《简单的线性规划问题》参考教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: §3.3.2简单的线性规划

第1课时

授课类型:新授课【教学目标】

1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;

2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。

【教学重点】

用图解法解决简单的线性规划问题

【教学难点】

准确求得线性规划问题的最优解

【教学过程】

1.课题导入

[复习提问]

1、二元一次不等式0

By

Ax在平面直角坐标系中表示什么图形?

+C

+

>

2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?

3、熟记“直线定界、特殊点定域”方法的内涵。

2.讲授新课

在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。

1、下面我们就来看有关与生产安排的一个问题:

引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?

(1)用不等式组表示问题中的限制条件:

设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组:

2841641200

x y x y x y +≤⎧⎪≤⎪⎪

≤⎨⎪≥⎪≥⎪⎩ ………………………………………………………….(1) (2)画出不等式组所表示的平面区域:

如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。 (3)提出新问题:

进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?

(4)尝试解答:

设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:

当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?

把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z

的直线。当z 变化

时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个

点,(例如(1,2)),就能确定一条直线(2833y x =-+),这说明,截距3z

可以由平面内的一

个点的坐标唯一确定。可以看到,直线233

z

y x =-+与不等式组(1)的区域的交点满足不等式

组(1),而且当截距3

z

最大时,z 取得最大值。因此,问题可以转化为当直线

233

z

y x =-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点

P ,使直线经过点P 时截距3z

最大。

(5)获得结果:

由上图可以看出,当实现233

z

y x =-+金国直线x=4与直线x+2y-8=0的交点M (4,2)时,

截距3z 的值最大,最大值为14

3,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,

工厂可获得最大利润14万元。 2、线性规划的有关概念:

①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.

②线性目标函数:

关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.

③线性规划问题:

一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.

④可行解、可行域和最优解:

满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.

使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 3、变换条件,加深理解 探究:课本第100页的探究活动

(1) 在上述问题中,如果生产一件甲产品获利3万元,每生产一件乙产品获利2万元,有应

当如何安排生产才能获得最大利润?在换几组数据试试。

(2) 有上述过程,你能得出最优解与可行域之间的关系吗?

3.随堂练习

1.请同学们结合课本P 103练习1来掌握图解法解决简单的线性规划问题.

(1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件⎪⎩

⎨⎧-≥≤+≤.1,1,

y y x x y

解:不等式组表示的平面区域如图所示: 当x =0,y =0时,z =2x +y =0 点(0,0)在直线0l :2x +y =0上. 作一组与直线0l 平行的直线

l :2x +y =t ,t ∈R .

可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.

所以z m ax =2×2-1=3.

(2)求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩

⎨⎧≥-+≤≤+.35,1,1535y x x y y x

解:不等式组所表示的平面区域如图所示:

从图示可知,直线3x +5y =t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,

-1)的直线所对应的t 最小,以经过点(8

17

,89)的直线所对应的t 最大.

所以z m in =3×(-2)+5×(-1)=-11.

z m ax =3×89+5×8

17

=14 4.课时小结

用图解法解决简单的线性规划问题的基本步骤: (1)寻找线性约束条件,线性目标函数;

(2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解

5.评价设计 【板书设计】

第2课时

授课类型:新授课

【教学目标】

1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 【教学重点】

利用图解法求得线性规划问题的最优解; 【教学难点】

把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。 【教学过程】

相关文档
最新文档