计算方法课后习题答案第四章作业

合集下载

第四章 作业参考答案

第四章 作业参考答案

第四章作业参考答案4. 用推广的Euclid算法求67 mod 119的逆元解:初始化:(1,0,119), (0,1,67)1:Q=119/67=1,(0,1,67) , (1,-1,52)2:Q=67/52=1,(1,-1,52), (-1,2,15)3:Q=52/15=3,(-1,2,15), (4,-7,7)4:Q=15/7=2,(4,-7,7), (-9,16,1)所以67-1 mod 119=1610.设通信双方使用RSA加密体制,接收方的公开钥是(e,n)=(5,35),接收到的密文是C =10,求明文M。

解:由n=35,易知35=5×7,进而ϕ(n)=ϕ(35)=24,由RSA加密体制可知,ed≡1 mod ϕ(n),即5d≡1 mod 24,所以d=5∴M=C d mod n=105 mod 35=511. 已知c d mod n的运行时间是O(log3n),用中国剩余定理改进RSA的解密运算。

如果不考虑中国剩余定理的计算代价,证明改进后的解密运算速度是原解密运算速度的4倍。

证明:RSA的两个大素因子p,q的长度近似相等,约为模数n的比特长度log n的一半,即(log n)/2,而在中国剩余定理中要计算模p和模q两个模指数运算,与c d mod n的运行时间规律相似,每一个模指数运算的运行时间仍然是其模长的三次幂,即O[((log n)/2)3]= O(log3n)/8,这样在不考虑中国剩余定理计算代价的情况下,总的运行时间为两个模指数的运行时间之和,即O(log3n)/8+O(log3n)/8=O(log3n)/4,得证。

12. 设RSA加密体制的公开钥是(e,n)=(77,221)。

(1) 用重复平方法加密明文160,得中间结果为1602(mod 221)=185,1604(mod 221)=191,1608(mod 221)=16,16016(mod 221)=35,16032(mod 221)=120,16064(mod 221)=35,16072(mod 221)=118,16076(mod 221)=217,16077(mod 221)=23,若敌手得到以上中间结果就很容易分解n,问敌手如何分解n解:由以上中间结果得16016(mod 221)=35=16064(mod 221),此即16064-16016=0 (mod 221)即(16032-1608) (16032+1608)=0 (mod 221)(120-16)(120+16)=0 (mod 221)104×136=0 (mod 221)由gcd(104,221)=13及gcd(136,221)=17,可知221的分解为221=13×17(2) 求解密密钥dd=e-1mod ϕ(221)=77-1 mod 12×16由扩展Eucild算法可得d=5。

计算方法-刘师少版课后习题答案

计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有31105.06592001.0-*⨯≤=- x x .即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位.又近似值x =3.1416,它的绝对误差是0.0000074…,有5-1*10⨯50≤00000740=-.. x x 即m =1,n =5,x =3.1416有5位有效数字.而近似值x =3.1415,它的绝对误差是0.0000926…,有4-1*10⨯50≤00009260=-.. x x即m =1,n =4,x =3.1415有4位有效数字.这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00解 (1)∵ 2.0004=0.20004×101, m=1绝对误差限:4105.0000049.020004.0-*⨯≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字1x =2,相对误差限000025.010221102151)1(1=⨯⨯=⨯⨯=---n r x ε(2)∵ -0.00200= -0.2×10-2, m =-25105.00000049.0)00200.0(-*⨯≤≤--=-x x xm -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字1x =2,相对误差限3110221-⨯⨯=r ε=0.0025 (3) ∵ 9000=0.9000×104, m =4,0105.049.09000⨯<≤-=-*x x xm -n =0, m =4则n =4,故x =9000有4位有效数字4110921-⨯⨯=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4,2105.00049.000.9000-*⨯<≤-=-x x xm -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6110921-⨯⨯=rε=0.000 00056由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的.1.3 ln2=0.69314718…,精确到310-的近似值是多少?解 精确到310-=0.001,即绝对误差限是ε=0.0005,故至少要保留小数点后三位才可以.ln2≈0.6932.1 用二分法求方程013=--x x在[1, 2]的近似根,要求误差不超过31021-⨯至少要二分多少?解:给定误差限ε=0.5×10-3,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k只要取n =10.2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k只要取n =14.2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式:(1)211xx +=,迭代公式2111kk x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

计算机网络课后习题参考答案第四章

计算机网络课后习题参考答案第四章

{第四章网络层1.网络层向上提供的服务有哪两种是比较其优缺点。

网络层向运输层提供“面向连接”虚电路(Virtual Circuit)服务或“无连接”数据报服务前者预约了双方通信所需的一切网络资源。

优点是能提供服务质量的承诺。

即所传送的分组不出错、丢失、重复和失序(不按序列到达终点),也保证分组传送的时限,缺点是路由器复杂,网络成本高;后者无网络资源障碍,尽力而为,优缺点与前者互易2.网络互连有何实际意义进行网络互连时,有哪些共同的问题需要解决网络互联可扩大用户共享资源范围和更大的通信区域[进行网络互连时,需要解决共同的问题有:不同的寻址方案不同的最大分组长度不同的网络接入机制不同的超时控制不同的差错恢复方法不同的状态报告方法不同的路由选择技术,不同的用户接入控制不同的服务(面向连接服务和无连接服务)不同的管理与控制方式3.作为中间设备,转发器、网桥、路由器和网关有何区别中间设备又称为中间系统或中继(relay)系统。

物理层中继系统:转发器(repeater)。

数据链路层中继系统:网桥或桥接器(bridge)。

、网络层中继系统:路由器(router)。

网桥和路由器的混合物:桥路器(brouter)。

网络层以上的中继系统:网关(gateway)。

4.试简单说明下列协议的作用:IP、ARP、RARP和ICMP。

IP协议:实现网络互连。

使参与互连的性能各异的网络从用户看起来好像是一个统一的网络。

网际协议IP是TCP/IP体系中两个最主要的协议之一,与IP协议配套使用的还有四个协议。

ARP协议:是解决同一个局域网上的主机或路由器的IP地址和硬件地址的映射问题。

RARP:是解决同一个局域网上的主机或路由器的硬件地址和IP地址的映射问题。

(ICMP:提供差错报告和询问报文,以提高IP数据交付成功的机会因特网组管理协议IGMP:用于探寻、转发本局域网内的组成员关系。

地址分为几类各如何表示IP地址的主要特点是什么分为ABCDE 5类;每一类地址都由两个固定长度的字段组成,其中一个字段是网络号 net-id,它标志主机(或路由器)所连接到的网络,而另一个字段则是主机号 host-id,它标志该主机(或路由器)。

化工计算第四章物料衡算及课后习题及答案

化工计算第四章物料衡算及课后习题及答案

第一节 物料衡算式 4—1 化工过程得类型
间歇操作 操作方式 半连续操作
连续操作
间歇操作: 原料一次加入,然后操作,最后一次出 料。
半连续操作: 进料分批,出料连续;或进料连 续,出料分批或一次。
特点: 间歇操作中,无物料进出设备,且设备内各 部分得组成和条件随时间而变。 半连续操作中,设备内各点得参 数(组成、条 件)随时间而变。
N元素平衡
2×0、79A=2N
烟道气总量
M+N+P+Q=100
过剩氧量
0、21A×0、25/1、25
=M 解上述6个方程得要求得结果。(过程略)
由上例可知计算基准选取恰当与否,对计算难 易影响。所以要重视计算基准选取。
基准选取中几点说明:
(1)上面几种基准具体选哪种(有时几种共 用)视具体条件而定,难以硬性规定。
4、 写出化学反应方程式
包括所有主副反应,且为配平后得,将各反应 得选择性、收率注明。
5、选择合适得计算基准,并在流程图上注明基准值 计算中要将基准交代清楚,过程中基准变换时,
要加以说明。 6、列出物料衡算式,然后求解
1)列物料衡算式
无化学反应体系,按:(4—1)、(4—3)(连续稳定过程) 式。
(二)取1mol 空气为计算基准 1mol 空气为计算基准中氧量为0、21mol
燃烧丙烷耗氧量 0、21/1、25=0、168 mol 燃烧丙烷得量 0、168/5=0、 0336mol
衡算结果列于下表:




组分 摩尔 克 组分 摩尔 克
C3H8 0、
44 CO2 0、101 132
0336
O2 0、21 200 H2O 0、135 72

计算方法作业集习题答案

计算方法作业集习题答案

第二章1.绝对误差限31110-⨯, 对分8次2. (1) 隔根区间[0, 0.8];(2) 等价变形 )2ln(x x -=; 迭代公式 ,2,1)2ln(1=-=-n x x n n 。

(3) 收敛性论证:用局部收敛性定理论证。

3. (1) 7210-=x x ;(2) 2/)7(lg +=x x ; (3) 31+=x x ;4. 143)(2++='x x x f牛顿迭代公式为: 143122231++-++-='-=+n nn n n n n n n n x x x x x x )x (f )x (f xx列表计算6.⎪⎪⎭⎫ ⎝⎛+=+==+223123132)(n n nn n n x a x x a x x x ϕ 证明:2()3,()6f x x f x x '''==当0x >时,()0,()0;f x f x'''>>当0x <时,()0,()0;f x f x '''<< 因此,对于0>a ,当0x ≥00()()0f x f x ''>,牛顿迭代法收敛,当0x ∈时,)23001022022)033x x a x x xx+-=-=>1x ≥1x第三章1. x 1=2,x 2=1,x 3=1/22. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=-3132132310313101A 3. L = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-153012001 , U = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--2400410321y 1 =14, y 2 = -10, y 3 = -72x 1 =1, x 2 =2, x 3 =34. x 1≈-4.00, x 2≈3.00, x 3≈2.005. B 的特征值为:0,0,0,ρ(B)=0<1(E -B 1)-1B 2的特征值为:0,2,2,ρ[(E -B 1)-1B 2]=2>1. 6. x (5)=(0.4999, 1.0004, -0.4997)T 7.∣a ∣>2第四章1.取0x =100、1x =121用线性插值时,115≈10.7143;取0x =100、1x =121、2x =144用二次插值时,115≈10.7228。

计算机组成原理第四章要求作业参考答案

计算机组成原理第四章要求作业参考答案

习题4 4.1设X=0.1101,Y= -0.0110,求:(1)[X]补(2)[-X]补(3)[2X]补(4)[-2X]补(5)[X/2]补(6)[-X/2]补(7)[Y]补(8)[-Y]补(9)[2Y]补(10)[-2Y]补(11)[Y/2]补(12)[-Y/2]补(13)[-Y/4]补1. (1) [X]补= 0.1101(2) [-X]补= 1.0011(3) [2X]补= 0.1010 溢出(4) [-2X]补= 1.0110 溢出(5)[X/2]补= 0.0110注意:参见P109中的补码算术移位规则,以及P110的例4.4(6)[-X/2]补= 1.1001(7)[Y]补= 1.1010(8) [-Y]补= 0.0110(9) [2Y]补=1.0100(10)[-2Y]补=0.1100(11)[Y/2]补=1.1101(12)[-Y/2]补= 0.0010(13) [-Y/4]补= 0.00014.2 已知X和Y,用变形补码计算X+Y和X-Y,并指出运算结果是否溢出:(1) X=0.11011,Y=0.11111(2) X=-0.1101,Y=0.0110答:.(1)[X]补=00.11011 [Y]补=00.11111 [-Y]补=11.00001[X]补 00.11011+ [Y]补 00.11111 [X+ Y]补 01.11010 [X]补 00.11011 + [-Y]补 11.00001 [X-Y]补 11.11100 S f1与S f2不同,溢出S f1与S f2相同,无溢出所以:[X+Y]补:发生溢出[X-Y]补= 1.11100注意:参见P107中的双符号位判溢方法原理。

(2) [X+Y]补=1.1001[X-Y]补:溢出4.4 使用原码一位乘法计算X*Y : (1) X=0.11101,Y=0.01111 (2) X=-0.10011,Y=0.11010答: (1)[X]原=0.11101 [Y]原=0.01111000s s s P X Y =⊕=⊕=部分积0.00000乘数|Y|操作说明Y 5=1,+|X |0.11101+0.11101右移一位0.011100.11101+1.01011右移一位0.10101Y 2=1,+|X |0.11101+1.10010右移一位0.11001Y 1=0,+00.11101+1.10110右移一位0.11011+0.110110.00000 0011 01 0111011 0111 01101111右移一位Y 4=1,+|X |Y 3=1,+|X |100110.01101[]0.01101100110.0110110011P X Y ∴=∴⨯=+原4.5 使用补码Booth 乘法计算X*Y : (1) X=0.01111,Y=-0.11101 (2) X=-0.10011,Y=-0.11010答:(1)[X ]补=00.01111 [Y ]补=11.00011 [-X ]补=11.10001部分积00.00000乘数Y(Y n Y n+1)操作说明11.10001+11.1000111.1100000.00000+11.1100011.1110000.01111+00.01011右移一位00.0010100.00000+00.00101右移一位00.0001000.00000+00.0001000.0000111.1000111.10010+1.0001101 1.000110 1 1.00011 0 1 1.0001101 1.00Y 5Y 6=10,+[-X ]补右移一位Y 4Y 5=11,+0右移一位Y 0Y 1=10,+[-X ]补Y 1Y 2=00,+001101 1.001101右移一位Y 3Y 4=01,+[X ]补Y 2Y 3=00,+0所以:[X*Y ]补=1.1001001101X*Y =-0.01101100114.6 分别使用原码恢复余数除法和原码加减交替除法计算X/Y : (1) X=0.0111,Y=0.1101 (2) X=0.1011,Y=-0.1110 答:(1)原码恢复余数除法注意:参见P124中例4.9。

数值计算方法(宋岱才版)课后答案

数值计算方法(宋岱才版)课后答案

第一章 绪论一 本章的学习要求(1)会求有效数字。

(2)会求函数的误差及误差限。

(3)能根据要求进行误差分析。

二 本章应掌握的重点公式(1)绝对误差:设x 为精确值,x *为x 的一个近似值,称e x x **=-为x *的绝对误差。

(2)相对误差:r e e x***=。

(3)绝对误差限:e x x ε***==-。

(4)相对误差限:r x x xxεε*****-==。

(5)一元函数的绝对误差限:设一元函数()()()0,df f x f x dx εε***⎛⎫==⋅ ⎪⎝⎭则。

(6)一元函数的相对误差限:()()1r df f x dx f εε****⎛⎫=⋅ ⎪⎝⎭。

(7)二元函数的绝对误差限:设一元函数()()(),0,f f x y f y y εε***⎛⎫∂==⋅ ⎪∂⎝⎭则。

(8)二元函数的相对误差限:()()()1r f f f x y x y f εεε******⎡⎤⎛⎫∂∂⎛⎫⎢⎥=⋅+⋅ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦。

三 本章习题解析1. 下列各数都是经过四舍五入得到的近似值,(1)试指出它们有几位有效数字,(2)分别估计1123A X X X ***=及224X A X **=的相对误差限。

12341.1021,0.031,385.6,56.430x x x x ****====解:(1)1x *有5位有效数字,2x *有2位有效数字,3x *有4位有效数字,4x *有5位有效数字。

(2)1111123231312123,,,,A A AA x x x x x x x x x x x x ∂∂∂====∂∂∂由题可知:1A *为1A 的近似值,123,,x x x ***分别为123,,x x x 近似值。

所以()()111rA A Aεε***=()()()12311111123A A A x x x A X X X εεε*******⎡⎤⎢⎥=++⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫∂∂∂ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭43123131212311111010100.215222x x x x x x x x x **-**-**-***⎡⎤=⨯⨯+⨯⨯+⨯⨯=⎢⎥⎣⎦()222222424441,,,X A Ax A X x x x x ∂∂===-∂∂则有同理有2A *为2A 的近似值,2x *,4x *为2x ,4x 的近似值,代入相对误差限公式:()()222rA A Aεε***=()()24212224A A X X A X X εε*****⎡⎤⎢⎥=+⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫∂∂ ⎪ ⎪∂∂⎝⎭⎝⎭()33542224411*********X X X X X **--***⎡⎤⎢⎥=⨯⨯+⨯⨯=⎢⎥⎣⎦2. 正方形的边长大约为100cm ,怎样测量才能使其面积误差不超过21cm ? 解:设正方形的边长为x ,则面积为2S x =,2dsx dx=,在这里设x *为边长的近似值,S *为面积的近似值:由题可知:()()1ds s x dx εε***=≤⎛⎫ ⎪⎝⎭即:()21x x ε**⋅≤ 推出:()10.005200xcm ε*≤=。

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

计算方法各章习题及答案

计算方法各章习题及答案

第二章 数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造一多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到二次多项式2()p x 的值:表中2()p x 的某一个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++.2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数xe 时,使用多少个节点能够保证误差不超过61102-⨯. 答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<=的分段三次艾尔米特插值多项式,步长b ah n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章 函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平方逼近多项式,并给出平方误差.答案:()sin f x x =的二次最佳平方逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-⨯+-,二次最佳平方逼近的平方误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=⨯⎰.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-⎰取最小值.答案:810, 0, 33a b c ππ=-==3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式()p x .答案:()f x 的最佳一致逼近多项式为323()74p x x x =++. 3.4 用幂级数缩合方法,求() (11)xf x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++,6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平方逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章 数值积分与数值微分4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =⎰,并与精确值比较.答案:计算结果如下表所示4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量高,并指明所确定的求积公式具有的代数精度. (1)101()()(0)()hhf x dx A f h A f A f h --≈-++⎰(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++⎰ (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-⎰答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++⎰中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的二次插值多项式,用2()P x 导出计算积分30()hI f x dx =⎰的数值积分公式h I ,并用台劳展开法证明:453(0)()8h I I h f O h '''-=+. 答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+⎰.4.5 给定积分10sin xI dx x =⎰(1)运用复化梯形公式计算上述积分值,使其截断误差不超过31102-⨯. (2)取同样的求积节点,改用复化辛浦生公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若用复化辛浦生公式,应取多少个节点处的函数值? 答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=⨯ (3)取7个节点处的函数值.4.6 用变步长的复化梯形公式和变步长的复化辛浦生公式计算积分10sin xI dx x =⎰.要求用事后误差估计法时,截断误不超过31102-⨯和61102-⨯. 答案:使用复化梯形公式时,80.946I T ≈=满足精度要求;使用复化辛浦生公式时,40.946 083I s ≈=满足精度要求.4.7(1)利用埃尔米特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+⎰,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈. (2)利用上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--⎰,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++,而 00, (0,1,2,,), i N x x ih i N Nh x x =+==-.4.8 用龙贝格方法计算椭圆2214x y +=的周长,使结果具有五位有效数字. 答案:49.6884l I =≈.4.9确定高斯型求积公式00110()()()x dx A f x A f x ≈+⎰的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证高斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+⎰的系数及节点分别为0001 2 2A A x x ===-=+第五章 解线性方程组的直接法5.1 用按列选主元的高斯-若当消去法求矩阵A 的逆矩阵,其中111210110A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 答案: 1110331203321133A -⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪-- ⎪⎝⎭5.2 用矩阵的直接三角分解法解方程组1234102050101312431701037x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案: 42x =,32x =,21x =,11x =.5.3 用平方根法(Cholesky 分解法)求解方程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭答案: 12x =,21x =,31x =-.5.4 用追赶法求解三对角方程组123421113121112210x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案:42x =,31x =-,21x =,10x =.第六章 解线性代数方程组的迭代法6.1 对方程1212123879897x x x x x x x -+=⎧⎪-+=⎨⎪--=⎩作简单调整,使得用高斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x=,用该方法求近似解(1)k x +,使(1)()3||||10k k x x +-∞-≤.答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2 讨论松弛因子 1.25ω=时,用SOR 方法求解方程组121232343163420412x x x x x x x +=⎧⎪+-=⎨⎪-+=-⎩ 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<⨯. 答案:方程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3 给定线性方程组Ax b =,其中111221112211122A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛.6.4 设有方程组112233302021212x b x b x b -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,讨论用雅可比方法和高斯-赛得尔方法解此方程组的收敛性.如果收敛,比较哪种方法收敛较快.答案:雅可比方法收敛,高斯-赛得尔方法收敛,且较快.6.5 设矩阵A 非奇异.求证:方程组Ax b =的解总能通过高斯-赛得尔方法得到.6.6 设()ij n nA a ⨯=为对称正定矩阵,对角阵1122(,,,)nn D diag a a a =.求证:高斯-赛得尔方法求解方程组1122D AD x b --=时对任意初始向量都收敛.第七章 非线性方程求根例7.4 对方程230xx e -=确定迭代函数()x ϕ及区间[,]a b ,使对0[,]x a b ∀∈,迭代过程1(), 0,1,2,k x x k ϕ+==均收敛,并求解.要求51||10k k x x -+-<.答案:若取2()x x e ϕ=,则在[1,0]-中满足收敛性条件,因此迭代法121, 0,1,2,k x k x ek +==在(1,0)-中有惟一解.取00.5x =-,*70.458960903x x ≈=-.取2()x x eϕ=,在[0,1]上满足收敛性条件,迭代序列121, 0,1,2,k x k x e k +==在[0,1]中有惟一解.取00.5x =,*140.910001967x x ≈=-在[3,4]上,将原方程改写为23x e x =,取对数得2ln(3)()x x x ϕ==.满足收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +==在[3,4]中有惟一解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6 对于迭代函数2()(3)x x c x ϕ=+-,试讨论:(1)当c 为何值时,1()k k x x ϕ+=产生的序列{}k x; (2)c 取何值时收敛最快?(3)取1,2c =-()x ϕ,要求51||10k k x x -+-<. 答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所示表7.7例7.13 设不动点迭代1()k x x ϕ+=的迭代函数()x ϕ具有二阶连续导数,*x 是()x ϕ的不动点,且*()1x ϕ'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y xϕϕ+==⎧⎪=-⎨=-⎪-+⎩二阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ϕ=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ϕ为迭代函数的迭代法至少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有高阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且牛顿法收敛,证明牛顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第八章 矩阵特征值8.1 用乘幂法求矩阵A 的按模最大的特征值与对应的特征向量,已知5500 5.51031A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,要求(1)()611||10k k λλ+--<,这里()1k λ表示1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --.8.2 用反幂法求矩阵110242012A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭的按模最小的特征值.知A 的按模较大的特征值的近似值为15λ=,用5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最小的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设方阵A 的特征值都是实数,且满足121, ||||n n λλλλλ>≥≥>,为求1λ而作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 用二分法求三对角对称方阵1221221221A ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭的最小特征值,使它至少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 用平面旋转变换和反射变换将向量[2 3 0 5]Tx =变为与1[1 0 0 0]T e =平行的向量.答案:23/053/20000101015/013/T ⎛⎫⎪- ⎪=⎪--⎝0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --⎛⎫⎪-- ⎪= ⎪ ⎪ ⎪--⎝⎭8.6 若532644445A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,试把A 化为相似的上Hessenberg 阵,然后用QR 方法求A 的全部特征值.第九章 微分方程初值问题的数值解法9.1 用反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤⎧⎨=⎩,要求取步长0.1h =,每步迭代误差不超过510-. 答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈== 9.2 用二阶中点格式和二阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ⎧=+≤⎪⎨⎪=⎩的数值解(取步长0.2h =,运算过程中保留五位小数). 答案:用二阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈用二阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 用如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,小数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使二阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y a λλ'=-⎧⎨=⎩为实常数绝对稳定,试求步长h 的大小应受到的限制条件. 答案:2h λ≤.9.5 用如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++⎧=+⎪⎪=++⎨⎪⎪==⎩,求解初值问题sin(), 01(0)1x y e xy x y '⎧=<≤⎨=⎩时,如何选择步长h ,使上述格式关于k 的迭代收敛. 答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式二步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能高,并指出其阶数.答案:系数为142,,33a b d c ====,此时方法的局部截断误差阶最高,为五阶5()O h .9.7 试用欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx⎧=-⎪⎪≤⎨⎪=+=⎪⎩,取步长0.1h =,小数点后至少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =⎧⎨=⎩ , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=⎧⎨≈=⎩ 220.604 820z 2.090 992y =⎧⎨=⎩ , 22(0.2)0.604 659(0.2) 2.088 216y y z z ≈=⎧⎨≈=⎩。

计算方法 课后习题答案

计算方法 课后习题答案
其中,

正规方程组化为:
得 =2.43689 =0.291211
=2.43689所以 =11.45 = =0.291211
=2.43689所以 =11.45 1= =0.291211
12.求函数 在给定区间上对于 的最佳平方逼近多项式:
解:设
(1)
(2)


13. 上求关于 的最佳平方逼近多项式。
解:Legendre是[-1,1]上的正交多项式
解:1)用梯形公式有:
事实上,
2)Simpson公式
事实上,
3)由Cotes公式有:
事实上,
2.证明Simpson公式 具有三次代数精度。
证明:
而当 时
左侧:
右侧:
左侧不等于右侧。所以Simpson具有三次代数精度.
3.分别用复化梯形公式和复化公式Simpson计算下列积分.
(1) ,(3) ,(4)
注意到这里 是三重零点, 是单零点,故插值余项为
20.求作次数 的多项式 ,使满足条件
并列出插值余项。
解法1:由于在 处有直到一阶导数值的插值条件,所以它是“二重节点”;而在 处有直到二阶导数值的插值条件所以 是“三重节点”。因此利用重节点的差商公式:
可以作出差商表
一阶
二阶
三阶
四阶
0
0
1
1
1
-1
-1
利用 的第1式,可将第2式化为
同样,利用第2式化简第3式,利用第3式化简第4式,分别得
由 式消去 得
进一步整理
由此解出
解得:
因此所求的两点Gauss求积公式:
或依下面的思想:
解(2):令原式对于 准确成立,于是有

计算方法-刘师少版第四章课后习题完整答案

计算方法-刘师少版第四章课后习题完整答案

λ 2 = 0.8 ,故 ρ ( B) = 0.9 < 1 ,所以迭代法收敛。
4.6 设线性方程组
⎧ x1 + αx 2 = 4 ⎨ ⎩2αx1 + x3 = −3
试求能使高斯-赛德尔迭代收敛的 α 的取值范围。 解 高斯-赛德尔迭代矩阵
⎡1 G s = −( D + L) U = − ⎢ ⎣2α
−1
⎤ ⎡0 α ⎤ ⎢ 1⎥ 0⎥ ⎦ ⎣ ⎦
−1
⎡ 1 = −⎢ ⎣− 2α
⎤ ⎡0 α ⎤ ⎡ − 1 ⎤ ⎡0 α ⎤ =⎢ ⎥ ⎢ ⎥ ⎢ 1⎦ ⎣ 0 ⎦ ⎣2α − 1⎥ 0⎥ ⎦⎣ ⎦
⎡0 − α ⎤ =⎢ 2⎥ ⎣0 2α ⎦
它的特征多项式为
α ⎤ ⎡λ det(λI − G s ) = ⎢ = λ (λ − 2α 2 ) 2⎥ ⎣ 0 λ − 2α ⎦
26
第 1 次迭代,k=0, X(0)=(1,1,1,1)T
1.46 ⎧ (1) ⎪ x1 = 1 + 2 (1 − 2 × 1 + 1) = 1 ⎪ ⎪ x (1) = 1 + 1.46 (1 − 2 × 1 + 1) = 1 ⎪ 2 2 ⎨ ⎪ x (1) = 1 + 1.46 (1 + 1 − 2 × 1 + 1) = 1.73 ⎪ 3 2 ⎪ 1.46 ( k +1) ⎪ x4 (1.73 − 2 × 1) = 0.8029 = 1+ 2 ⎩
第四章
⎧10 x1 − 2 x 2 − x3 = 3 ⎪ ⎨− 2 x1 + 10 x 2 − x3 = 15 ⎪− x − 2 x + 5 x = 10 2 3 ⎩ 1
要求 x

计算方法第四章 习题答案

计算方法第四章  习题答案

第四章 习题答案1。

用Gauss 消去法解方程组12312312323463525433032x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ 解:方程组写成矩阵形式为12323463525433032x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对其进行Gauss 消去得123234414726002x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎝⎭得方程组12312323323461314482224x x x x x x x x x ++=⎧=-⎧⎪⎪⎪-=-⇒=⎨⎨⎪⎪=⎩-=-⎪⎩2。

用Gauss 列主元素消去法解方程组1233264107075156x x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 解:因为第一列中10最大,因此把10作为列主元素1233264107075156x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭12r r ↔−−−→1231070732645156x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭21311310122310707161061010550522r r r r x x x +-⎛⎫⎛⎫ ⎪ ⎪-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪−−−→-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭⎝⎭23r r ↔−−−→12310707550522161061010x x x ⎛⎫⎛⎫⎪ ⎪-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭32125r r +→1231070755052231310055x x x ⎛⎫⎛⎫ ⎪ ⎪-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭得到方程组12123233107705551221313155x x x x x x x x ⎧⎪-==⎧⎪⎪⎪+=⇒=-⎨⎨⎪⎪=⎩⎪=⎪⎩3。

数值计算课后答案4

数值计算课后答案4

习 题 四 解 答1、设010,1x x ==,写出()x f x e -=的一次插值多项式1()L x ,并估计插值误差。

设插值函数为1()L x ax b =+,由插值条件,建立线性方程组为1011a b a b e -⨯+=⎧⎨⨯+=⎩ 解之得111a e b -⎧=-⎨=⎩则11()(1)1L x e x -=-+ 因为(),()x x y x e y x e --'''=-= 所以,插值余项为(1)(2)(2)011()()()()()(1)!1()()2!1()()()2!1(0)(1)((0,1))2n r x f x p x f x n f x f x x x x e x x ξξπξπξξ+-=-=+==--=--∈所以010101()max max (1)2111248x r x e x x e ξξ-≤≤≤≤-≤-=⨯⨯=。

2选用合适的三次插值多项式来近似计算f(0.2)和f(0.8)。

解:设三次插值多项式为230123()f x a a x a x a x =+++,由插值条件,建立方程组为230123230123230123230123(0.1)(0.1)(0.1)0.9950.30.30.30.9950.70.70.70.7651.1 1.1 1.10.454a a a a a a a a a a a a a a a a ⎧+⨯-+⨯-+⨯-=⎪+⨯+⨯+⨯=⎪⎨+⨯+⨯+⨯=⎪⎪+⨯+⨯+⨯=⎩即012301230123123012312301230.10.010.0010.9950.10.010.0010.9950.30.090.0270.9950.40.080.02800.70.490.3430.7650.80.480.344 1.761.1 1.21 1.3310.454a a a a a a a a a a a a a a a a a a a a a a a a a a -+-=-+-=⎧⎪+++=++=⎪⇒⎨+++=++=⎪⎪+++=⎩12301231232330.40.720.9880.3110.10.010.0010.9950.40.080.02800.320.288 1.760.384 3.831a a a a a a a a a a a a a ⎧⎪⎪⎨⎪⎪++=-⎩-+-=⎧⎪++=⎪⇒⎨+=⎪⎪-=-⎩解之得 01230.416.293.489.98a a a a =⎧⎪=-⎪⎨=-⎪⎪=⎩ 则所求的三次多项式为23()0.41 6.29 3.489.98f x x x x =--+。

高等数学课后习题及参考答案(第四章)

高等数学课后习题及参考答案(第四章)

高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231. (3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx xx 21;解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x m n m C x mn dx x dx x mn m m nm nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx xx 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx xe e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532; 解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ;解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|C =2C ,C =3-2=1. 于是所求曲线的方程为 y =ln|x | 1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e x ch x 都是x x e xsh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x e x ch x =e x (sh x ch x )x xx x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x e x sh x =e x (ch x sh x )x xx x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x xe d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332xdx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d xdx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2. (11)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ; 解 )sin cos (cos sin 1cos sin cos sin 33x x d x x dx x x x x +--=-+⎰⎰ C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx xx 239; 解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1.(23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a xa x a C t a t a +--=+-=222222arcsin 22sin 421. (35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+xdx 21;解C x x C t t dt t tdt t t x xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan . (40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x 23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d xx x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x x x x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233 ⎰⎰+-+-=dx x dx x x 3127)93(2 C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458; 解 ⎰⎰⎰--++++=--+dx xx x x dx x x dx x x x x 3223458)1(8 ⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解 ⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C xx dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u xu dx x221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u xu dx x221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17.⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dx x x )122(221111111令 C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4xx dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxxx x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx .解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u udx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662.4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解 C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6.⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax ax axax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e ba ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e edx xx)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x x dx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12.16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17.⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx . 24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444.25.⎰-416x dx;解⎰⎰⎰++-=+-=-dx x x dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx xxx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x e x23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dx x x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x x C t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C ee x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xd e d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1 C e e e xx x x ++-++-=)1ln(ln 1C e e xe x x x++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ;解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t t x dx x 2232/321sin cos sec sec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx x x xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。

计算方法的课后答案

计算方法的课后答案

《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。

2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。

解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。

5.叙述误差的种类及来源。

答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。

(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。

(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。

(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。

这样引起的误差称为舍入误差。

6.掌握绝对误差(限)和相对误差(限)的定义公式。

答:设*x 是某个量的精确值,x 是其近似值,则称差x x e -=*为近似值x 的绝对误差(简称误差)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(五)课后习题
4.1 对于积分⎰
-a
a
dx x f )(,以a x x a x ==-=210,0,为节点,构造形如

-++≈a
a
x f A x f A x f A dx x f )()()()(221100
的插值型求积公式,并讨论所得公式的代数精度。

解答:⎰⎰--=------=----=
a
a a a a dx a a a a x x dx x x x x x x x x A 31))(0())(0())(())((2010210

⎰--=-+-+=----=a
a a a a dx a a a x a x dx x x x x x x x x A 34)0)(0())(())(())((2101201

⎰--=-+-+=----=a
a a a a dx a a a x a x dx x x x x x x x x A 31
)0)(()0)(())(())((1202102
易知为Simpson 公式,因此代数精度为3
4.2 确定 下列求积公式中的待定参数,使其代数精度尽量高,并指出所得公式的代数精度。

(1)⎰
++≈2
210)2()1()0()(f A f A f A dx x f
(2)

-⋅++≈h
h f f h h f f h
dx x f 0
''2)]()0([)]()0([2
)(α
解答:(1)令2
,,1)(x x x f =,假定求积公式均准确成立,从而有: ⎰++==2
02102A A A dx 21022102
⋅+⋅+⋅==⎰
A A A xdx
2
221202
221003
8⋅+⋅+⋅⋅==
⎰A A A dx x 解以上三元线性方程组从得:3
4
,31120===A A A ,显然仍为Simpson 公式,因此代数精度为3
(2)求积公式中只含一个待定参数α,当x x f ,1)(=时,有 ⎰
++=h
h dx 0
0]11[2,⎰-++=h h h h
xdx 02)11(]0[2
α
故令2
)(x x f =时求积公式准确成立,即

-⨯++=h
h h h h dx x 0
222]202[]0[2α,解得12
1

将3
)(x x f =代入上述确定的求积公式,有:

-++=h
h h h h dx x 0
223
3
]30[12
]0[2,这说明求积公式至少有3次代数精度,再令 4)(x x f =,代入
求积公式时有:

-++≠h
h h h h dx x 0
324
4
]40[12
]0[2
故所建求积公式为

-++≈h
h f f h h f f h dx x f 0
''
2)]()0([2
)]()0([2)(
4.3 对于x
x
x f sin )(=,利用下表数据,计算8,4=n 时的复合梯形公式84,T T ,以及4=n 复合Simpson 公式4S 的值。

解:9445135.0)]1())75.0()5.0()25.0((2)0([2
41
4=+++⨯+=
f f f f f T
9456909.0])1()(2)0([161
7
1
8=++=∑=k k f x f f T
))875.0()625.0()375.0()125.0((4)0([24
1
4f f f f f S +++⨯+=
9460832.0)]1())75.0()5.0()25.0((2=+++⨯+f f f f (或利用4843
1
34T T S -=)
4.4 如果用复化梯形公式计算定积分

1
-x x d e ,要求截断误差不超过0.5×10-4,试问n 至少取多少?
解答;复化的梯形公式的截断误差为1)e (max )(max 1
01
02==''=-≤≤≤≤x
x x x f M 4
-22210⨯50<121=12-≤
.)(n
M h a b f R N ,n =40.8 ,取n ≥41。

相关文档
最新文档