二目标规划图解法

合集下载

数学建模目标规划方法

数学建模目标规划方法

30
x1
2x1

12x2 x2

d1 d2

d1 d2

2500 140

x1

d
3

d3

60

a x (,)b
ij j
i
j 1
(i 1,2, , m)
绝对约束
x 0 ( j 1,2, , n) j
d , d 0 (l 1,2, , L) ll
非负约束
K
L
min Z
pk
(kl
d
l

kl
dl
)
k 1
l 1
n
c(l) x d d g ( l 1,2, , L)
三 目标规划方法
通过前面的介绍和讨论,我们知道,目标规划方法 是解决多目标规划问题的重要技术之一。
这一方法是美国学者查恩斯(A.Charnes)和库 伯(W.W.Cooper)于1961年在线性规划的基础上提 出来的。后来,查斯基莱恩(U.Jaashelainen)和李 (Sang.Lee)等人,进一步给出了求解目标规划问题 的一般性方法——单纯形方法。
34
4
所以目标规划模型为:
min Z p d p (7d 12d ) p (d d )
11
2
2
3
34
4
70x 120x d d 50000
1
2
1
1
x 1
d d 200
2
2

x d d 250
生产甲、乙两种产品,

2线性规划的图解法

2线性规划的图解法

16
建模练习
P25,T7(1)建立线性规划模型
17
图解法
目标函数:max Z=50x1+100x2 满足约束条件:x1 +x2≤300
2 x1+x2≤400 x2≤250 x1≥0, x2≥0
18
问题1 ,即不等式组,由于只包含两个决策变量,
可以用图解法来求解。多于两个决策变量不能用图 解法解。 图解法.首先把每个约束条件(代表一个平面) 画在二维坐标轴上。
9
常见的线性规划问题
管理上有很多问题可建立线性规划模型来解决,如 合理利用线材问题。现有一批长度一定的钢管,由于 生产的需要,要求截出不同规格的钢管若干。试问应 如何下料,既满足了生产的需要,又使得使用的原材 料钢管的数量最少。 配料问题。用若干种不同价格不同成分含量的原料, 用不同的配比混合调配出一些不同价格不同规格的产 品,在原料供应量的限制和保证产品成分的含量的前 提下,如何获取最大的利润。
松弛变量和线性规划标准化
为了把一个线性规划标准化,需要有代表没使用的
资源或能力的变量,称之为松弛变量,记为Si。显 然这些松弛变量对目标函数不会产生影响,可以在 目标函数中把这些松弛变量的系数看成零,加了松 弛变量后我们得到如下的例1的数学模型: 目标函数: max Z=50x1+100x2+0s1+0s2+0s3, 约束条件: x1+x2+s1=300, 2x1+x2+s2=400, x2+s3=250, x1,x2,s1,s2,s3≥0
x1 X1+X2=300
100
300
x1 X1+X2=300
21
2,即线 性规划问 题,其解 与问题1 的解有什 么关系?

《目标规划的图解法》课件

《目标规划的图解法》课件
目标规划的图解法
本课件介绍目标规划的图解法,包括其简介、基本原理、步骤、补充说明以 及结语。通过图解法帮助读者更好地理解目标规划并应用于实践中。
目标规划的定义
明确目标
目标规划是一种确定和明确组织或个人长期和短期目标的方法。
规划路径
通过目标规划,我们可以制定实现目标所需的路径和步骤。
提高执行力
目标规划有助于提高组织和个人的执行力,实现预期目标。
2
限制条件
考虑到资源、时间和其他限制条件来制定目标。
3
目标权重分配
根据目标的重要性和优先级来分配权重。
图解法的步骤
建立目标模型
明确各个目标之间的 关联,和权重。
填写限制条件
考虑资源和其他限制 条件,并将其纳入目 标规划中。
计算目标权重
根据目标的重要性和 优先级计算权重比例。
目标规划的应用领域
1 个人发展
目标规划可以帮助个人在 职业发展和个人成长方面 制定明确的目标。
2 项目管理
在项目管理中,目标规划 可以帮助规划项目的目标 和实施路径。
3 组织管理
对于组织,目标规划是制 定战略和经营目标的重要 工具。
目标规划的基本原理
1
目标分解
将长期目标分解为具体可行的短期目标。
补充说明
图解法的优点
图解法可以直观地展示目标规划的关系和权重分配,易于理解和传达。
图解法的局限性
图解法可能无法考虑到某些复杂因素和非线性关系。
图解法在实践中的应用
图解法可以应用于项目管理、战略规划、个人成长等多个领域。
结语
目标规划的重要性再强调
通过目标规划,您可以明确目标 并制定实现路径,帮助实现个人 和组织的成功。

5-2 目标规划的图解法

5-2 目标规划的图解法

为权系数, 解:以产品 A、B 的单件利润比 2.5 :1 为权系数, 模型如下: 模型如下:
min Z = P1 d + P2 ( 2.5 d + d ) + P3 d 30 x1 + 12 x 2 + d − d = 2500 − + 2 x1 + x 2 + d 2 − d 2 = 140 − + x1 + d 3 − d 3 = 60 − + x 2 + d 4 − d 4 = 100 x ≥ 0 , d + , d − ≥ 0 ( l = 1 .2 .3 .4 ) l l 1− 2
例2
已知一个生产计划的线性规划模型为 max Z = 30 x 1 + 12 x 2
2 x 1 + x 2 ≤ 140 (甲资源 ) ≤ 60 (乙资源 ) x1 x 2 ≤ 100 (丙资源 ) x 1− 2 ≥ 0 其中目标函数为总利润, 为产品A、B产量。现 产量。 其中目标函数为总利润,x1,x2 为产品 产量 有下列目标: 有下列目标: 1、要求总利润超过 2500 元; 、 2、考虑产品受市场影响,为避免积压,A、B的生产 、考虑产品受市场影响,为避免积压, 生产 量不超过 60 件和 100 件; 3、由于甲资源供应比较紧张,不要超过现有量 、由于甲资源供应比较紧张,不要超过现有量140。 。 试建立目标规划模型,并用图解法求解。 试建立目标规划模型,并用图解法求解。
− min Z = P (d1+ + d1− ) + P2 d 2 1
10 x1 + 12 x2 + d1− − d1+ = 62.5 − + x1 + 2 x2 + d 2 − d 2 = 10 ≤8 2 x1 + x2 x ≥ 0, d + d − ≥ 0(l = 1.2) l l 1− 2

目标规划的图解法

目标规划的图解法
解 作图3-3:
(l1 ) (l 2 ) (l3 )
Min Z Pd P d P d 1 1 2 2 3 3
x1 x2 d1 d1 10 2 x1 x2 d 2 d 2 26 x 2 x d d 1 2 3 3 6 x , x 0, d , d 0, (i 1, 2,3) i i 1 2 x2
d2
(l1 ) (l2 ) (l3 ) (l4 ) 最后考虑P3 级,此时 要求目标越小越好, 由图3-2可知R3 为四 按优先级高低,首先 边形CDEF 区域, 考虑P1 级目标,要求 目标越小越好,就在 绝约束的可行解域 △OAB中进一步缩小 为△OAC,记作R1来自Bl3l4
d1
l2
C
d3
s.t
5 x1 10 x2 60 x 2 x d d 0 1 2 1 1 4 x1 4 x2 d 2 d 2 36 再考虑 P2 级目标, 6 x 8 x d d 48 1 2 3 3 x , x 0, d , d要求目标越小越 ( i 1, 2, 3) i i 0, 1 2 好,因而解空间 x2 R2为△OCD 区域
(l1 ) (l2 ) (l3 ) (l4 )

将约束方程以直线形式画在图上,这里只使用决策变 量(即 x , x ),偏差变量在画直线时被去掉,直线画好后, 在该直线上标出目标函数中与该直线相关的偏差变量增大时 直线的平移方向(用垂直于直线的箭头来反映).如图 32.
Min Z Pd 1 1 P 2d2 P 3d3
(l1 )
考虑P2 级目标,由于直线 l2 与R1不相 ( l3 ) 交,所以在R1 内无法使 d 2 0 因此 在不退化P1 级目标时,不可能使P2 级 目标完全满足.这样R2 就缩为一点, d 因为在R1中,使 达到最小的为 A点, 所以:x* = (10 ,0), d

任务二图解法求解线性规划问题

任务二图解法求解线性规划问题

任务二 图解法求解线性规划问题情境导入:我们上一个任务成功的将一个实际问题转化为数学语言,用数学模型表达了出来,但是该问题到底该怎么解决呢?我们又该如何对该数学模型进行求解呢?任务:掌握图解法求解两个决策变量的线性规划问题的思路,了解线性规划问题解的性质 任务引入:现在我们要想办法求解例1的数学模型MaxZ=2x 1+3x 2⎢⎢⎢⎢⎣⎡≥⋅≤≤≤+012416482..212121x x x x x x t s 一、任务分析图解法是指求解仅含两个变量的线性规划问题的一种方法。

是求解线性规划的一种几何解法。

只含两个变量的线性规划问题,由约束条件确定的可行域可以在二维平面上表示出来,按照一定规则,在可行域上移动目标函数的等值线,从而得到线性规划问题的最优解。

这里的可行域是凸区域,最优解必在可行域的某个顶点上达到。

[1]图解法仅适用于仅含有两个变量的线性规划问题的求解,因而图解法的实际用途并不广泛。

针对线性规划几何解还有一些重要的性质,这里不加证明叙述如下:1. 若线性规划可行域非空,则可行域必定是一个凸集,即集合中任意两点连线上的一切点仍然在该集合巾,这样的凸集表现为一个凸多边形,在空间上为一个凸几何体。

2.若线性规划优解存在,则最优解或最优解之一肯定能够在可行域(凸集)的某个极点找到。

3.线性规划的可行域若有界,则一定有最优解。

4.线性规划几何解存在四种情况:唯一最优解、无穷多最优解、无有限最优解、无可行解。

以上结论是非常有用的,特别是结论2非常明确地告诉我们,线性规划的最优解不可能在可行域的内点取得,而只能在凸集的某一个顶点(特殊情况为在凸集的某一条边界上)上达到。

因此,求解线性规划问题可转化为如何在可行域的顶点上求出使目标函数值达到最优的点的问题。

由于可行域的顶点个数是有限的,因此在求解线性规划模型的最优解时,只要在可行域的有限个顶点范围内一一寻找即可,这样就极大地降低了线性规划问题的复杂程度,将减少大量的工作。

第四章 目标规划1-2

第四章 目标规划1-2

例4.1 某工厂生产两种产品,受到原材料供应和设备工时的限 制.在单件利润等有关数据已知的条件下,要求制订一个获利最 大的生产计划,具体数据见表4-1.
设产品Ⅰ、Ⅱ的产量分别为 x1, x2
,建立线性规划模型
m z = 6x1 +8x2 ax
5x1 +10x2 ≤ 60
4x1 + 4x2 ≤ 40
x1, x2 ≥ 0
解之得最优生产计划为
x1 = 8
x 件, 2 = 2 件,
利润为 zmax = 64 元. 工厂作决策时可能还需根据市场和工厂实际情况, 考虑其它问题,如: (1)由于产品Ⅱ销售疲软,故希望产品Ⅱ的产量不 1 超过产品Ⅰ的一半; (2)原材料严重短缺,原料数量只有60; (3)最好能节约4小时设备工时; (4)计划利润不少于48元.
解:设A、B、C三种产品的产量分别为 , 单位工时的利润分别为1000/5=200、1440/8=180、 2520/12=210,故单位工时的利润比例为20:18:21, 于是得目标规划模型为:
综上分析,可得目标规划的一般模型 (4.2 ) s.t. (4.3) (4.4) (4.5) (4.6) 其中,式(4.2)是目标函数有L个目标,根据L个目标的优先程度,把它们分成K个 优先等级,即 , 是权系数, 是正负偏差变量;式 (4.3)是目标约束, 是L个目标的期望值,一般都应同时引入下、 负偏差变量 ,但有时也可根据已知条件只引入单个 或 ;式(4.4) 是目标规划的绝对约束,通常是人力、物力、财力等资源的约束;式(4.5)、 (4.6)是目标规划的非负约束.
二、目标规划的基本概念
1、目标值和偏差变量 目标值:决策者对每一个目标都有一个期望值----或称为理想值. 正偏差变量:表示决策值(实现值)超过目标值 的数量,记为 d + ; 负偏差变量:表示决策值(实现值)未达到目标 值的数量,记为 d − .

第二章线性规划的图解法

第二章线性规划的图解法

➢ 答案:
X2 ➢ 最优解为: x1 =15 ,x2=10 40 ➢ 最优值为:z*=2500×15+1500×10

30
=52500
3x2=75
20
(15,10)
10
O
10
20
30
40
50 X1
3x1+2x2=65
2x1+x2=40
五、线性规划问题解的情况
➢ 例1.5的最优解只有一个,这是线性规划问题 最一般的解的情况,但线性规划问题解的情 况还存在其它特殊的可能:无穷多最优解、 无界解或无可行解。
... am1x1+am2x2 +…+amnxn≤( =, ≥ )bm x1 ,x2 ,… ,xn ≥ ( ≤) 0 或无约束
xj为待定的决策变量; cj为目标函数系数,或价值系数、费用系数; aij为技术系数; bj为资源常数,简称右端项; 其中i=1,2,…m; j=1,2,…n
可以看出,一般LP模型的特点: A、决策变量x1,x2,x3,……xn表示要寻求
O
100 200 300
X1
3、无界解的情况
➢若将例1.5的线性规划模型中约束条件1、2的 不等式符号改变,则线性规划模型变为:
➢ 目标函数:Max z= 50x1+100 x2 约束条件:x1+x2 ≥ 300 2x1+x2 ≥ 400 x2≤250 x1 ≥0, x2 ≥0
B、定义决策变量;
C、用决策变量的线性函数形式写出所要追求 的目标,即目标函数;
D、用一组决策变量的等式或不等式来表示在 解决问题过程中所必须遵循的约束条件。
三、线性规划的数学模型
1、LP模型的一般形式 目标函数:

韩伯棠管理运筹学(第三版)_第九章_目标规划

韩伯棠管理运筹学(第三版)_第九章_目标规划

• step • • • • • • • • • • • • •
3 目标函数值为 : 1100 变量 解 相差值 --------------------x1 166.667 0 x2 250 0 d10 0 d1+ 36666.667 0 d233.333 0 d2+ 0 15.167 d30 26 d3+ 0 26 d41100 0 d4+ 0 2
练习:某厂生产Ⅰ、Ⅱ 两种产品,有关数据如 表所示。试求获利最大 的生产方案?
Ⅰ 原材料 设备(台时) 2 1
Ⅱ 1 2
拥有量 11 10
单件利润
8
10
在此基础上考虑: 1、产品Ⅱ的产量不低于产品Ⅰ的产量; 2、充分利用设备有效台时,不加班; 3、利润不小于 56 元。 解: 分析 第一目标:P1d1 即产品Ⅰ的产量不大于Ⅱ的产量。 第二目标: P2 ( d2 d2 )
运筹学
运筹谋划
一石多鸟
第九章 目标规划
1
第七章
目标规划
• §1 目标规划问题举例 • §2 目标规划的图解法
• §3 复杂情况下的目标规划
• §4.加权目标规划
2
§1 目标规划问题举例
例1.企业生产 • 不同企业的生产目标是不同的。多数企业 追求最大的经济效益。但随着环境问题的 日益突出,可持续发展已经成为全社会所 必须考虑的问题。因此,企业生产就不能 再如以往那样只考虑企业利润,必须承担 起社会责任,要考虑环境污染、社会效益、 公众形象等多个方面。兼顾好这几者关系, 企业才可能过引入目标值和偏差变量,可 以将目标函数转化为目标约束。 目标值:是指预先给定的某个目标的一个 期望值。 实现值或决策值:是指当决策变量xj 选定 以后,目标函数的对应值。 偏差变量(事先无法确定的未知数):是 指实现值和目标值之间的差异,记为 d 。 正偏差变量:表示实现值超过目标值的部 分,记为 d+。 负偏差变量:表示实现值未达到目标值的 部分,记为 d-。

目标规划的图解法共33页

目标规划的图解法共33页

σmn+2m
(二)、单纯形法的计算步骤
1、建立初始单纯形表。
一般假定初始解在原点,即以约束条件中的所有负偏 差变量或松弛变量为初始基变量,按目标优先等级从 左至右分别计算出各列的检验数,填入表的下半部 。
2、检验是否为满意解。判别准则如下: ⑴.首先检查αk (k=1.2…K)是否全部为零?如果全部为 零,则表示目标均已全部达到,获得满意解,停止计 算转到第6步;否则转入⑵。
1×60=60
1×58.3=58.3 < 100 由上可知:若A、B的计划产量为60件和58.3件时,
所需甲资源数量将超过现有库存。在现有条件下,此
解为非可行解。为此,企业必须采取措施降低A、B产
品对甲资源的消耗量,由原来的100%降至78.5%
(140÷178.3=0.785),才能使生产方案(60,
2、考虑产品受市场影响,为避免积压,A、B的生产
量不超过 60 件和 100 件;
3、由于甲资源供应比较紧张,不要超过现有量140。
试建立目标规划模型,并用图解法求解。
解:以产品 A、B 的单件利润比 2.5 :1 为权系数,
模型如下:
min
Z
P1
d
1
P2
(
2
.5
d
3
d
4
)
P3
d
2
30 2
d
2
d
2
)
P3
d
3
d
1

x1 x1
x2
d
1
d
1
0
2 x2
d
2
d
2
10
d
1
8
x

目标规划的图解法

目标规划的图解法
11x1 2x2 25 (resource2) x1, x2 0
假定重新确定这个问题的目标为:
P1: z的值应不低于1900; P2: 资源1必须全部利用. 将该问题转化为目标规划问题, 列出数学模型.
2019/5/23
3
根据题意, 以优先因子为序, 列出对应关系 优先因子
P1 : 100x1 50x2 1900 P2 : 10x1 16x2 200 约束转化:引入偏差变量
例 用图解法求如下目标规划问题
min
z

P1d1

P2
(d
2

d
2
)

P3d
3
s.t. 2x1 x2 11
x1 x2 d1 d1 0
x1
2x 2

d
2

d
2

10
8x1
10x2

d
3

d
3

56
x1
,
x
2
,
d
i
,
d
i

0, i
(1)
x1
2x2

d
2

d
2

4
x1
2x2

d
3

d
3

8
x1 ,x2 ,di ,di 0,i 1,2,3
min
z
P1d
3

P2d
2

P3 (d1

d
1
)
(2)
s.t.
6 x1 2 x2 d1 d1 24

目标规划模型的求解(NO17)

目标规划模型的求解(NO17)

工序
产品 A 工时定额
B
生产能力
加工
10
9
210
装配
5
6
120
毛利(元/件)
400
500
23
工厂领导提出下列目标:
(1)每个作业班的毛利不少于9800元;
(2)充分利用两个工序的工时,且已知加工工时费是装配 工时费的二倍;
(3) 尽量减少加班。
问:该工厂应如何生产,才能使这些目标依序实现?试建
立其数学模型。
8
初始单纯形表
min
Z
P1d1
P2
d
2
P3
(d
3
d
3
)
s.t.
3x1 x2
d1 d1 60
x1
x2
2x3
d
2
d
2
10
x1
x2
x3
d
3
d
3
20
xi
0;
d
i
0;
d
i
0(i
1,2,3)
min z1 d1 60 3x1 x2 d1 min z2 d2 min z3 d3 d3 20 x1 x2 x3 2d3
建立模型的电 子表格模型
4x1+3x2+ d3--d3+ =30
20
优化 目标1
P1: minZ1=d1-
优化 目标2
minZ2= d2++d2-
21
优化 目标3
P3: minZ3=d3-
此表也即为最优表,最优解为 x1 4.8, x2 4.8, d2 2, d3 3.6 :
目标的达到情况:
Z

目标规划的图解法课件

目标规划的图解法课件

50 E D
2、先满足P1,OD线段
3、再满足P2,ED线段(满意解) O
50
E (500/11,500/11) ,
d1
d1
d
2
d
2
0
D (360/7,360/7)
,
d1
d1
d
2
0,
d
2
92 / 7
C 100 l2
150
d
2
x1 l1
d
2
l4
第一节 目旳规划旳基本概念与数学模型 一、问题旳提出 二、目旳规划旳基本概念
有关最优解:线性规划是在可行解域内寻找某一点,
使单个目旳到达最优值(最大值或最小值).而目旳规
划是在可行域内,首先寻找到一种使P1级目旳均满足旳 区域R1,然后再在R1中寻找一种使P2级目旳均满足或尽 最大可能满足旳区域R2(R1),再在R2中寻找一种满 足P3旳各目旳旳区域R3(R2R1),…,如此下去,直 到寻找到一种区域Rk(Rk-1…R1),满足Pk级旳各目旳, 这个Rk即为所求旳解域,假如某一种Ri (1 i k)已退化 为一点,则计算终止,这一点即为满意解,它只能满足
min
z
P1 (d1
d1 )
P2d
2
s.t 2x1 3x2 300
l1
2x1 1.5x2 180
l 2x2
x1 x2 d1 d1 0
l3
10x1
12 x2
d
2
d
2
1000
1l450
x1,x2
,di
,d
i
0
i 1,2
A
100
l3 d1
B
d1

管理运筹学目标规划

管理运筹学目标规划

设d1-未到达利润目旳旳差值, d1+ 为超出目旳旳差值
当利润不不小于3200时,d1->0且d1+=0,有
40x1+30x2+50x3+d1-=3200成立
当利润不小于3200时,d1+>0且d1-=0,有
40x1+30x2+50x3-d1+=3200成立
当利润恰好等于3200时,d1-=0且d1+=0,有
试求一种投资方案,使得一年旳总投资风险不高于700,且投资收 益不低于10000元。用来全部投资一种股票两个目旳不能同步到达.
管理运筹学
13
§2 目旳规划旳图解法
显然,此问题属于目旳规划问题。它有两个目旳变量:一是 限制风险,一是确保收益。在求解之前,应首先考虑两个目旳 旳优先权。
假设第一种目旳(即限制风险)旳优先权比第二个目旳(确 保收益)大,这意味着求解过程中必须首先满足第一种目旳, 然后在此基础上再尽量满足第二个目旳。
min
d
3
x3
d
3
d
3
30
管理运筹学
10
§1 目的规划问题举例
(4) 设d4ˉ 、d4+为设备A旳使用时间偏差变量, d5ˉ、d5+为设备
B旳使用时间偏差变量,最佳不加班旳含义是 d4+ 和d5+同步取最 小值,等价 于d4+ + d5+取最小值,则设备旳目旳函数和约束为:
min
d
4
6
§1 目的规划问题举例
目前决策者根据企业旳实际情况和市场需求,需要重新制 定经营目旳,其目旳旳优先顺序是:
(1)利润不少于3200元 (2)产品甲与产品乙旳产量百分比尽量不超出1.5 (3)提升产品丙旳产量使之到达30件 (4)设备加工能力不足能够加班处理,能不加班最佳不加班 (5)受到资金旳限制,只能使用既有材料不能再购进

目标规划图解法标规划单纯形法

目标规划图解法标规划单纯形法
X1 , X2 , di- , di+ 0
31
28
解:
由于P1 , P2 优先级对应的目标函数中不含 di , 所以其检验数只需取系数 分别为
0;0,0,1,0,1,0,0,0,0 和
( 0,0,0, 0,0,0,0,1,0,0)
29
x1
x2
d1-
d1+
d2-
d2+
d3-
d3+
d4-
d4+
b
P1
0
0
0
1
0
1
0
0
0
0
P2
0
0
0
0
0
0
0
1
0
0
P3 -12 -18 0
B
O
50
100
X1
2
X2 125 C 100
4X1+2X2 = 400
E
d+
2X1+4X2 = 500
50
目标约束满意 域BEC
B
O
50
100
X1
100X1+80X2 = 10000
3
1 绝对约束可行域OBEC (2) 目标约束满意域BEC (3) 多个可行满意解:
(60,50),10000; (70,50),11000; E(50,100),13000 (4) Zmin =0
2X1+X2 =11
X1
6
X2 11 B 10
F
5
DC
EG
5A 7 O
2X1+X2 =11
d1
X1 X2=0
可行域⊿OAB

目标规划图解法

目标规划图解法
P1:厂内的储存成本不超过23000元. P2:A销售量必须完成1500单位. P3:甲、乙两工厂的设备应全力运转,避免有空闲时
间,两厂的单位运转成本当作它们的权系数.
A药 甲厂 2h 乙厂 2.5h 存贮费 8元 利润 20元
B药 4h 1.5h 15元 23元
12台,每天8h,每月25天 7台,每天16h,每月25天
例4:已知一个生产计划的线性规划模型为
max Z 30x1 12x2 (利润)
2 x1 x2 140 (甲 资 源)
x1
60 (乙 x1 2 0
其中目标函数为总利润,x1,x2 为产品A、B产量。现 有下列目标:
1、要求总利润必须超过 2500 元; 2、考虑产品受市场影响,为避免积压,A、B的生产 量不超过 60 件和 100 件; 3、由于甲资源供应比较紧张,不要超过现有量140。 试建立目标规划模型,并用图解法求解。
(4.8 , 2.4), 故满意解可表示为:
(x ,x ) ( , ) ( , ) ( , ) ( . , . ) ( . , . )
其中: , i ( i , , , )
这种满足所有目标要求的情况,即:mizn0 , 在实际中并不多见,很多目标规划问题只能满足前 面几级目标要求.
作图: x2
140 120 100 80 60

d
3
d
3
d
1
d
1
BA
d
2
d
2
C
d
4

d
4
m in
z
P1
d
1
P2
(
2
.
5
d
3
d
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
FB
E
L
M
K
D
A

2010年5月 第7页/共8页

d2+

d4+
d4- x1
⑤⑥管理工ຫໍສະໝຸດ 学院7《运筹学》 8
◆注: 随着经营目标的调整,企业的决策也将随之 改变。
如果求出的满意解离目标的要求差距较大的 时候,企业应该通过修改目标,重新求解, 一直到企业的决策者满意为止。
2010年5月 第8页/共8页
管理工程学院
5
《运筹学》 6
刚性约束 柔性约束
(5.2a) (5.2b) (5.2c)
(5.2d) (5.2e) (5.2f)
2010年5月 第6页/共8页
管理工程学院
6
《运筹学》 7
例2的图解法求解见图5-3。
③x2d1+
d3+
d1-
d3-
图5-3 d2-
C
满意解为x1=16/5, x2=12/5。这时企 业利润值为15元。
《运筹学》 1
第二节 目标规划的图解法
◆目标规划问题的图解法 ◆目标规划中优先因子,正、负偏差变量及权系
数等的几何意义
2010年5月 第1页/共8页
管理工程学院
1
《运筹学》 2
◆图解法步骤: 首先以x1、 x2为轴画出平面直角坐标系; 然后,在坐标平面内作出与各约束条件对应的直线; 标出系统约束满足的范围; 再按照目标函数中目标的优先级别依次分析; 最后给出满意解。
2010年5月 第2页/共8页
管理工程学院
2
《运筹学》 3
例1的图解法。
③x2d1+
d3+
图5-2 d2-

d1-
d3-
d2+
C
FB

EH
G
D
d4+
O
满意解为x1=3, x2=3。
A ①
d4- x1
⑥ ⑤
企业利润值为15元。
2010年5月 第3页/共8页
管理工程学院
3
《运筹学》 4
◆类似于原点判别法: d1+ >0,或 d2->0 与不等式>0或<0的关系; 与直线上下方的关系。
2010年5月 第4页/共8页
管理工程学院
4
《运筹学》 5
例2:假定例1中各有关数据不变,调整经营目标 优先级次序和有关权系数如下: 第一,Ⅰ、Ⅱ产量尽量保持4:3; 第二,利润指标不低于12元; 第三,设备A充分利用并不超负荷,设备B可以加 班,但又尽量少加班,权系数改为分别为1、3。
2010年5月 第5页/共8页
管理工程学院
8
相关文档
最新文档