(word完整版)高考物理万有引力与航天专题经典例题
高考物理万有引力与航天题20套(带答案)含解析
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=3.土星是太阳系最大的行星,也是一个气态巨行星。
(物理)物理万有引力与航天练习题20篇含解析
(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。
已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。
【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。
【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析
高考物理万有引力与航天解题技巧及经典题型及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1. 如下图,质量分别为m 和 M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得R=M,又由于 LR rrm因此能够解得: M L , rm L ;RMmMm(2)依据( 1)能够获得 : GmM4 2 4 2ML 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .2.“天宫一号 ”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013年 6 月,“神舟十号 ”与 “天宫一号 ”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物 理课.已知 “天宫一号 ”飞翔器运转周期 T ,地球半径为 R ,地球表面的重力加快度为g , “天宫一号 ”围绕地球做匀速圆周运动,万有引力常量为 G .求:(1)地球的密度;(2)地球的第一宇宙速度v ;(3) 天“宫一号 ”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【分析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力供给圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243. 地球同步卫星,在通信、导航等方面起到重要作用。
高中物理万有引力与航天专项训练及答案及解析.docx
高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
高考物理万有引力与航天题20套(带答案)含解析
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(2)02V hR L (3)0()2()L R H R H T RV hπ++=【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R= 22022hv RM GL= (2)012v GMv RG hR R L===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:()()2L R H R H T Rv hπ++=3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大?(3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gt π;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.6.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=7.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.8.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h . 【答案】(1)v gR =(2)22324gR T h R π= 【解析】 【详解】(1)根据2v mg m R=得地球的第一宇宙速度为:v gR =.(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =, 解得:22324gR T h R π=- .9.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
近六年2024-2025年新课标全国卷高考物理试题分类汇总-专题5:万有引力与航天
2024-2025年新课标全国卷专题分类汇总专题5:万有引力与航天1.(2024课标Ⅱ卷·19题·6分· 中)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M所用的时间等于T 04B .从Q 到N 阶段,机械能渐渐变大C .从P 到Q 阶段,速率渐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功1.(2024年新课标全国卷III)关于行星运动的规律,下列说法符合史实的是A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星根据这些规律运动的缘由D .开普勒总结出了行星运动的规律,发觉了万有引力定律2.(2024年新课标全国卷II)由于卫星的放射场不在赤道上,同步卫星放射后须要从转移轨道经过调整再进入地球同步轨道。
当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。
已知同步卫星的环绕速度约为3.1×103m/s ,某次放射卫星飞经赤道上空时的速度为 1.55×103m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为 A .西偏北方向,1.9×103m/s B .东偏南方向,1.9×103m/s C .西偏北方向,2.7×103m/s D .东偏南方向,2.7×103m/s 3.(2024年新课标全国卷)假设地球是一半径为R 、质量分布匀称的球体。
一矿井深度为d 。
已知质量分布匀称的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加速度大小之比为 A .1- B .1+ C .D .4.(2024年新课标全国卷II)假设地球可视为质量匀称分布的球体。
高中物理万有引力与航天题20套(带答案)含解析
高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.我国预计于2022年建成自己的空间站。
万有引力与航天专题(2024高考真题及解析)
万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。
物理万有引力与航天题20套(带答案)及解析
物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BRhTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;;(4)2【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高考物理万有引力与航天真题汇编(含答案)含解析
高考物理万有引力与航天真题汇编( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g(2)v gR (3)h3gT2 R2R 4 GR42【分析】(1)在地球表面重力与万有引力相等:Mmmg ,GR2M M地球密度:V 4 R33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mg m v2R v gR(3)天宫一号的轨道半径 r R h,Mm h 42据万有引力供给圆周运动向心力有:G2 m R2,R h T解得:h3gT 2 R2R242.一宇航员站在某质量散布平均的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R,引力常量为G,求:(1)该星球表面的重力加快度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【分析】(1) 依据竖直上抛运动规律可知,小球上抛运动时间2v 0 tg可得星球表面重力加快度 : g2v 0 .tGMm(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mgR 2gR 22v 0 R 2 得: MGtG 4 R 3由于 V3M 3v 0 则有:2πRGtV(3)重力供给向心力,故该星球的第一宇宙速度mg m v 2RvgR2v 0Rt【点睛 】此题主要抓住在星球表面重力与万有引力相等和万有引力供给圆周运动向心力,掌握竖直上抛运动规律是正确解题的重点.3. 人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同 一个高度由静止同时开释,两者几乎同时落地.若羽毛和铁锤 是从高度为 h 处着落,经时间 t 落到月球表面.已知引力常量为G ,月球的半径为 R .(1)求月球表面的自由落体加快度大小g 月;(2)若不考虑月球自转的影响,求月球的质量 M 和月球的 “第一宇宙速度 ”大小 v .【答案】( 1) g 月2h 2hR 2 2hRt 2 (2)MGt 2; vt【分析】 【剖析】( 1)依据自由落体的位移时间规律能够直接求出月球表面的重力加快度;( 2)依据月球表面重力和万有引力相等,利用求出的重力加快度和月球半径能够求出月球的质量 M ; 飞翔器近月飞翔时,飞翔器所受月球万有引力供给月球的向心力,进而求出“第一宇宙速度”大小.【详解】(1)月球表面邻近的物体做自由落体运动h =1g 月 t 22月球表面的自由落体加快度大小g 月=2ht 2(2)若不考虑月球自转的影响GMm2 =mg 月R月球的质量 M =2hR 22Gt质量为 m' 的飞翔器在月球表面邻近绕月球做匀速圆周运动m ′g v 2月= m ′R2hR 月球的 “第一宇宙速度 ”大小 v = g 月R =t【点睛】联合自由落体运动规律求月球表面的重力加快度,依据万有引力与重力相等和万有引力提 供圆周运动向心力争解中心天体质量和近月飞翔的速度v .4. 宇航员在某星球表面以初速度 v 0 竖直向上抛出一个物体,物体上涨的最大高度为h.已知该星球的半径为R ,且物体只受该星球的引力作用.求:(1)该星球表面的重力加快度;(2)从这个星球上发射卫星的第一宇宙速度 .【答案】 (1)v 02(2) v 0R2h2h【分析】此题考察竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加快度为 g ′,物体做竖直上抛运动,则 v 02 2g h 解得,该星球表面的重力加快度 gv 022h(2) 卫星切近星球表面运转,则 mg mv 2R解得:星球上发射卫星的第一宇宙速度Rvg R v2h5. 宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间 t ,小球落到星 球表面,测得抛出点与落地址之间的距离为L .若抛出时的初速度增大到 2 倍,则抛出点与落地址之间的距离为3L .已知两落地址在同一水平面上,该星球的半径为R ,万有引力常量为 G ,求该星球的质量 M .2 3LR 2【答案】 M23Gt【分析】 【详解】两次平抛运动,竖直方向h1 gt2 ,水平方向 x v 0t ,依据勾股定理可得:2L 2h 2 ( v 0 t)2 ,抛出速度变成2 倍: (3L)2 h 2 (2v 0t )2 ,联立解得:h1 L ,3g2L,在星球表面:Mm,解得: M2LR 2 3t 2G R2mg 3t 2G6.2016 年 2 月 11 日,美国 “激光干预引力波天文台 ”(LIGO )团队向全球宣告发现了引力波,这个引力波来自于距离地球13 亿光年以外一个双黑洞系统的归并.已知光在真空中流传的速度为 c ,太阳的质量为 M 0 ,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26 倍和 39 倍,归并后为太阳质量的 62 倍.利用所学知识,求此次归并所开释的能量.( 2)黑洞密度极大,质量极大,半径很小,以最迅速度流传的光都不可以逃离它的引力,所以我们没法经过光学观察直接确立黑洞的存在.假设黑洞为一个质量散布平均的球形天体.a .由于黑洞对其余天体拥有强盛的引力影响,我们能够经过其余天体的运动来推断黑洞的存在.天文学家观察到,有一质量很小的恒星单独在宇宙中做周期为T ,半径为 r 0 的匀速圆周运动.由此推断,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量 M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出以前就有人利用牛顿 力学系统预知过黑洞的存在.我们知道,在牛顿系统中,当两个质量分别为 m 1 、 m 2 的质点相距为 r 时也会拥有势能,称之为引力势能,其大小为E pGm 1m2(规定无量远处r势能为零).请你利用所学知识,推断质量为 M ′的黑洞,之所以能够成为 “黑 ”洞,其半径R 最大不可以超出多少?24 2r 0 32GM13M 02=【答案】() c2 ; R2( ) McGT【分析】【剖析】【详解】(1)归并后的质量损失m (2639)M 0 62M 0 3M 0依据爱因斯坦质能方程E mc 2得归并所开释的能量E 3M 0c 2(2) a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m依据万有引力定律和牛顿第二定律G Mmm22r 0r 02T解得M4 2 r 03GT 2b .设质量为 m 的物体,从黑洞表面至无量远处;依据能量守恒定律1 mv 2G Mm2R解得2GMRv 2由于连光都不可以逃离,有 v =c 所以黑洞的半径最大不可以超出2GM Rc 27. 木星在太阳系的八大行星中质量最大, “木卫 1”是木星的一颗卫星,若已知“木卫 1”绕木星公转半径为 r ,公转周期为 T ,万有引力常量为 G ,木星的半径为 R ,求(1)木星的质量 M ;(2)木星表面的重力加快度 g 0 . 【答案】( 1) 4 2r 3(2)4 2r 3 GT 2T 2R 2【分析】(1)由万有引力供给向心力G Mmm( 2 )2 rr 2T42r3可得木星质量为 M2GT(2)由木星表面万有引力等于重力: GMmm g 0R 2木星的表面的重力加快度g 042 r3T 2 R 2【点睛 】万有引力问题的运动,一般经过万有引力做向心力获得半径和周期、速度、角速度的关系,而后经过比较半径来求解.8.2003 年 10 月 15 日,我国神舟五号载人飞船成功发射.标记着我国的航天事业发展到 了一个很高的水平.飞船在绕地球飞翔的第 5 圈进行变轨,由本来的椭圆轨道变成距地面高度为 h 的圆形轨道.已知地球半径为R ,地面处的重力加快度为g ,引力常量为 G ,求:(1)地球的质量;(2)飞船在上述圆形轨道上运转的周期T .gR 2(R h)3 【答案】 (1) M(2)T 2GgR 2【分析】【详解】(1)依据在地面重力和万有引力相等,则有GMmmgR 2gR 2解得: MG(2)设神舟五号飞船圆轨道的半径为r ,则据题意有:rR hMm2 飞船在轨道上飞翔时,万有引力供给向心力有:Gm 4πr2T 2r( R h)3解得:T2πgR 29. 在某一星球上,宇航员在距离地面 h 高度处以初速度v 0 沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为 x ,已知该星球的半径为 R ,引力常量为 G ,求:(1)该星球表面的重力加快度 g ;(2)该星球的质量 M ;(3)该星球的第一宇宙速度 v 。
万有引力与航天 训练题——2023届高考物理一轮复习(word版含答案)
万有引力与航天 训练题一、选择题(本题共15个小题,每题5分,共75分)1、2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行。
若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A.核心舱的质量和绕地半径B.核心舱的质量和绕地周期C.核心舱的绕地角速度和绕地周期D.核心舱的绕地线速度和绕地半径2、2021年6月17日,神舟十二号载人飞船顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,随后与天和核心舱(空间站)进行对接,标志着中国人首次进入自己的空间站。
如图所示,若空间站在距地球表面高约430 km 的轨道上做匀速圆周运动,已知引力常量为11226.6710N m /kg G -=⋅ ⨯,地球半径约为6400 km ,则下列说法正确的是( )A.空间站的运行速度大于7.9 km/sB.空间站里所有物体的加速度均为零C.位于低轨道的飞船需减速才能与高轨道的空间站实现对接D.若已知空间站的运行周期,则可以估算出地球的平均密度3、如图甲所示,太阳系中有一颗“躺着”自转的蓝色“冷行星”——天王星,其周围存在着环状物质。
为了测定环状物质是天王星的组成部分,还是环绕该行星的卫星群,假设“中国天眼”对其做了精确的观测,发现环状物质线速度的二次方2v 与其到行星中心的距离的倒数1r - 关系如图乙所示。
已知天王星的半径为0r ,引力常量为G ,以下说法正确的是( )A.环状物质是天王星的组成部分B.天王星的自转周期为002πr v C.21v r --关系图像的斜率等于天王星的质量 D.天王星表面的重力加速度为200v r 4、假设在某星球上,一宇航员从距地面不太高的H 处以水平速度0v 抛出一小球,小球落地时在水平方向上发生的位移为s 。
已知该星球的半径为R ,且可看成球体,引力常量为G 。
忽略小球在运动过程中受到的阻力及星球自转的影响。
下列说法中正确的是( )A.B.该星球的质量为2202Hv R GsC.该星球的平均密度为20232πHv Gs RD.距该星球表面足够高的h 处的重力加速度为22022()h Hv R h s + 5、2020年1月,天文学界公布了一系列最新的天文学进展。
高考物理万有引力与航天题20套(带答案)及解析
高考物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的质量。
【答案】(1)02tan v g t θ=(2)202tan v R Gtθ【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】(1)根据平抛运动知识可得200122gt y gt tan x v t v α===解得02v tan g tα=(2)根据万有引力等于重力,则有2GMmmg R = 解得2202v R tan gR M G Gtα==2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2R g ,16R g (2)速度之比为2 87Rgπ 【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R= a 卫星2224aGMm m R R T π= 解得2a RT g=b卫星2224·4 (4)b GMmm RR Tπ=解得16bRTgπ=(2)卫星做匀速圆周运动,F F=引向,a卫星22amvGMmR R=解得aGMvR=b卫星b卫星22(4)4Mm vG mR R=解得v4bGMR=所以2abVV=(3)最远的条件22a bT Tπππ-=解得87Rtgπ=4.宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡另一点Q上,斜坡的倾角α,已知该星球的半径为R,引力常量为G,求该星球的密度(已知球的体积公式是V=43πR3).【答案】03tan2VRGtαπ【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.设该星球表现的重力加速度为g,根据平抛运动规律:水平方向:x v t=竖直方向:212y gt =平抛位移与水平方向的夹角的正切值2012tan gt y x v tα== 得:02tan v g tα=设该星球质量M ,对该星球表现质量为m 1的物体有112GMm m g R =,解得GgR M 2= 由343V R π=,得:03tan 2v M V RGt αρπ==5.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)2T π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mMGR 解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''= 解得该卫星运行的最小周期2T π= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.6.在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题.如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G 的数值,如图所示是卡文迪许扭秤实验示意图.卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G 的数值及其它已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人.(1)若在某次实验中,卡文迪许测出质量分别为m 1、m 2相距为r 的两个小球之间引力的大小为F ,求万有引力常量G ;(2)若已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式.【答案】(1)万有引力常量为212Fr G m m =.(2)地球质量为2R gG,地球平均密度的表达式为34g RG ρπ=【解析】 【分析】根据万有引力定律122m m F Gr=,化简可得万有引力常量G ; 在地球表面附近的物体受到重力等于万有引力2MmG mg R=,可以解得地球的质量M ,地球的体积为343V R π=,根据密度的定义M Vρ=,代入数据可以计算出地球平均密度. 【详解】(1)根据万有引力定律有:122m m F Gr = 解得:212Fr G m m =(2)设地球质量为M ,在地球表面任一物体质量为m ,在地球表面附近满足:2MmGmg R=得地球的质量为: 2R gM G =地球的体积为:343V R π=解得地球的密度为:34gRGρπ=答:(1)万有引力常量为212Fr G m m =.(2)地球质量2R gM G=,地球平均密度的表达式为34gRGρπ=.7.今年6月13日,我国首颗地球同步轨道高分辨率对地观测卫星高分四号正式投入使用,这也是世界上地球同步轨道分辨率最高的对地观测卫星.如图所示,A 是地球的同步卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加速度为g,求:(1)同步卫星离地面高度h (2)地球的密度ρ(已知引力常量为G )【答案】(122324gR T R π(2)34g GR π 【解析】 【分析】 【详解】(1)设地球质量为M ,卫星质量为m ,地球同步卫星到地面的高度为h ,同步卫星所受万有引力等于向心力为()2224()R h mMG m R h Tπ+=+ 在地球表面上引力等于重力为2MmGmg R = 故地球同步卫星离地面的高度为22324gR T h R π=(2)根据在地球表面上引力等于重力2MmGmg R = 结合密度公式为233443gR M g G V GR R ρππ===8.2018年12月08日凌晨2时23分,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射嫦娥四号探测器,开启了月球探测的新旅程。
(word完整版)高中物理万有引力经典习题30道带答案
一.选择题(共30小题)1.(2014•浙江)长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19600km,公转周期T1=6.39天.2006年3月,天文学家发现两颗冥王星的小卫星,其中一颗的公转半径r2=48000km,则它的公转周期T2,最接近于()A.15天B.25天C.35天D.45天2.(2014•海南)设地球自转周期为T,质量为M,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为()A.B.C.D.3.(2014•广东)如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是()A.轨道半径越大,周期越长B.轨道半径越大,速度越大C.若测得周期和张角,可得到星球的平均密度D.若测得周期和轨道半径,可得到星球的平均密度4.(2014•江苏)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A.3.5km/s B.5.0km/s C.17.7km/s D.35.2km/s 5.(2014•福建)若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A.倍B.倍C.倍D.倍6.(2014•天津)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时,假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()A.距地面的高度变大B.向心加速度变大C.线速度变大D.角速度变大7.(2013•安徽)质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)8.(2013•江苏)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积9.(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,DC运动的周期为()A.B.C.D.10.(2013•四川)迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“G1﹣58lc”却很值得我们期待.该行星的温度在O℃到40℃之间、质量是地球的6倍、直径是地球的1.5倍、公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则()A.在该行星和地球上发射卫星的第一宇宙速度相同B.如果人到了该行星,其体重是地球上的倍C.该行星与“Gliese581”的距离是日地距离的倍D.由于该行星公转速率比地球大,地球上的米尺如果被带上该行星,其长度一定会变短11.(2013•上海)小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的()A.半径变大B.速率变大C.角速度变大D.加速度变大12.(2013•浙江)如图所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆轨道上,设地球质量为M,半径为R.下列说法正确的是()A.地球对一颗卫星的引力大小为B.一颗卫星对地球的引力大小为C.两颗卫星之间的引力大小为D.三颗卫星对地球引力的合力大小为13.(2013•海南)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是()A.静止轨道卫星的周期约为中轨道卫星的2倍B.静止轨道卫星的线速度大小约为中轨道卫星的2倍C.静止轨道卫星的角速度大小约为中轨道卫星的D.静止轨道卫星的向心加速度大小约为中轨道卫星的14.(2012•浙江)如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年C.小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值15.(2012•重庆)冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍16.(2012•山东)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为v1、v2.则等于()A.B.C.D.17.(2012•福建)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为()A.B.C.D.18.(2012•江苏)2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家.如图所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动.则此飞行器的()A.线速度大于地球的线速度B.向心加速度大于地球的向心加速度C.向心力仅有太阳的引力提供D.向心力仅由地球的引力提供19.(2012•天津)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为4:1 B.角速度大小之比为2:1C.周期之比为1:8 D.轨道半径之比为1:220.(2012•北京)关于环绕地球运动的卫星,下列说法中正确的是()A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合21.(2012•广东)如图所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的()A.动能大B.向心加速度大C.运行周期长D.角速度小22.(2012•四川)今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×l07m.它与另一颗同质量的同步轨道卫星(轨道半径为4.2×l07m)相比()A.向心力较小B.动能较大C.发射速度都是第一宇宙速度D.角速度较小23.(2011•重庆)某行星和地球绕太阳公转的轨道均可视为圆.每过N年,该行星会运行到日地连线的延长线上,如图所示.该行星与地球的公转半径比为()A.()B.()C.()D.()24.(2011•广东)已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G,有关同步卫星,下列表述正确的是()A.卫星距地面的高度为B.卫星的运行速度小于第一宇宙速度C.卫星运行时受到的向心力大小为D.卫星运行的向心加速度小于地球表面的重力加速度25.(2011•天津)质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M,月球半径为R,月球表面重力加速度为g,引力常量为G,不考虑月球自转的影响,则航天器的()A.线速度v=B.角速度ω=C.运行周期T=2πD.向心加速度a=26.(2011•浙江)为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1.总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则()A.X星球的质量为M=B.X星球表面的重力加速度为g X=C.登陆舱在r1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T127.(2011•江苏)一行星绕恒星作圆周运动.由天文观测可得,其运动周期为T,速度为v,引力常量为G,则()A.恒星的质量为B.行星的质量为C.行星运动的轨道半径为D.行星运动的加速度为28.(2011•山东)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方29.(2011•北京)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的()A.质量可以不同B.轨道半径可以不同C.轨道平面可以不同D.速率可以不同30.(2010•福建)火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目.假设火星探测器在火星表面附近圆形轨道运行的周期T1,神舟飞船在地球表面附近的圆形轨道运行周期为T2,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则T1与T2之比为()A.B.C.D.一.选择题(共30小题)1.B 2.A 3.AC 4.A 5.C 6.A 7.C 8.C 9.B 10.B 11.A 12.BC 13.A 14.C 15.A 16.B 17.B 18.AB 19.C 20.B 21.CD 22.B 23.B 24.BD 25.AC 26.AD 27.ACD 28.AC 29.A 30.D。
高考物理万有引力与航天题20套(带答案)含解析
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt =;2hRv =【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt =质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月==【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMT h R π=- 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-4.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
高中物理万有引力与航天专项训练100(附答案).docx
高中物理万有引力与航天专项训练100( 附答案 )一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加速度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果必须用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【解析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.一名宇航员到达半径为R、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕 O 点在竖直面内做圆周运动,测得绳的拉力大小 F 随时间 t 的变化规律如图乙所示. F1、F2已知,引力常量为G,忽略各种阻力.求:(1)星球表面的重力加速度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.F1F2( 2)( F1 F2 ) R F1 F2【答案】(1)g6m (3)6m8 GmR【解析】【分析】【详解】(1)由图知:小球做圆周运动在最高点拉力为 F2,在最低点拉力为 F1设最高点速度为 v2,最低点速度为 v1,绳长为l在最高点:F2mv22mg①l在最低点:F1mv12mg②l由机械能守恒定律,得1mv12mg 2l 1mv22③22由①②③,解得F1 F2 g6m(2)GMmmg R2GMm mv2R2=R两式联立得:v=(F1F2)R6mGMm(3)在星球表面:R2mg④M星球密度:⑤V由④⑤,解得F1F2 8 GmR点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.3.如图所示是一种测量重力加速度g 的装置。
(物理)物理万有引力与航天专项习题及答案解析
(物理)物理万有引力与航天专项习题及答案解析一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大.【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=3.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)GMR g= (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R=- 得:GMR g=(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=4.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL= 同理对星2M ,有:212222M M GM R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,; ()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.5.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。
(物理)物理万有引力与航天练习题20篇及解析
(物理)物理万有引力与航天练习题20篇及解析一、高中物理精讲专题测试万有引力与航天1.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少?【答案】(1)345LGm233Gm L 【解析】 【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:222222()(2)Gm Gm m L L L Tπ+= 345L T Gm∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗星,满足:2222cos30()cos30LGm m L ω︒=︒解得:33Gm L ω2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R= a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以2abV V = (3)最远的条件22a bT T πππ-=解得t =3.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:h R =4.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt =由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R= 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.5.2019年4月,人类史上首张黑洞照片问世,如图,黑洞是一种密度极大的星球。
(物理)高考必备物理万有引力与航天技巧全解及练习题(含答案)及解析
(物理)高考必备物理万有引力与航天技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期22Rt T v π=3.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=4.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)及解析
高考物理万有引力与航天解题技巧及经典题型及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g(2)v gR (3)h3gT2 R2R 4 GR42【分析】(1)在地球表面重力与万有引力相等:Mmmg ,GR2M M地球密度:V 4 R33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mg m v2R v gR(3)天宫一号的轨道半径 r R h,Mm h 42据万有引力供给圆周运动向心力有:G2 m R2,R h T解得:h3gT 2 R2R242.从在某星球表面一倾角为的山坡上以初速度v0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R,全部阻力不计,引力常量为G,求:(1)该星球表面的重力加快度的大小g(2)该星球的质量 M.2v0 tan2v0 R2 tan【答案】 (1)(2)t Gt【分析】【剖析】(1)物体做平抛运动,应用平抛运动规律能够求出重力加快度.( 2)物体在小球的表面遇到的万有引力等于物体的重力,由此即可求出.【详解】(1)物体做平抛运动,水平方向:x v 0t ,竖直方向: y1 gt 22由几何关系可知:y gttan2v 0x解得: g2vtant(2)星球表面的物体遇到的重力等于万有引力,即:GMmmgR 2可得: MgR 2 2v 0R 2tanGGt【点睛】此题是一道万有引力定律应用与运动学相联合的综合题,考察了求重力加快度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律能够解题;解题时要注意“黄金代换”的应用.3.“嫦娥一号 ”在西昌卫星发射中心发射升空,正确进入预约轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.以下图,暗影部分表示月球,假想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上飞翔 n 圈所用时间为 t ,抵达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在抵达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,尔后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上飞翔 n 圈所用时间为 .不考虑其余星体对飞船的影响,求:( 1)月球的均匀密度是多少?( 2)假如在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球飞翔方向同样,某时辰两飞船相距近来(两飞船在月球球心的同侧,且两飞船与月球球心在同向来线上),则经过多长时间,他们又会相距近来?【答案】( 1)192n 2mt1,2,3;( 2) t)( mGt 27n【分析】试题剖析:( 1)在圆轨道 Ⅲ 上的周期: T 3t,由万有引力供给向心力有:8nMm22G R 2mT R又:433192 n2 M3R ,联立得:GT32Gt2.(2)设飞船在轨道 I 上的角速度为1、在轨道 III 上的角速度为 3 ,有:2 1T1因此32设飞飞船再经过t 时间相距近来,有:3t﹣1t2m 因此有:T3mt,,).t(m 1 2 37n考点:人造卫星的加快度、周期和轨道的关系【名师点睛】此题主要考察万有引力定律的应用,开普勒定律的应用.同时依据万有引力供给向心力列式计算.4.奇特的黑洞是近代引力理论所预知的一种特别天体,探访黑洞的方案之一是观察双星系统的运动规律.天文学家观察河外星系大麦哲伦云时,发现了LMCX﹣3 双星系统,它由可见星 A 和不行见的暗星 B 构成.将两星视为质点,不考虑其余天体的影响,A、 B 环绕二者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G,由观察能够获得可见星 A 的速率 v 和运转周期T.(1)可见星 A 所受暗星 B 的引力 FA 可等效为位于 O 点处质量为 m′的星体(视为质点)对它的引力,设 A 和 B 的质量分别为 m1、 m2,试求 m′(用 m1、 m2 表示);(2)求暗星 B 的质量 m2 与可见星 A 的速率 v、运转周期T 和质量 m1 之间的关系式;(3)恒星演化到末期,假如其质量大于太阳质量ms 的 2 倍,它将有可能成为黑洞.若可54见星 A 的速率 v=2.7× 10 m/s ,运转周期T=4.7 π× 10 s,质量 m1= 6ms,试经过估量来判断暗星 B 有可能是黑洞吗?(G= 6.67× 10﹣11N?m2/kg2 , ms= 2.0× 103 kg)【答案】( 1m23m23v3T) m '2m1 m22 2 G (3)有可能是黑洞m1 m2【分析】试题剖析:(1)设 A、B 圆轨道的半径分别为r1、 r2,由题意知,A、B的角速度相等,为0,有: F A m102r1, F B m2 02 r2,又 F A F B 设 A、 B 之间的距离为r,又r r1r2由以上各式得,r m1m2r1①m2由万有引力定律得F A G m1 m2r 2将① 代入得 F A Gm1m23 m1m2 r12令 F A G m1 m 'm232 ②r12,比较可得m 'm1 m2(2)由牛顿第二定律有:G m1m'm1v2③r12r1又可见星的轨道半径r1vT④2由②③④得m232v3T m1m2 2 G(3)将m1 6m s代入m23v3T得m23v3T2 2 G22 G⑤m1m26m s m2代入数据得m232 3.5m s⑥6m s m2m23nm s 3.5m s设 m2nm s,(n>0)将其代入⑥式得,22m1m2 6 1⑦n可见,m232的值随 n 的增大而增大,令n=2 时得6m s m2nm s0.125m s 3.5m s612⑧n要使⑦式建立,则n 一定大于2,即暗星 B 的质量m2一定大于2m1,由此得出结论,暗星 B 有可能是黑洞.考点:考察了万有引力定律的应用【名师点睛】此题计算量较大,重点抓住双子星所受的万有引力相等,转动的角速度相等,依据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量特别多,在做题的时候,第一明确过程中的向心力,而后弄清楚各个物理量表示的含义,最后选择适合的公式剖析解题,此外这一块的计算量一是特别大的,因此需要仔细计算5. 利用万有引力定律能够丈量天体的质量.( 1)测地球的质量英国物理学家卡文迪许,在实验室里奇妙地利用扭秤装置,比较精准地丈量出了引力常量的数值,他把自己的实验说成是 “称量地球的质量 ”.已知地球表面重力加快度为 g ,地球半径为 R ,引力常量为 G .若忽视地球自转的影响,求地球的质量.( 2)测 “双星系统 ”的总质量所谓 “双星系统 ”,是指在互相间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球 A 和B ,以下图.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为 T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽视其余星球的影响,能够将月球和地球当作 “双星系统 ”.已知月球的公转周期为 T 1,月球、地球球心间的距离为 L 1.你还能够利用( 1)、( 2)中供给的信息,求月球的质量.【答案】( 1)gR 24 2 L 3 4 2L 13 gR 2 G ;( 2);( 3)GT 12.GT 2G【分析】 【详解】(1)设地球的质量为 M ,地球表面某物体质量为 m ,忽视地球自转的影响,则有Mm mg 解得: M =gR2 ;GR 2G( 2)设 A 的质量为 M 1,A 到 O 的距离为 r 1,设 B 的质量为 M 2 ,B 到 O 的距离为 r 2,依据万有引力供给向心力公式得:G M 1M 2M 1 ( 2)2 r 1 ,L 2TM 1M 2 22GL2M 2(T )r 2 ,又因为 L=r 1+r 2解得:M 142L 3M 2;GT 2(3)设月球质量为M3,由( 2)可知,M3M 4 2L132 GT1由( 1)可知, M = gR2 G解得: M34 2L13gR2 GT12G6.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力与航天专题——经典例题1.(2018·重庆月考)(多选)下列说法正确的是( )A .关于公式r 3T 2=k 中的常量k ,它是一个与中心天体有关的常量B .开普勒定律只适用于太阳系,对其他恒星系不适用C .已知金星绕太阳公转的周期小于地球绕太阳公转的周期,则可判定金星到太阳的距离小于地球到太阳的距离D .发现万有引力定律和测出引力常量的科学家分别是开普勒、伽利略2.假如地球的自转角速度增大,关于物体所受的重力,下列说法错误的是( )A .放在赤道上的物体所受的万有引力不变B .放在两极上的物体的重力不变C .放在赤道上的物体的重力减小D .放在两极上的物体的重力增大3.(2018·河南商丘二模)(多选)“雪龙号”南极考察船在由我国驶向南极的过程中,经过赤道时测得某物体的重力是G 1;在南极附近测得该物体的重力为G 2.已知地球自转的周期为T ,引力常量为G ,假设地球可视为质量分布均匀的球体,由此可知( )A .地球的密度为3πG 1GT 2G 2-G 1B .地球的密度为3πG 2GT 2G 2-G 1C .当地球的自转周期为G 2-G 1G 2T 时,放在地球赤道地面上的物体不再对地面有压力 D .当地球的自转周期为 G 2-G 1G 1T 时,放在地球赤道地面上的物体不再对地面有压力 4.(2018·吉林长春外国语学校模拟)(多选)宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上,用R 表示地球的半径,g 表示地球表面处的重力加速度,g 0表示宇宙飞船所在处的地球引力加速度,N 表示人对台秤的压力,则关于g 0、N ,下列式子正确的是( )A .g 0=0B .g 0=R 2r2g C .N =0 D .N =mg 5.(2018·福建厦门一模)据报道,2020年前我国将发射8颗海洋系列卫星,包括4颗海洋水色卫星,2颗海洋动力环境卫星和2颗海陆雷达卫星,以加强对黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的监测.设海陆雷达卫星绕地球做匀速圆周运动的轨道半径是海洋动力环境卫星的n 倍,下列说法正确的是( )A .在相等的时间内,海陆雷达卫星到地心的连线扫过的面积与海洋动力环境卫星到地心的连线扫过的面积相等B .在相等的时间内,海陆雷达卫星到地心的连线扫过的面积与海洋动力环境卫星到地心的连线扫过的面积之比为n :1C .海陆雷达卫星与海洋动力环境卫星线速度之比为n :1D .海陆雷达卫星与海洋动力环境卫星向心加速度之比为n 2:16.(2018·贵州遵义航天高级中学五模)(多选)若宇航员在月球表面附近自高h 处以初速度v 0水平抛出一个小球,测出小球的水平射程为L .已知月球半径为R ,万有引力常量为G .则下列说法正确的是( )A .月球表面的重力加速度g 月=2hv 20L2 B .月球的平均密度ρ=3hv 202πGL 2RC .月球的第一宇宙速度v =v 0L2h D .月球的质量M 月=hR 2v 20GL2 7.(2018·辽宁省实验中学质检)设地球是一质量分布均匀的球体,O为地心.已知质量分布均匀的球壳对壳内物体的引力为零.在下列四个图中,能正确描述x 轴上各点的重力加速度g 的分布情况的是( )8.(2018·四川资阳一诊)(多选)用m 表示地球的通信卫星(同步卫星)的质量,h 表示离地面的高度,用R 表示地球的半径,g 表示地球表面的重力加速度,ω表示地球自转的角速度,则通信卫星所受的地球对它的万有引力的大小为( )A .G Mm R +h 2 B.mgR 2R +h 2C .mω2(R +h )D .m 3R 2gω49.(2018·云南一模)(多选)一球形行星对其周围物体的万有引力使物体产生的加速度用a 表示,物体到球形行星表面的距离用h 表示,a 随h 变化的图象如图所示,图中a 1、h 1、a 2、h 2及引力常量G 均为已知.根据以上数据可以计算出( )A .该行星的半径B .该行星的质量C .该行星的自转周期D .该行星的同步卫星离行星表面的高度10.(2018·重庆一中摸底)(多选)宇宙飞船以周期T 绕地球做匀速圆周运动时,由于地球遮挡阳光,会经历类似“日全食”的过程,如图所示.已知地球的半径为R ,地球质量为M ,引力常量为G ,地球自转周期为T 0,太阳光可看成平行光,宇航员在A 点测出的张角为α,则( )A .飞船绕地球运动的线速度为2πR T sin α2B .一天内飞船经历“日全食”的次数为T T 0C .飞船每次在“日全食”过程所需的时间为αT 2πD .飞船的周期为T =2πR sin α2R GM sin α211.(2018·福建质检)中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距离地面的高度为h 1,飞船飞行五周后进行变轨,进入预定圆轨道,如图所示,设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,求:(1)地球的平均密度;(2)飞船经过椭圆轨道近地点A 时的加速度大小;(3)椭圆轨道远地点B 距地面的高度.12.(2018·河北张家口一中等联考)2016年1月5日上午,国防科工局正式发布国际天文学联合会批准的“嫦娥三号”探测器着陆点周边区域命名为“广寒宫”,附近三个撞击坑分别命名为“紫微”、“天市”、“太微”.此次成功命名,使以中国元素命名的月球地理实体达到22个.已知地球半径为R ,表面重力加速度为g ,质量为m 的“嫦娥三号”卫星在地球上空的引力势能为E p =-mgR 2r(以无穷远处引力势能为零),r 表示物体到地心的距离.求:(1)质量为m 的“嫦娥三号”卫星以速度v 在某一圆轨道上绕地球做匀速圆周运动,求此时卫星距地球地面高度h 1;(2)可使“嫦娥三号”卫星上升,从离地高度h 1(此问可以认为h 1为已知量)的轨道上升到h 1+h 的轨道上做匀速圆周运动,卫星发动机至少要做的功W 为多少?刷高考真题找规律:1.(2017·新课标全国卷Ⅲ)2017年4月,我国成功发射的“天舟一号”货运飞船与“天宫二号”空间实验室完成了首次交会对接,对接形成的组合体仍沿“天宫二号”原来的轨道(可视为圆轨道)运行.与“天宫二号”单独运行时相比,组合体运行的( )A .周期变大B .速率变大C .动能变大D .向心加速度变大2.(2017·新课标全国卷Ⅱ)(多选)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 0/4B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功3.(2016·新课标全国卷Ⅲ)关于行星运动的规律,下列说法符合史实的是( )A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律4.(2016·新课标全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 hC .8 hD .16 h刷仿真模拟明趋向5.(2018·福建宁德一模)(多选)科学家预测在银河系里可能有一个“与地球相近似”的行星.这个行星存在孕育生命的可能性,若质量可视为均匀分布的球形“与地球相近似”的行星的密度为ρ,半径为R ,自转周期为T 0,引力常量为G ,则( )A .该“与地球相近似”的行星的同步卫星的运行速率为2πR T 0B .该“与地球相近似”的行星的同步卫星的轨道半径为ρGT 23πC .该“与地球相近似”的行星的两极表面重力加速度的大小为43GρR π D .该“与地球相近似”的行星的卫星在星球表面附近做圆周运动的速度为2πR ρG3π6.(2018·陕西西安高新一中一模)一些星球由于某种原因而发生收缩,假设该星球的直径缩小到原来的四分之一,若收缩时质量不变,则与收缩前相比( )A .同一物体在星球表面受到的重力增大到原来的4倍B .同一物体在星球表面受到的重力增大到原来的2倍C .星球的第一宇宙速度增大到原来的4倍D .星球的第一宇宙速度增大到原来的2倍7.(2018·广东广州模拟)如图所示,人造卫星B 、A 在同一平面内绕地心O 做匀速圆周运动.已知B 、A 连线与B 、O 连线间的夹角最大为θ,则B 、A 的运动周期之比等于( )A .sin 3θB.1sin 3θC.sin 3θD.1sin 3θ 刷最新原创抓重点 8.(2018·吉林长春调研)2016年2月12日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预测,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”.双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a 、b 两颗星组成,这两颗星绕它们连线的某一点在有引力作用下做匀速圆周运动,测得a 星的周期为T ,a 、b 两颗星的距离为l ,a 、b 两颗星的轨道半径之差为Δr (a 星的轨道半径大于b 星的轨道半径),则( )A .b 星的周期l -Δr l +Δr TB .a 星的线速度大小πl +Δr TC .a 、b 两颗星的半径之比为l l -ΔrD .a 、b 两颗星的质量之比为l +Δr l -Δr9.(2018·辽宁葫芦岛六校联考)某卫星在半径为r 的轨道1上做圆周运动,动能为E k ,变轨到轨道2上后,动能比在轨道1上减小了ΔE ,在轨道2上也做圆周运动,则轨道2的半径为( ) A.E k E k -ΔE r B.E k ΔEr C.ΔE E k -ΔE r D.E k -ΔE ΔEr 刷易错易误找难点易错点1: 理不清重力和万有引力的关系10.(2018·甘肃张掖一诊)地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上的物体“飘”起来,则地球的转速应变为原来的( )A.g 2倍B.g +a a 倍C.g -a a 倍D.g a倍 易错点2: 不能熟练掌握人造地球卫星各参量间关系11.(2018·湖北襄阳一测)如图所示,A 、B 是绕地球做圆周运动的两颗卫星,A 、B 两卫星与地心的连线在相等时间内扫过的面积之比为k 1,则A 、B 两卫星的周期的比值为( )A .k 23B .kC .k 2D .k 3刷综合大题提能力12.(2018·吉林省实验中学一模)宇宙中存在由质量相等的四颗星组成的四星系统,这些系统一般离其他恒星较选,通常可忽略其他星体对它们的引力作用.四星系统通常有两种构成形式:一是三颗星绕一颗中心星运动(三绕一),二是四颗星稳定地分布在正方形的四个顶点上运动.若每颗星体的质量为m ,引力常量为G .(1)分析说明三绕一应该具有怎样的空间结构模式.(2)若相邻星球的最小距离为a ,求两种构成形式下天体运动的周期之比.。