奥数校本课程-教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲盈亏问题
【专题导引】
盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。例如:把一袋饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:
1.两盈:两次分配都有多余;
2.两不足:两次分配都不够;
3.盈适足:一次分配有余,一次刚好够分;
4.不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题的数量关系是由标准的盈亏问题演变过来的。解题时我们可以记住:
1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;
2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;
3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
【典型例题】
【例1】某校乒乓球队有若干名学生。如果少一个女生,增加一个男生则男生为总数的一半;如果少一个男生,增加一个女生,则男生为女生人数的一半,乒乓球队共有多少个学生?
【试一试】
学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒。彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍,学校买来两种粉笔各多少盒?
【例2】幼儿园老师给小朋友分梨子,如果每人分4个,则多9个;如果每人分5个,则少6个。问有多少个小朋友?有多少个梨子?
【试一试】
老师把一些铅笔奖给三好学生。每人5支则多4支;每人7支则少4支。老师有多少支铅笔?奖给多少个三好学生?
【例3】小红把自己的一些连环画借给她的几位同学。若每人借5本则差17本;若每人借3本,则差3本。问小红的同学有几人?她一共有多少本连环画?
【试一试】
学校将一批铅笔奖给三好学生,每人9支缺15枝;每人7支缺7枝。问三好学生有多少人?铅笔有多少枝?
【例4】幼儿教师把一箱饼分给小班和中班的小朋友,平均每人分得6块;如果只分给中班的小朋友,平均每人可以多分得4块。如果只分给小班的小朋友,平均每人分得多少块?
【试一试】
1.老师把一批书借给甲组同学,平均每人借4本,如果只借给甲组的女同学,每人可借6本。如果只借给甲组的男生,平均每人借到几本?
2.甲、乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵。如果把这些红花让甲组同学单独做,每人要多做4朵。如果把这些红花让乙组同学单独做,每人要做几朵?
【﹡例5】全班同学去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学。这个班有多少个同学?
第二讲假设法解题
【专题导引】
假设法是解应用题时常用的一种思维方法。在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。
【预备思考题1】
1、把10只鸡和8只兔关在一起,假设这18只动物全是鸡,一共有有多少条腿?
比实际少了多少条腿?
【预备思考题2】鸡和兔同笼,共有10个头,32条腿,这个笼中有几只鸡?几只兔?
【典型例题】
【例1】有5元的和10元的人民币共14张,共100元。问5元币和10元币各多少张?
【试一试】
一堆2分和5分的硬币共39枚,共值1.5元。问2分和5分的各有多少枚?
【例2】有一元、二元、五元的人民币50张,总面值为116元。已知一元的比二元的多2张,问三种面值的人民币各有几张?
【试一试】
有一元、五元、十元的人民币共14张,总计66元,其中一元的比十元的多2张,问三种人民币各有多少张?
【例3】有黑白棋子一堆,其中黑子个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取了多少次后,白子余1个,而黑子还剩18个?
【例4】用大、小两种汽车运货。每辆大汽车装18箱,每辆小汽车装12箱。现有18车货,价值3024元。若每箱便宜2元,则这批货价值2520元,问大、小汽车各多少辆?
【﹡例5】甲、乙二人飞镖比赛,规定每中一次记10分,脱靶一次倒扣60分。两人各投10次,共得152分。其中甲比乙多得16分,问两人各中多少次?
【﹡试一试】
某次数学竞赛共有20条题目,每答对一题得5分,错1题不仅不得分,而且要倒扣2分,这次竞赛小明得了86分,问他答对了几条题?
第三讲数字趣味题
【专题导引】
0、1、2、3、4、5、6、7、8、9是我们最常见的国际通用的阿拉伯数字(或称为数码)。数是由十个数字中的一个或几个根据位值原则排列起来,表示事物的多少或次序。
数字和数是两个不同的概念,但它们之间有密切的联系。这里所讲的数字问题是研究一个若干位数与其他各位数字之间的关系。数字问题可采用下面的方法:
1、根据已知条件,分析数或数字的特点,寻找其中的规律。
2、将各种可能一一列举,排除不符合题意的部分,从中找出符合题意的结论。
3、找出数中数字之间的相差关系和倍数关系,转化成“和倍”、“差倍”等问题。
4、条件复杂时,可将题中条件用文字式、竖式表示,然后借助文字式、竖式进行分析推理。
【典型例题】
【例1】一个两位数的两个数字和是10。如果把这个两位数的两个数字对调位