为纯螺位错,位错环和与AC 垂直的直线相切的部分为纯刃位错,其余部分为混合位错,作图(2)切应力与b 平行,作用在晶体上下两面上。
材料科学基础课后练习题含答案
材料科学基础课后练习题含答案1. 什么是晶格?晶格是指晶体结构中原子、离子、分子在空间排列有一定的规律,按照特定的对称性排列而形成的空间点阵。
2. 什么是晶体?晶体是指结晶体系中具有高度有序的排列而洛美斯密度一致、呈现清晰晶体面,和具有代表性的晶体内部结构的无穷大固体。
3. 简述晶体结构分类原则晶体结构可以根据原子位置的对称性分为14种布拉维格子,每个布拉维格子又可以对应多种晶体结构类型,例如简单晶体、体心立方、面心立方、钻石晶体等。
4. 什么是晶体缺陷?晶体缺陷是指晶体结构中原子、离子或分子位置不完全精确、规则的现象。
根据缺陷在晶体中的分布情况,可以将晶体缺陷分为线缺陷、点缺陷和面缺陷。
5. 简述热力学条件下晶体生长的三个步骤热力学条件下的晶体生长过程可以分为三个步骤:•核心形成:当过饱和度达到一定值时,就可形成微小的晶核,晶核数量随着过饱和度的增加而增大;•晶体生长:当核心生成后,溶液中的各种离子、分子会沉积在晶核上,促使气 / 液 / 溶液中的原子、离子、分子在晶面上排列组成更完整的晶体结构;•晶体成长:当溶液中的原子、离子、分子全部沉积在晶核上时,晶体成长过程就会停止。
6. 简述表面能的概念和意义表面能是指单位面积内表面上两种不同的物质相互接触时所表现出的相互吸引和相互排斥的能量。
表面能在化学键合、材料表面能、液体表面张力等方面都具有重要的意义。
7. 什么是结晶方向?结晶方向是指晶体的晶体学位置和方向散布,其决定了晶体内部原子、离子、分子排列的方向和空间位置。
8. 简述晶体缺陷的种类晶体缺陷根据出现的位置、性质不同可分为点缺陷、线缺陷和面缺陷。
其中点缺陷包括空位缺陷和杂质原子缺陷,线缺陷包括位错和螺旋差排,面缺陷包括晶界和附加缺陷。
9. 什么是位错?位错是晶体中原子排列从理论完美晶体位置发生的某种不规则畸变,是由于晶体内部发生畸变所产生的一类线缺陷,可分为Edge位错、Screw位错和Mixed位错。
《材料科学基础》课后习题及参考答案
绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为2.7g/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、 Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有34.01%),为什么它也很稳定?9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。
材料科学基础课后习题及答案
第二章答案2-1略。
2-2〔1〕一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;〔2〕一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:〔1〕h:k:l==3:2:1,∴该晶面的晶面指数为〔321〕;〔2〕h:k:l=3:2:1,∴该晶面的晶面指数为〔321〕。
2-3在立方晶系晶胞中画出以下晶面指数和晶向指数:〔001〕与[],〔111〕与[],〔〕与[111],〔〕与[236],〔257〕与[],〔123〕与[],〔102〕,〔〕,〔〕,[110],[],[]答:2-4定性描述晶体构造的参量有哪些.定量描述晶体构造的参量又有哪些.答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类.其特点是什么.答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最严密堆积的空隙有哪两种.一个球的周围有多少个四面体空隙、多少个八面体空隙.答:等径球最严密堆积有六方和面心立方严密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最严密堆积时可形成多少个四面体空隙、多少个八面体空隙.不等径球是如何进展堆积的.答:n个等径球作最严密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进展严密堆积时,可以看成由大球按等径球体严密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体严密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:〔000〕、〔001〕〔100〕〔101〕〔110〕〔010〕〔011〕〔111〕〔0〕〔0〕〔0〕〔1〕〔1〕〔1〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
2-9计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
答::面心:原子数4,配位数6,堆积密度六方:原子数6,配位数6,堆积密度2-10根据最紧密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只有%),为什么它也很稳定?答:最紧密堆积原理是建立在质点的电子云分布呈球形对称以及无方向性的基础上的,故只适用于典型的离子晶体和金属晶体,而不能用最密堆积原理来衡量原子晶体的稳定性。
另外,金刚石的单键个数为4,即每个原子周围有4个单键(或原子),由四面体以共顶方式共价结合形成三维空间结构,所以,虽然金刚石结构的空间利用率很低(只有%),但是它也很稳定。
2-11证明等径圆球六方最密堆积的空隙率为%。
答:设球半径为a,则球的体积为,球的z=4,则球的总体积(晶胞),立方体晶胞体积:(2a)3=16a3,空间利用率=球所占体积/空间体积=%,空隙率=%=%。
2-12金属镁原子作六方密堆积,测得它的密度为cm3,求它的晶胞体积。
答:设晶胞的体积为V,相对原子质量为M,则晶胞体积nm32-13根据半径比关系,说明下列离子与O2—配位时的配位数各是多少?已知r O2-=,r Si4+=,r K+=,r Al3+=,r Mg2+=。
答:对于Si4+、K+、Al3+、Mg2+来说,其依次是、、、;依据正离子配位数与正负离子半径比的关系知配位数为:Si4+4;K+8;Al3+6;Mg2+6。
2-14为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多?答:石英同一系列之间的转变是位移性转变,不涉及晶体结构中键的破裂和重建,仅是键长、键角的调整、需要能量较低,且转变迅速可逆;而不同系列之间的转变属于重建性转变,都涉及到旧键的破裂和新键的重建,因而需要较的能量,且转变速度缓慢;所以石英不同系列之间的转化温度比同系列变体之间转化的温度要高的多。
2-15有效离子半径可通过晶体结构测定算出。
在下面NaCl型结构晶体中,测得MgS和MnS 的晶胞参数均为a=(在这两种结构中,阴离子是相互接触的)。
若CaS(a=)、CaO(a =)和MgO(a=)为一般阳离子-阴离子接触,试求这些晶体中各离子的半径。
答:MgS中a=,阴离子相互接触,a=2r-,∴rS2-=;CaS中a=,阴-阳离子相互接触,a=2(r++r-),∴r Ca2+=;CaO中a=,a=2(r++r-),∴r O2-=;MgO中a=,a=2(r++r-),∴r Mg2+=。
2-16氟化锂(LiF)为NaCl型结构,测得其密度为cm3,根据此数据计算晶胞参数,并将此值与你从离子半径计算得到数值进行比较。
答:设晶胞的体积为V,相对原子质量为M,对于NaCl型结构来说,其n=4,则晶胞体积nm3则晶胞参数:,根据离子半径计算:a=2(r++r-)=∴<a2-17Li2O的结构是O2-作面心立方堆积,Li+占据所有四面体空隙位置,氧离子半径为。
求:(1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li+半径比较,说明此时O2-能否互相接触;(2)根据离子半径数据求晶胞参数;(3)求Li2O 的密度。
解:根据上图GO=FO=r max,AB=BC=AC=AD=BD=CD=2由几何关系知:=比Li+的离子半径r Li+=小,所以此时O2-不能互相接触。
晶胞参数=Li2O的密度g/cm32-18MgO和CaO同属NaCl型结构,而它们与水作用时则CaO要比MgO活泼,试解释之。
解:因为r Mg2+与r Ca2+不同,r Ca2+>r Mg2+,使CaO结构较MgO疏松,H2O易于进入,所以活泼。
2-19CaF2的晶胞参数为。
(1)根据CaF2晶胞立体图画出CaF2晶胞在(001)面上的投影图;(2)画出CaF2(110)面上的离子排列简图;(3)正负离子半径之和为多少?解(1)CaF2晶胞在(001)面上的投影图(2)CaF2(110)面上的离子排列简图(3)正负离子半径之和2-20计算CdI2晶体中的I-及CaTiO3晶体中O2-的电价是否饱和?解:CdI2晶体中Cd2+的配位数CN=6,I-与三个在同一边的Cd2+相连,且I-的配位数CN=3所以,即I-电价饱和CaTiO3晶体中,Ca2+的配位数CN=12,Ti4+的配位数CN=6,O2-的配位数CN=6所以,即O2-电价饱和。
2-21(1)画出O2-作面心立方堆积时,各四面体空隙和八面体空隙的所在位置(以一个晶胞为结构基元表示出来);(2)计算四面体空隙数、八而休空隙数与O2-数之比解(1)略(2)四面体空隙数与O2-数之比为2:1,八面体空隙数与O2-数之比为1:12-22根据电价规则,在下面情况下,空隙内各需填入何种价数的阳离子,并对每一种结构举出—个例子。
(1)所有四面体空隙位置均填满;(2)所有八面体空隙位置均填满;(3)填满—半四面体空隙位置;(4)填满—半八面体空隙位置。
答:分别为(1)阴阳离子价态比应为1:2如CaF2(2)阴阳离子价态比应为1:1如NaCl(3)阴阳离子价态比应为1:1如ZnS(4)阴阳离子价态比应为1:2如TiO22-23化学手册中给出NH4Cl的密度为cm3,X射线数据说明NH4Cl有两种晶体结构,一种为NaCl型结构,a=;另一种为CsCl结构,a=。
上述密度值是哪一种晶型的?(NH4+离子作为一个单元占据晶体点阵)。
解:若NH4Cl为NaCl结构则可由公式可得:=cm3若NH4Cl为NaCl结构,则可由公式可得:=由计算可知NaCl型结构的NH4Cl与化学手册中给出NH4Cl的密度接近,所以该密度NaCl晶型2-24MnS有三种多晶体,其中两种为NaCl型结构,一种为立方ZnS型结构,当有立方型ZnS 结构转变为NaCl型结构时,体积变化的百分数是多少?已知CN=6时,r Mn2+=,r S2-=;CN =4时,r Mn2+=,r S2-=。
解:当为立方ZnS型结构时:=当为NaCl型结构时:=2(r Mn2++r S2-)=2+=所以体积变化:=%2-25钛酸钡是一种重要的铁电陶瓷,其晶型是钙钛矿结构,试问:(1)属于什么点阵?(2)这个结构中离子的配位数为若干?(3)这个结构遵守鲍林规则吗?请作充分讨论。
答:(1)属于立方晶系(2)Ba2+、Ti4+和O2-的配位数分别为12、6和6(3)这个结构遵守鲍林规则鲍林第一规则——配位多面体规则对于Ti4+配位数为6对于Ba2+配位数为12符合鲍林第一规则鲍林第二规则——电价规则即负离子电荷Z-=则O2-离子电荷=与O2-离子电荷相等,故符合鲍林第二规则,又根据钙钛矿型结构知其配位多面体不存在共棱或共面的情况,结构情况也符合鲍林第四规则——不同配位体连接方式规则和鲍林第五规则——节约规则所以钙钛矿结构遵守鲍林规则。
2-26硅酸盐晶体结构有何特点?怎样表征其学式?答:硅酸盐晶体结构非常复杂,但不同的结构之间具有下面的共同特点:(1)结构中的Si4+离子位于O2-离子形成的四面体中心,构成硅酸盐晶体的基本结构单元[SiO4]四面体。
Si-O-Si是一条夹角不等的折线,一般在145°左右。
(2)[SiO4]四面体的每个顶点,即O2-离子最多只能为两个[SiO4]四面体所共用。
(3)两个相邻的[SiO4]四面体之间只能共顶而不能共棱或共面连接。
(4)[SiO4]四面体中心的Si4+离子可以部分地被Al3+离子所取代,取代后结构本身不发生太大变化,即所谓的同晶取代,但晶体的性质发生了很大的变化。
这为材料的改性提供了可能。
硅酸盐的化学式表征方法主要有以下两种:(1)氧化物表示法将构成硅酸盐晶体的所有氧化物按一定的比例和顺序全部写出来,先是1价的碱金属氧化物,其次是2价、3价的金属氧化物,最后是SiO2(2)无机络合盐表示法构成硅酸盐晶体的所有离子按一定的比例和顺序全部写出来,再把相关的络阴离子用中括号括起来即可。
先是1价、2价的金属离子,其次是Al3+离子和Si4+离子,最后是O2-离子和OH-离子。
氧化物表示法的优点在于一目了然的反应出晶体的化学组成,可以按此配料来进行晶体的实验室合成。
用无机络合盐法则可以比较直观的反应出晶体所属的结构类型,进而可以对晶体结构及性质作出一定程度的预测。
两种表示方法之间可以相互转换。
2-27硅酸盐晶体的分类依据是什么?可分为那几类,每类的结构特点是什么?答:硅酸盐晶体主要是根据[SiO4]在结构中的排列结合方式来分类,具体可以分为五类:岛状、组群状、链状、层状和架状。