材料科学基础课后作业及答案
材料科学基础习题与参考答案(doc14页)完美版
材料科学基础习题与参考答案(doc14页)完美版第⼀章材料的结构⼀、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离⼦键、⾦属键、组元、合⾦、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第⼆相强化。
⼆、填空题1、材料的键合⽅式有四类,分别是(),(),(),()。
2、⾦属原⼦的特点是最外层电⼦数(),且与原⼦核引⼒(),因此这些电⼦极容易脱离原⼦核的束缚⽽变成()。
3、我们把原⼦在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的⾦属晶格分别为(),()和()。
5、体⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有体⼼⽴⽅晶格的常见⾦属有()。
6、⾯⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有⾯⼼⽴⽅晶格的常见⾦属有()。
7、密排六⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),具有密排六⽅晶格的常见⾦属有()。
8、合⾦的相结构分为两⼤类,分别是()和()。
9、固溶体按照溶质原⼦在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原⼦与溶剂原⼦相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、⾦属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、⾦属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合⾦中不作为()相,⽽是少量存在起到第⼆相()作⽤。
13、CuZn、Cu5Zn8、Cu3Sn的电⼦浓度分别为(),(),()。
材料科学基础-作业参考答案与解析
材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100} {110} {111}面间距FCC2a24a33aBCC2a22a36a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.附表1-2 立方晶系中原子的面密度和线密度晶面/晶向{100} {110} {111} <100> <110> <111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10°时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳. 答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50% 的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解 (1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L →β;2时, 两相平衡共存, 0.50.9L β;2~2′ 时, 剩余液相发生共晶转变0.50.20.9L βα+;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--.P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P 中F 相对量: F P 6.690.77100%9.38%6.690.001w w -=⨯⨯=-. P 中Fe 3C 相对量: 3Fe C 10.6%9.38% 1.22%w =-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d ′ 中共晶渗碳体相对量: d Cm L 4.3 2.11100%41.27%6.69 2.11w w '-=⨯⨯=-共晶L d ′ 中二次渗碳体相对量: d Cm L 6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w '--=⨯⨯⨯=--II L d ′ 中共析渗碳体相对量:d Cm L 6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w '---=⨯⨯⨯⨯=---共析 4. 根据下列数据绘制Au-V 二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV 3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V 1522V V V (1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)β(0.45)w w w w w w =+===+==℃℃解 根据已知数据绘制的Au-V 二元相图参见附图4-3.附图4-3 Au-V 二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c 1, c 2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为 722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂ 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222k s cos 3001111cos 2001(1)01cos cos 60.646 1.57 MPa.m mϕλϕλτσ==++⨯++==++⨯-++=====即至少需要1.57 MPa 的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg 中的最重要滑移系. 那种晶体的塑性最好, 为什么?答: 滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有体心立方结构, 主要滑移系可表示为 {110}<111>, 共有6×2 = 12个; Al 具有面心立方结构, 其滑移系可表示为 {111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe 居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs= τk/ m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答: 孪生与滑移的异同点如附表6-1所示.附表6-1 晶体滑移与孪生的比较锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章固态相变。
材料科学基础课后习题答案
第1章 习题
1-10 纯铁点阵常数0.286nm ,体心立方结构,求1cm 3中有多少铁原子。
解:体心立方结构单胞拥有两个原子,单胞的体积为
V =(0.286×10-8)3 cm 3,所以1cm 3中铁原子的数目为
2283128.5510(2.8610)Fe n -=
⨯=⨯⨯
1-11 一个位错环能否各部分都是螺型位错,能否各部分都是刃型位错?为什么?
解:螺型位错的柏氏矢量与位错线平行,一根位错只有一个柏氏矢量,而一个位错环不可能与一个方向处处平行,所以一个位错环不能各部分都是螺型位错。
刃位错的柏氏矢量与位错线垂直,如果柏氏矢量垂直位错环所在的平面,则位错环处处都是刃型位错。
这种位错的滑移面是位错环与柏氏矢量方向组成的棱柱面,这种位错又称棱柱位错。
1-15 有一正方形位错线,其柏氏矢量及位错线的方向如图1-51所示。
试指出图中各段位错线的性质,并指出刃型位错额外串原子面所处的位置。
解:由柏氏矢量与位错线的关系可以知道,DC 是右螺型位错,BA 是左螺型位错。
由右手法则,CB 为正刃型位错,多余半原子面在纸面上方。
AD 为负刃型位错,多余半原子面在纸面下方。
A B
C
D。
《材料科学基础》作业-答案全
绪论一、填空题1、材料科学主要研究的核心问题是结构和性能的关系。
材料的结构是理解和控制性能的中心环节,结构的最微细水平是原子结构,第二个水平是原子排列方式,第三个水平是显微组织。
2. 根据材料的性能特点和用途,材料分为结构材料和功能材料两大类。
根据原子之间的键合特点,材料分为金属、陶瓷、高分子和复合材料四大类。
第一章材料的原子结构一、填空题1. 金属材料中原子结合以金属键为主,陶瓷材料(无机非金属材料)以共价键和离子键结合键为主,聚合物材料以共价键和氢键以及范德华键为主。
第二章材料的结构一、填空题1、晶体是基元(原子团)以周期性重复方式在三维空间作有规则的排列的固体。
2、晶体与非晶体的最根本区别是晶体原子排布长程有序,而非晶体是长程无序短程有序。
3、晶胞是晶体结构中的最小单位。
4、根据晶体的对称性,晶系有三大晶族,七大晶系,十四种布拉菲Bravais点阵,三十二种点群,230种空间群。
5、金属常见的晶格类型有体心立方、面心立方、密排六方。
6、fcc晶体的最密排方向为<110>,最密排面为{111},最密排面的堆垛顺序为ABCABCABCABC……。
7、fcc晶体的致密度为0.74,配位数为12,原子在(111)面上的原子配位数为6。
8、bcc晶体的最密排方向为<111>,最密排面为{110},致密度为0.68,配位数为8。
9、晶体的宏观对称要素有对称点、对称轴、对称面。
10、CsCl型结构属于简单立方格子,NaCl型结构属于面心立方格子,CaF2型结构属于面心立方格子。
11、MgO晶体具有NaCl型结构,其对称型是3 L44L36L29PC,晶族是高级晶族,晶系是立方晶系,晶体的键型是离子键。
12、硅酸盐晶体结构中的基本结构单元是硅氧四面体[SiO4]。
?13、几种硅酸盐晶体的络阴离子分别为[Si2O7]6-、[Si2O6]4-、[Si4O10]4-、[AlSi3O8]1-,它们的晶体结构类型分别为组群状,链状,层状,和架状。
材料科学基础习题与参考答案(doc 14页)(优质版)
第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。
二、填空题1、材料的键合方式有四类,分别是(),(),(),()。
2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。
3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的金属晶格分别为(),()和()。
5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。
7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。
8、合金的相结构分为两大类,分别是()和()。
9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。
14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是(),(),(),()。
材料科学基础课后习题及参考答案
绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料每种材料需要何种热学、电学性质2、为什么金属具有良好的导电性和导热性3、为什么陶瓷、聚合物通常是绝缘体4、铝原子的质量是多少若铝的密度为cm3,计算1mm3中有多少原子5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、 Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为,O2-半径为,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有%),为什么它也很稳定9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为克/厘米3,求它的晶胞体积。
材料科学基础课后习题及答案_第三章
第三章答案3-2略。
3-2试述位错的基本类型及其特点。
解:位错主要有两种:刃型位错和螺型位错。
刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。
螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。
3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料?解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。
由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。
3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些?解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。
2.<15%连续。
3.>40%不能形成固熔体。
(2)离子价:电价相同,形成连续固熔体。
(3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。
(4)场强因素。
(5)电负性:差值小,形成固熔体。
差值大形成化合物。
影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。
(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。
一般晶体中空隙愈大,结构愈疏松,易形成固溶体。
(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。
3-5试分析形成固溶体后对晶体性质的影响。
解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。
材料科学基础课后习题答案
(3) cosφ
=
n3 ⋅ F | n3 || F
|
=
1 3
cosα
=
b⋅F |b || F
|
=
1 2
由 Schmid 定律,作用在新生位错滑移面上滑移方向的分切应力为:
τ 0 = σ cosϕ cos λ = 17.2 ×
1× 3
1 = 7.0 MPa 2
∴作用在单位长度位错线上的力为:
f = τb = aτ 0 = 10 − 3 N/m 2
滑移面上相向运动以后,在相遇处
。
(B
)
A、相互抵消
B、形成一排空位
C、形成一排间隙原子
7、位错受力运动方向处处垂直与位错线,在运动过程中是可变的,
晶体作相对滑动的方向
。
(C
)
A、亦随位错线运动方向而改变 B、始终是柏氏矢量方向 C、始
终是外力方向
8、两平行螺型位错,当柏氏矢量同向时,其相互作用力
。
(B
二、(15 分)有一单晶铝棒,棒轴为[123],今沿棒轴方向拉伸,请分析:
(1)初始滑移系统; (2)双滑移系统 (3)开始双滑移时的切变量 γ; (4)滑移过程中的转动规律和转轴; (5)试棒的最终取向(假定试棒在达到稳定取向前不断裂)。
三、(10
分)如图所示,某晶体滑移面上有一柏氏矢量为
v b
的圆环形位错环,并受到一均匀
14、固态金属原子的扩散可沿体扩散与晶体缺陷扩散,其中最慢的扩
散通道是:
。
(A)
A、体扩散
B、晶界扩散
C、表面扩散
15、高温回复阶段,金属中亚结构发生变化时,
。
(C)
A、位错密度增大 B、位错发生塞积 C、刃型位错通过攀移和滑移构
材料科学基础课后习题答案
《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
材料科学基础课后习题及答案
第二章答案2-1略。
2-2〔1〕一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;〔2〕一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:〔1〕h:k:l==3:2:1,∴该晶面的晶面指数为〔321〕;〔2〕h:k:l=3:2:1,∴该晶面的晶面指数为〔321〕。
2-3在立方晶系晶胞中画出以下晶面指数和晶向指数:〔001〕与[],〔111〕与[],〔〕与[111],〔〕与[236],〔257〕与[],〔123〕与[],〔102〕,〔〕,〔〕,[110],[],[]答:2-4定性描述晶体构造的参量有哪些.定量描述晶体构造的参量又有哪些.答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类.其特点是什么.答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最严密堆积的空隙有哪两种.一个球的周围有多少个四面体空隙、多少个八面体空隙.答:等径球最严密堆积有六方和面心立方严密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最严密堆积时可形成多少个四面体空隙、多少个八面体空隙.不等径球是如何进展堆积的.答:n个等径球作最严密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进展严密堆积时,可以看成由大球按等径球体严密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体严密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:〔000〕、〔001〕〔100〕〔101〕〔110〕〔010〕〔011〕〔111〕〔0〕〔0〕〔0〕〔1〕〔1〕〔1〕。
材料科学基础课后习题解答
其它为混合位错。
(2)位错受力为 F = τ b ,方向为垂直位错线。
(3)位错线将扩展
(4)τ
=
Gb 2R
2.6
⇒
Rmin
=
Gb 2τ
F
=
−τ 1b2
=
−
Gb1b2 2r
∫ W
=
r1
−
Fdr
=
−
Gb1b2 2Π
ln
3 100
= 1.76 ×10−9 J
r0
2.7 (1)(100)面的螺型位错形成刃型扭折,(001)面的刃型位错 形成刃型割阶 (2)两个面内的位错都形成刃型割阶
材 料 科 学 基 础 部 分 课 后 习 题 参 考 答 案
中南大学 郑子樵
第一章、材料的结构
2.晶体结构=空间点阵+实际原子(原子团等)
3.
原子个数 致密度 配位数 r 与 a 的关系 密排方向 面
fcc
4
0.74
12
3a = 4r {111} <110>
bcc
2
0.68
8
2a = 4r
{,棒轴为[123],今沿棒轴方向拉伸,请分析:
(1)初始滑移系统; (2)双滑移系统 (3)开始双滑移时的切变量 γ; (4)滑移过程中的转动规律和转轴; (5)试棒的最终取向(假定试棒在达到稳定取向前不断裂)。
三、(10
分)如图所示,某晶体滑移面上有一柏氏矢量为
v b
的圆环形位错环,并受到一均匀
用时的反应方向:
(1)
1 2
[10
1]
⇔
1 6
[2
1
1] +
1 6
材料科学基础课后习题答案
材料科学基础课后习题答案材料科学基础课后习题答案第一章:晶体结构和晶体缺陷1. 什么是晶体?晶体的特点是什么?答:晶体是由有序排列的原子、离子或分子组成的固态材料。
晶体的特点包括有规则的、重复的、周期性的结构,具有明确的晶体面和晶面间角度。
2. 简述晶体中离子束缚以及普通共价键束缚的区别?答:晶体中离子束缚是指由电荷相反的离子通过电磁力相互吸引而形成的结合力,例如NaCl晶体。
普通共价键束缚是由共享电子对形成的,例如金刚石晶体。
离子束缚通常较为强烈,晶体具有高熔点和脆性;而共价键束缚相对较弱,晶体具有低熔点和韧性。
3. 什么是晶体缺陷?列举几种晶体缺陷并简要描述其影响。
答:晶体缺陷是指晶体中排列异常的原子、离子或分子。
常见的晶体缺陷包括点缺陷、线缺陷和面缺陷。
点缺陷指的是晶体中原子位置的缺失或替代,如空位、间隙原子和杂质原子;线缺陷是晶体中晶面上原子位置的错误,如位错和螺旋位错;面缺陷是指晶面之间的错配,如晶界和孪生界。
这些晶体缺陷会影响晶体的物理性质和力学性能。
4. 什么是晶体结构中的定义因素?它们的作用是什么?答:晶体结构中的定义因素包括晶胞和晶格参数。
晶胞是最小重复单元,由一定数量的晶体中的原子、离子或分子组成。
晶格参数描述晶胞的大小和形状。
晶胞和晶格参数共同定义了晶体的结构。
晶胞和晶格参数的作用是确定晶体的晶体面、晶面间角度以及晶体的物理性质。
5. 什么是晶格点?晶格点的种类有哪些?答:晶格点是位于晶体内部的原子、离子或分子的位置。
晶格点的种类包括普通晶格点、间隙晶格点和特殊晶格点。
普通晶格点是晶体中原子、离子或分子的晶格点,如AB型晶体中的A和B原子;间隙晶格点是晶体中没有原子、离子或分子的晶格点,如金刚石中的间隙晶格点;特殊晶格点是具有非普通晶格点性质的晶体中的晶格点,如晶体中的空位或杂质原子。
第二章:物质的结构与性能关系1. 简述晶体结构对物质性能的影响。
答:晶体结构直接影响物质的物理性质和化学性质。
材料科学基础课后答案
材料科学基础课后答案1. 介绍。
材料科学基础是材料科学与工程专业的重要基础课程,通过学习这门课程,可以帮助学生建立起对材料科学的基本理论和知识体系。
在课堂学习之外,课后习题是巩固知识、提高能力的重要途径。
下面是材料科学基础课后习题的答案,希望对同学们的学习有所帮助。
2. 课后习题答案。
(1)什么是晶体?晶体的特点是什么?答,晶体是由具有一定周期性排列的原子、离子或分子组成的固体。
晶体的特点包括具有长程有序性、具有周期性、具有面向性、具有各向同性等。
(2)请简要描述金属的晶体结构。
答,金属的晶体结构包括面心立方结构、体心立方结构和简单立方结构。
其中,面心立方结构的原子在每个面的中心和每个边的中点上各有一个原子,体心立方结构的原子在每个面的中心和立方体的中心各有一个原子,简单立方结构的原子只占据了立方体的顶点。
(3)材料的力学性能包括哪些指标?分别是什么意义?答,材料的力学性能包括强度、硬度、韧性、塑性和刚性等指标。
强度是材料抵抗外力破坏的能力,硬度是材料抵抗表面划伤的能力,韧性是材料抵抗断裂的能力,塑性是材料在受力作用下发生形变的能力,刚性是材料抵抗变形的能力。
(4)简述材料的热性能指标及其意义。
答,材料的热性能指标包括热传导性、膨胀系数和热稳定性等。
热传导性是材料传导热量的能力,膨胀系数是材料在温度变化时的膨胀程度,热稳定性是材料在高温下的稳定性能。
3. 总结。
通过对材料科学基础课后习题的答案解析,可以更加深入地理解材料科学的基本理论和知识体系。
希望同学们能够在课后及时复习、总结,提高对材料科学的理解和应用能力。
《材料科学基础》课后习题及参考答案
绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为2.7g/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、 Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有34.01%),为什么它也很稳定?9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。
材料科学基础课后作业及答案(分章节)
材料科学基础课后作业及答案(分章节)第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS 解:1、查表得:XNa=,XF= 根据鲍林公式可得NaF中离子键比例为:[1?e共价键比例为:%=% 2、同理,CaO中离子键比例为:[1?e共价键比例为:%=% 12?(?)412?(?)4]?100%?% ]?100%? % 23、ZnS中离子键比例为:ZnS 中离子键含量?[1?e?1/4(?)]?100%?% 共价键比例为:%=% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出晶面族各包括多少晶面?写出它们的密勒指数。
[1101]4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。
5.根据刚性球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。
材料科学基础课后练习题含答案
材料科学基础课后练习题含答案1. 什么是晶格?晶格是指晶体结构中原子、离子、分子在空间排列有一定的规律,按照特定的对称性排列而形成的空间点阵。
2. 什么是晶体?晶体是指结晶体系中具有高度有序的排列而洛美斯密度一致、呈现清晰晶体面,和具有代表性的晶体内部结构的无穷大固体。
3. 简述晶体结构分类原则晶体结构可以根据原子位置的对称性分为14种布拉维格子,每个布拉维格子又可以对应多种晶体结构类型,例如简单晶体、体心立方、面心立方、钻石晶体等。
4. 什么是晶体缺陷?晶体缺陷是指晶体结构中原子、离子或分子位置不完全精确、规则的现象。
根据缺陷在晶体中的分布情况,可以将晶体缺陷分为线缺陷、点缺陷和面缺陷。
5. 简述热力学条件下晶体生长的三个步骤热力学条件下的晶体生长过程可以分为三个步骤:•核心形成:当过饱和度达到一定值时,就可形成微小的晶核,晶核数量随着过饱和度的增加而增大;•晶体生长:当核心生成后,溶液中的各种离子、分子会沉积在晶核上,促使气 / 液 / 溶液中的原子、离子、分子在晶面上排列组成更完整的晶体结构;•晶体成长:当溶液中的原子、离子、分子全部沉积在晶核上时,晶体成长过程就会停止。
6. 简述表面能的概念和意义表面能是指单位面积内表面上两种不同的物质相互接触时所表现出的相互吸引和相互排斥的能量。
表面能在化学键合、材料表面能、液体表面张力等方面都具有重要的意义。
7. 什么是结晶方向?结晶方向是指晶体的晶体学位置和方向散布,其决定了晶体内部原子、离子、分子排列的方向和空间位置。
8. 简述晶体缺陷的种类晶体缺陷根据出现的位置、性质不同可分为点缺陷、线缺陷和面缺陷。
其中点缺陷包括空位缺陷和杂质原子缺陷,线缺陷包括位错和螺旋差排,面缺陷包括晶界和附加缺陷。
9. 什么是位错?位错是晶体中原子排列从理论完美晶体位置发生的某种不规则畸变,是由于晶体内部发生畸变所产生的一类线缺陷,可分为Edge位错、Screw位错和Mixed位错。
材料科学基础课后答案
材料科学基础课后答案材料科学基础是一门探索材料结构与性能之间关系的学科,它为我们提供了一种更深入了解不同材料特性与应用的途径。
在本篇文章中,我将根据材料科学基础课后题目,对每个问题给出具体答案。
问题1:什么是材料科学基础?答案:材料科学基础是研究材料的物理和化学特性,以及这些特性与材料结构之间相互关系的学科。
它涉及材料的性能、制备、加工、表征和应用等方面的知识。
问题2:材料的结构对其性能有何影响?答案:材料的结构与性能之间存在着密切的关系。
材料的结构包括原子、晶格、晶界、位错等组成部分,而这些组成部分的排列和类型对材料的性能产生直接影响。
例如,晶体结构的不同可以导致材料的硬度、强度、导电性和热导率等性能的差异。
问题3:什么是晶体结构?答案:晶体结构是指材料中原子、分子或离子排列形成的有序结构。
晶体结构可以用晶格参数和原子坐标来描述。
晶体结构的类型包括立方晶系、正交晶系、单斜晶系、斜方晶系、菱方晶系和三斜晶系。
问题4:什么是非晶体?答案:非晶体是指材料中原子或分子呈无序排列的结构。
与晶体不同,非晶体中没有规则的晶体结构。
非晶体具有无定形、随机性等特点。
非晶态材料常见的有非晶合金、非晶聚合物和非晶硅等。
问题5:材料的热处理对其性能有何影响?答案:材料的热处理是通过控制材料的加热和冷却过程,改变材料的结构和性能。
热处理可以提高材料的强度、硬度、韧性和耐腐蚀性等性能,同时也可以改善材料的加工性能和电磁性能等。
问题6:材料的表征方法有哪些?答案:材料的表征方法用于研究和分析材料的结构和性能。
常见的材料表征方法包括显微镜、X射线衍射、扫描电子显微镜、电子探针微区分析、拉伸实验和硬度测试等。
问题7:什么是位错?答案:位错是材料中存在的晶格缺陷。
位错由晶格中原子的错位或者间隙引起。
位错对材料的性能有重要影响,例如可以显著影响材料的塑性变形和织构等特性。
问题8:为什么要进行材料的成分分析?答案:进行材料的成分分析可以确定材料的组成、控制材料的成分含量,以及评估材料的质量。
材料科学基础课后作业答案
加工硬化:冷变形金属在塑性变形过程中形成大量位错,这些位错部分成为不可动位错, 从而导致其对可动位错的阻力增大,引起材料继续变形困难,形成加工硬化或形变强化。
6. MgO密度为3.58 g/cm3,其晶格常数为0.42 nm,试求每个 MgO单位晶胞内所含的Schottky缺陷数目。
解: 设缺陷数为 x个/晶胞
(4 x) ( AMg A0 )
a3N A
x 4 a3N A 4 3.58 (4.2108 )3 6.0231023 0.0369
不满足能量条件反应此反应满足几何条件但反应后反应前能量条件反应后反应前几何条件在钢棒的表面每20个铁的晶胞中有一个碳原子在离表面1mm处每30个铁的晶胞中有一个碳原子
1. 根据氢键理论,解释水结冰时出现的反常现象,即为何结冰后体积反而膨胀了。
解: 水冻结时结晶,非球形的水分子规整排列
时受氢键方向性和饱和性的更强限制,不能更 紧密地堆积,故密度变小,体积增大。
14、合金强化的途径有哪些?。 解: 通过合金化、塑形变形和热处理等手段提高金属材料强度的方法,称为材料的强化。 强化的基本方式有:固溶强化、加工硬化、沉淀强化和弥散强化、细化晶粒强化等。
这些强化方式总的来说是向晶体内引入大量晶体缺陷如位错、点缺陷、异类原子、晶界、 高度弥散的质点或不均匀性(如偏聚)等,这些缺陷阻碍位错运动,也会明显提高材料的强 度。
Direction A: xy z
材料科学基础课后作业答案
2
2
2
此反应满足几何条件但不满足能量条件,反应不能成立。
8. 在钢棒的表面,每20个铁的晶胞中有一个碳原子,在离表面
1mm处每30个铁的晶胞中有一个碳原子。温度为1000℃时扩散
系数是3×10-11m2/s,且结构为面心立方(a=0.365 nm)。问每
分钟因扩散通过单位晶胞的碳原子数是多少?
由已知可以计算出碳的浓度: C2=1/[30*(0.365×10-9m)3]=0.68×1027 /m3 C1=1/[20*(0.365×10-9m)3]=1.03×1027 /m3
a
b
• (c)[0 1 2]
(d)[1 3 3]
• (e)[1 1 1]
(f)[1 2 2]
• (g)[1 2 3]
(h)[1 0 3]
3. Determine the indices for the directions shown in the following cubic unit cell:222
此反应满足几何条件和 能量条件,反应能进行 。
解2: a[100] a [111] a [1 1 1]
2
2
(1)几何条件
反应前 a[100]
反应后
a [111] a [1 1 1]= a [200] a[100]
2
2
2
(2)能量条件
反应前
b2 a2
反应后
b2 ( a 12 12 12 )2 ( a 12 12 12 )2 3 a2 a2
9. 某固溶体的合金的相图如下图所示。合金成分为50 % B, 凝固到某温度时液相含有40 % B,固相含有80 % B,此时 液体和固体各占多少分数?
解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料科学基础课后作业及答案(分章节)第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS 解:1、查表得:XNa=,XF= 根据鲍林公式可得NaF中离子键比例为:[1?e共价键比例为:%=% 2、同理,CaO中离子键比例为:[1?e共价键比例为:%=% 12?(?)412?(?)4]?100%?% ]?100%? % 23、ZnS中离子键比例为:ZnS 中离子键含量?[1?e?1/4(?)]?100%?% 共价键比例为:%=% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出晶面族各包括多少晶面?写出它们的密勒指数。
[1101]4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。
5.根据刚性球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。
(2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。
6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。
解:1、体心立方11?4?4??2 密排面:{110},原子密度:22a2?1密排方向:,原子密度:? 3a2、面心立方113??3??226密排面:{111},原子密度:? 1?(2a)?23?(2a)2密排方向:,原子密度:3、密排六方6?13?132?a22a??1 密排面:{0001},原子密度:6?12??1?2 a?22a密排方向:?1120?,原子密度:7.求下列晶面的晶面间距,并指出晶面间距最大的晶面:(1)已知室温下α-Fe的点阵常数为0. 286nm,分别求出的晶面间距。
(2)已知9160C 时γ-Fe的点阵常数为0. 365nm,分别求出的晶面间距。
(3)已知室温下Mg的点阵常数为a=, c=0. 521nm,分别求出的晶面间距。
8.回答下列问题:(1)通过计算判断(110), (132), (311)晶面是否属于同一晶带?(2)求晶面的晶带轴,并列出五个属于该晶带的晶面的密勒指数。
解:1、根据晶带定律,hu+kv+lw=0,可得(110), (132)的晶带轴为[112] 3×1+1×1-2×1=2≠0 或(132), (311)的晶带轴为[158] -1×1+1×5-0×8=4≠0 故(110), (132), (311)晶面不属于同一晶带2、根据晶带定律,hu+kv+lw=0,可得2u+v+w=0u+v=0 联立求解,得:u:v:w=-1:1:1,故晶带轴为[111] 0)(属于该晶带的晶面:、、、1、等。
9.回答下列问题:(1)试求出立方晶系中[321]与[401]晶向之间的夹角。
(2)试求出立方晶系中试求出立方晶系中与[112]之间夹角为0°第四章1.纯Cu的空位形成能为/atom (1aJ=10-18J),将纯Cu加热至850℃后激冷至室温(20℃),若高温下的空位全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。
解:平衡空位浓度:Cv?AexpAexp??u?ukT C850C20?u11kT850?exp[(?)]?ukT850T20 AexpkT20???10?18?23?exp[?(1850??120?3)] 2.已知银在800℃下的平衡空位数为 3. 6 ×10/m,该温度下银的密度ρAg = 9. 58g/crn ,银的摩尔质量为MAg=107. 9g/mol,计算银的空位形成能。
3解:平衡空位浓度:Cv?Aexp1m内银原子总数:N??102328?ukT ??10233 N0?AgMAg????10?23??10283/m ?1 0?1?exp?19(800?) u??10J/atom 3.空位对材料行为的主要影响是什么?密度下降,电阻增加,强度提高,扩散机制,高温蠕变机理4.某晶体中有一条柏氏矢量为a [001]的位错线,位错线的一端露头于晶体表面,另一端与两条位错线相连接,其中一条的柏氏矢量为a/2[111],求另一条位错线的柏氏矢量。
答:根据柏氏矢量的守恒性,另一条位错的柏氏矢量为:a[110]?a2[111]?a2[111] 5.在图4-52所示的晶体中,ABCD滑移面上有一个位错环,其柏氏矢量b平行于AC(1)指出位错环各部分的位错类型。
(2)在图中表示出使位错环向外运动所需施加的切应力方向。
(3)该位错环运动出晶体后,晶体外形如何变化?答:图中a、c处为纯刃位错,b、d处为纯螺位错,其余部分为混合位错. 切应力与b平行,作用在晶体上下两面上。
如图(b) 沿b方向滑出一个柏氏矢量单位的距离,俯视图如图(c) 。
BbaAcdCDb(a)(b)(c) 6.在图4-53所示的晶体中有一位错线fed, de段正好处于位错的滑移面上,of段处于非滑移面上,位错的柏氏矢量b与AB平行而垂直于BC,(1)欲使de段位错线在ABCD滑移面上运动,应对晶体施加怎样的应力?(2)在上述应力作用下de段位错线如何运动,晶体外协如1可贾化?7.在图4-54所示的面心立方晶体的判断位错线上各段位错的类型。
(2)有一切应力施加于滑移面,且与柏氏矢量平行时,两条位错线的滑移特征有何差异?8.在两个相互垂直的滑移面上各有一条刃型位错线,位错线的柏氏矢量如图4-55a, b所示。
设其中一条位错线AB在切应力作用下发生如图所示的运动,试问交截后两条位错线的形状有何变化?各段位错线的位错类型是什么?(1)交截前两条刃位错的柏氏矢量相互垂直的情况(图a)(2)交截前两条刃位错的柏氏矢量相互平行的情况(图b) 9.在晶体的同一滑移面上有两个直径分别为r;和r:的位错环,其中rl>r2,它们的柏氏矢量相同,试问在切应力作用下何者更容易运动?为什么?10.判断下列位错反应能否进行:a2[101]?a6[121]?a2[101]?a3a6[111] [121]?2几何条件:a6[222]?222a3[111] a1?2?1)?2222能量条后?b?(aa6122222221?1?1)?a?a 331?1)?(23a 2满足几何条件和能量条件,故反应能够进行。
[101] 2aa几何条件:[101]?[101]?[200]?a[100] 222a[100]?2a[101]?能量条件:反应前?b?(a1)?a反应后?b?2(22222a21?1)?a 2222满足几何条件,但反应前后能量相等,不满足能量条件,故无外力作用时,该位错反应不能进行。
[111] 2aaaa几何条件:[112]?[111]?[333]?[111]36623[112]?6[111]?aaa能量条件:反应前?b?(a22a321?1?2)?(2222222a621 ?1?1)?222234a 2反应后?b2?(1?1?1)?34a 满足几何条件,但反应前后能量相等,不满足能量条件,故无外力作用时,该位错反应不能进行。
2aa几何条件:[111]?[111]?[200]?a[100] 222a[100]?a2a[111]?a[111] 能量条后?b2?2(a21?1?1)?2222222232a?a 22满足几何条件,但反应后能量增加,故反应不能进行。
11.若面心立方晶体中”一号[101〕的全位错以及”一音C1211的不全位错,此两位错相遇发生位错反应,试问:(1)此反应能否进行?为什么?(2)写出合成位错的柏氏矢量,并说明合成位错的性质12·在面心立方晶体的““)面上有”一号叮?。
彐的位错,试问该位错的刃型分量及螺型分量应处于什么方向上,在晶胞中画出它们的方向,并写出它们的晶向指数。
13.已知Cu的点阵常数为0. 255nm,密度为8. 9g/cm\摩尔质量为63. 54g/mol。
如果Cu在交变载荷作用下产生的空位浓度为 5 X 10-4,并假定这些空位都在{111}面上聚集成直径为20nm的空位片,(1)计算lcm3晶体中位错环的数目。
(2)指出位错环的位错类型。
(3)位错环在{111}面上如何运动?14.为什么点缺陷在热力学上是稳定的,而位错则是不平衡的晶体缺陷了15.柏氏矢量为a2a2[110]的全位错可以在面心立方晶体的哪些{111}面上存在?试写出该全位错在这些面上分解为两个a/6[110]的全位错可以在面心立方晶体的(111)和(111)面上存在。
a2[110]?a6[121]?a6[211] 在(111)面上分解反应:方法:从与(111)点积为0的中寻找满足几何条件的晶向在(111)面上分解反应:a2[110]?a6[211]?a6[121] 16.根据单位长度位错应变能公式中未考虑位错中心的错排能,推导时可另加上一常数项。
17.金属在真空高温加热时,抛光表面上晶界处于能量较高,原子蒸发速度较快因而产生沟槽,这一沟槽常称为热蚀沟,假定自表面的表面能为晶界能的三倍,且晶界与表面垂直,试在图上画出各项界面能之间的平衡情况,并计算热蚀沟底部的二面角。
解:各项界面能之间的平衡情况如图所示,图中θ角即为热蚀沟底部的二面角图及题意可得:??G?2?Scos2 3?G??S 解得:??? γsθγsγG 18.在如图4-56所示的Cu晶界上有一双球冠形第二相、Cu晶粒工R,已知Cu的大角度晶界能为0. 5J·m-’,丫一一荟一一月一汤一一丫(l)分别计算当“一?0, )=400, )=60?时Cu与第二相之间/C晶痴一\的相界能。
(2)讨论晶界上第二相形态与相界能及晶界能之间的关图4-56系。