函数图像的平移变换经典例题讲解

合集下载

函数中的图形平移、旋转、折叠问题及其解法

函数中的图形平移、旋转、折叠问题及其解法

函数中的图形平移、旋转、折叠问题及其解法一、函数中的图形平移问题[例1](2003年 上海)已知一条直线经过点A (0,4)、点B (2,0)(如图1),将这条直线向左平移与x 轴负半轴,y 轴负半轴分别交于点C 、点D ,使DB=DC 。

求以直线CD 为图象的函数解析式。

[思路分析]因为直线经过A (0,4)、B (2,0)两点,所以可得以直线AB 为图象的一次函数解析式为y=-2x+4.由于DC//AB ,设以直线CD 为图象的一次函数解析式为y=-2x+b ,由于DB=DC ,所以DB=DC ,DO ⊥BC,所以OB=OC ,点C 的坐标是(-2,0),得b=-4,所以以直线CD 为图象的一次函数解析式为y=-2x-4【点拨】(1)直线平行则斜率k 相同(2)注意函数题目中几何图形的发现、几何性质的应用,(如等腰△BDC 三线合一),而这一点在解这类问题时都要注意。

[例2](2005年 卢湾23)已知抛物线y=x 2-2x-8,若该抛物线与x 轴的两个交点分别为A 、B (点A 在点B 的左侧),且它的顶点为P 1)求t g ∠PAB 的值2)如果要使∠PAB=45需将抛物线向上平移几个单位?[思路分析]1)由抛物线的解析式可以求出点A (-2,0)、B (4,0)、P (1,-9), 由点A 、B 、P 的坐标可以求出等腰△PAB 的底边长及底边上的高PH ,从而求出t g ∠PAB 的值为3。

2)设抛物线向上平移k 个单位,平移后的解析式为y=x 2-2x-8+k,此时AB=212214)(x x x x -+=)8(44--k =2k -9(k ﹤9), PH=9-k,由△PAB 是等腰直角三角形(如图2),可得AB=2PH ,即2k -9 =2(9-k ) , 解得k 1=8,k 2=9(舍去),所以需要将抛物线向上平移8个单位。

【点拨】(1)抛物线上下平移时,解析式y=ax 2+bx+c 中a,b 不变。

函数图像变换与旋转

函数图像变换与旋转

函数图像变换与旋转一.平移变换:1.y=f(x)→y=f(x±a)(a>0) 原图像横向平移a个单位(左+右-)2.y=f(x)→y=f(x)±b(b>0) 原图像纵向平移b个单位(上+下-)3.若将函数y=f(x)的图像右移a,上移b个单位,得到函数y=f(x-a)+b二.对称变换:1.y=f(x)→y=f(-x) 原图像与新图像关于y轴对称;对比:若f=(-x)=f(x)则函数自身的图像关于y轴对称;2.y=f(x)→y=-f(x) 原图像与新图像关于x轴对称;3.y=f(x)→y=-f(-x) 原图像与新图像关于原点对称;对比:若f(-x)=-f(x)则函数自身的图像关于原点对称;4.y=f(x)→y=f-1(x)原图像与新图像关于直线y=x对称;5.y=f(x)→y=f-1(-x)原图像与新图像关于直线y=-x对称;6.y=f(x)→y=f(2a-x)原图像与新图像关于直线x=a对称;7.y=f(x)→y=2b-f(x)原图像与新图像关于直线y=b对称;8.y=f(x)→y=2b-f(2a-x)原图像与新图像关于点(a,b)对称;三.翻折变换:1. y=f(x)→y=f(|x|)的图像在y轴右侧(x>0)的部分与y=f(x)的图像相同,在y 轴的左侧部分与其右侧部分关于y轴对称;2.y=f(x)→y=|f(x)|的图像在x轴上方部分与y=f(x)的图像相同,其他部分图像为y=f(x)图像下方部分关于x轴的对称图像;3. y=f(x)→y=f(|x+a|)变换步骤:法1:先平移|a|个单位(左+右-)保留直线x=a右边图像,后去掉直线x=a左边图像并作关于直线x=a对称图像y=f(x)→y=f(x+a)→y=f(|x+a|)法2:先保留y轴右边图像,去掉y轴左边图像,并作关于y轴对称图像,后平移|a|个单位(左+右-)y=f(x)→y=f(|x|)→y=f(|x+a|)四.伸缩变换:1.y=f(x)→y=af(x)(a>0)原图像上所有点的纵坐标变为原来的a倍,横坐标不变;2.y=f(x)→y=f(ax)(a>0)原图像上所有的横坐标变为原来的,纵坐标不变;五.对称性:1.函数自身对称性之轴对称:(1).若f(x)=f(2a-x)(或f(a+x)=f(a-x)或f(-x)=f(2a+x))则函数自身关于直线x=a对称;(2).若y=f(x)的图像关于直线对称等价于f(a+mx)=f(b-mx)等价于 f(a+b-mx)=f(mx);2.函数自身对称性之中心对称:(1).若f(mx+a)=-f(b-mx),则函数自身关于点(,0)对称;(2).若f(mx+a)+f(b-mx)=c,则函数自身关于点(,)对称;(3).若f(a+x)+f(a-x)=2b(或f(x)+f(2a-x)=2b或f(-x)+f(2a+x)=2b 则函数自身关于点(a,b)对称;3.不同函数之间的对称性:(1).函数y=f(a+x),y=f(b-x)的图像关于直线对称;推论:函数y=f(a+x)与f(a-x)的图像关于直线x=0对称;函数y=f(x)与y=f(2a-x)的图像关于直线x=a对称;函数y=f(-x)与y=f(2a+x)的图像关于直线x=-a对称;特例:函数y=f(a+x),y=f(a-x)的图像关于直线x=0对称;(2).函数y=f(a+x),y=-f(b-x)的图像关于点(,0)对称;特例:函数y=f(a+x)与y=-f(a-x)关于原点中心对称4.抽象函数的对称性:(1).性质一:若函数y=f(x)关于直线x=a轴对称,则以下三个时式子成立切等价: f(a+x)=f(a-x); f(2a-x)=f(x); f(2a+x)=f(-x);(2).性质二:若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:f(a+x)=-f(a-x); f(2a-x)=-f(x); f(2a+x)=-f(-x);易知,y=f(x)为偶(或奇)函数分别为性质一(或二)当a=0时的特例;六.周期性;1.f(x+a)=f(x)周期:|a|2.f(x+a)=-f(x)周期:2|a|3.f(x+a)=(或周期:2|a|4.f(x+a)=f(x-a)周期:2|a|5.f(x+a)=-f(x-a)周期:4|a|6.f(x+a)=(或)周期:4|a|7.f(x+2a)=f(x+a)-f(x) 周期:6|a|8.若p>0,f(px)=f(px-) 周期:七.对称性与周期性:1.若y=f(x)的图像关于直线x=a,x=b对称(a不等于b),则f(x)是周期函数,且周期T=2|a-b|;特例:若y=f(x)是偶函数且其图像关于直线x=a对称,则周期T=2|a|;2.若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期函数,且周期T=2|a-b|;3.若y=f(x)的图像关于直线x=a,对称中心(b,0)对称(a不等于b)则f(x)为周期函数,且周期T=4|a-b|;特例;若y=f(x)是奇函数且其图像关于直线x=a对称,则周期T=4|a|;综上:若函数的图像同时具备两种对称性,两条对称轴或两个对称中心,或一条对称轴一个对称中心,则函数必定为周期函数。

高考数学金华卷函数的图像变换历年真题解析

高考数学金华卷函数的图像变换历年真题解析

高考数学金华卷函数的图像变换历年真题解析函数的图像变换是高考数学中常见的考点之一,考察考生对函数图像的平移、伸缩、翻转等运动方式的理解和应用。

以下是历年高考数学金华卷中关于函数图像变换的真题解析,供考生参考。

一、平移变换平移变换是指将函数图像沿着横轴或纵轴方向移动的运动方式。

平移变换的规律如下:1. 沿横轴平移:函数图像沿横轴方向平移h个单位,则函数中的x 坐标每个值都减去h,所得的新函数为f(x - h)。

2. 沿纵轴平移:函数图像沿纵轴方向平移k个单位,则函数中的y 坐标每个值都减去k,所得的新函数为f(x) - k。

例题1:已知函数f(x)=x^2,将其图像向左平移2个单位,得到函数g(x)。

求g(x)的解析式。

解析:将函数f(x)=x^2沿横轴方向向左平移2个单位,则x坐标每个值都减去2。

所以,新函数g(x)为g(x) = f(x - 2) = (x - 2)^2。

例题2:已知函数f(x)的图像为抛物线,将其图像上所有点的纵坐标都减去3,得到函数g(x)。

求g(x)的解析式。

解析:将函数f(x)的图像沿纵轴方向向下平移3个单位,则y坐标每个值都减去3。

所以,新函数g(x)为g(x) = f(x) - 3。

二、伸缩变换伸缩变换是指将函数图像沿横轴或纵轴方向进行尺度变化的运动方式。

伸缩变换的规律如下:1. 沿横轴伸缩:函数图像沿横轴方向伸缩a倍(0 < a < 1为压缩,a > 1为拉伸),则函数中的x坐标每个值都除以a,所得的新函数为f(x / a)。

2. 沿纵轴伸缩:函数图像沿纵轴方向伸缩b倍(0 < b < 1为压缩,b > 1为拉伸),则函数中的y坐标每个值都乘以b,所得的新函数为f(x) * b。

例题3:已知函数f(x)=x^2,将其图像沿横轴方向压缩为原来的一半,得到函数g(x)。

求g(x)的解析式。

解析:将函数f(x)的图像沿横轴方向压缩为原来的一半,则x坐标每个值都除以2。

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。

要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。

一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。

高考数学三角函数图像平移变换!高考必考内容!3种题型讲解!

高考数学三角函数图像平移变换!高考必考内容!3种题型讲解!

⾼考数学三⾓函数图像平移变换!⾼考必考内容!3种题型讲解!题型⼀:函数y=A sin(ωx+φ)的图象及变

1.三⾓函数图象变换的思路
先平移后伸缩;先伸缩后平移.值得注意的是,对于三⾓函数图象的平移变换问题,其平移变
换规则是“左加、右减”,并且在变换过程中只变换其⾃变量x,如果x的系数不是1,则需把x的系
数提取后再确定平移的单位长度和⽅向.
题型⼆:由图象求y=A sin(ωx+φ)的解析

求函数y=A sin(ωx+φ)+b(A>0,ω>0)中参数的⽅法
(1)求A,b先确定函数的最⼤值M和最⼩值m,则A=(M-m)/2,b=(M+m)/2
(2)求ω先确定函数的周期T,则可得ω=T/2π
(3)求φ
代⼊法.把图象上的⼀个已知点代⼊(此时A,ω,b已知)或代⼊图象与直线y=b的交点求解(此
时要注意交点在上升区间上还是在下降区间上).
题型三:y=A sin(ωx+φ)的图象与性质
函数y=A sin(ωx+φ)的图象与性质是命题的热点,多将图象变换、解析式求法与性质综合⼀起
考查,属中低档题.
常见的命题⾓度有:
(1)图象变换与性质的综合;
(2)解析式的求法与性质的综合;。

一次函数图象的变换--平移

一次函数图象的变换--平移

一次函数图象的变换——平移求一次函数图像平移后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住平移后点的坐标变化来解决问题。

知识点:“已知一个点的坐标和直线的斜率 k,我们就可以写出这条直线的解析式”。

我们知道:y =kx+b经过点(0 , b ),而(0 , b )向上平移m个单位得到点(0 , b+m ),向下平移m个单位得到点(0 , b-m ),向左平移m个单位得到点(0-m , b ),向右平移m个单位得到点(0+m , b ),直线y =kx+b平移后斜率不变仍然是k,设出平移后的解析式为y =kx+h,把平移后得到的点的坐标带入这个解析式求出h,就可以求出平移后直线的解析式。

下面我们通过例题的讲解来反馈知识的应用:例1:把直线y=2x-1向右平移1个单位,求平移后直线的解析式。

分析: y=2x-1经过点(0,-1),向右平移1个单位得到(1,-1)。

平移后斜率不变,即k=2,所以可以设出平移后的解析式为y =2x+h,再将点(1 ,-1 )代入求出解析式中的h,就可以求出平移后直线的解析式。

解:设平移后的直线解析式为y=2x+h点(0,-1)在y=2x-1上,向右平移1个单位得到点(1,-1),将点(1,-1)代入y=2x+h中得:-1=2×1+hh=-3所以平移后直线的解析式为y=2x-3例2:把直线y=2x-1向上平移3个单位,再向右平移1个单位,求平移后直线的解析式。

分析:点(0,-1 )在直线y=2x-1上,当直线向上平移3个单位,点变为(0,-1+3),即为(0 , 2 );再向右平移1个单位后,点(0,2)变为点(0+1,2),即点变为(1 , 2 )。

设出平移后的解析式为y =kx+h,根据斜率k=2不变,以及点(1 , 2 )就可以求出h,从而就可以求出平移后直线的解析式。

解:设平移后的直线解析式为y=2x+h.易知点(0,-1)在直线y=2x-1上,则此点按要求平移后的点为:平移后得到的点( 1 , 2 )在直线y=2x+h 上则:2=2×1+hh=0所以平移后的直线解析式为y=2x总结:求直线平移后的解析式时,只要找出一个点坐标,求出按要求平移后此点的坐标变为多少,再根据斜率不变和变化后的点来求解析式。

一次函数图象的平移变换问题探究---绝对经典

一次函数图象的平移变换问题探究---绝对经典

一次函数图象的平移变换问题的探究所谓平移变换就是在平面内,将一个图形整体沿某一个方向移动一定的距离,这样的图形运动就称为平移.经过平移后的图形与原来的图形相比大小、形状不变,只是位置发生了变化.简单的点P (x ,y )平移规律如下:(1)将点P (x ,y )向左平移a 个单位,得到P 1(x -a ,y )(2)将点P (x ,y )向右平移a 个单位,得到P 2(x+a ,y )(3)将点P (x ,y )向下平移a 个单位,得到P 3(x ,y -a )(4)将点P (x ,y )向上平移a 个单位,得到P 4(x ,y+a )反之也成立.下面我们来探索直线的平移问题.【引例1】探究一次函数l :y=32x 与1l :y=32x+2,2l :y=32x -2的关系. 【探究】我们可以通过列表、描点、连线在同一平面直角坐标系中画出3个函数的图象(如图1),观察这3个函数的图象:从位置上看,它们是3条平行的直线.(这是因为它们的k 值相同);从数量上看,对于同一自变量的取值(不妨取x=0即直线与y 轴的交点),可以看出直线1l 在直线l 的上方2个单位处,直线2l 在直线l 的下方2个单位处,因此,一次函数1l :y=32x+2的图象可以看作是由正比例函数l :y=32x 的图象沿y 轴向上平移2个单位得到的;一次函数2l :y=32x -2的图象可以看作是由正比例函数l :y=32x 的图象沿y 轴向下平移2个单位得到的.【拓广】:一般地,一次函数y=kx+b 的图象是由正比例函数y=kx 的图象沿y 轴向上(b>0)或向下(b<0)平移b 个单位长度得到的一条直线.【应用】:例1、(08上海市)在图2中,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .分析:观察图像发现直线OA 是正比例函数的图象,可设直线OA 的解析式为y=kx ,又点A (2,4)在函数图像上,所以4=2 k 即 k=2,又一次函数的图像是由直线OA 向上平移1个单位得到,故这个一次函数的解析式为y=2x+1. 【引例2】探究一次函数l :y=32x 与1l :y=32(x+3),2l :y=32(x -3)的关系. 【探究】观察引例1与引例2中的3个函数的解析式,经过变形我们可以发现他们是完全相同的,因而,画出3个函数的图象仍然是图1的情况.从位置上看,它们是3条平行的直线.(这是因为它们的k 值相同);从数量上看,对于同一因变量的取值(不妨取y=0,即直线与x 轴的交点),可以看出直线1l 在直线l 的左方3个单位处,直线2l 在直线l 的右方3个单位处,因此,一次函数1l :y=32(x+3)的图象可以看作是由正比例函数l :y=32x 的图象沿x 轴向左平移3个单位得到的;一次函数2l :y=32(x -3)的图象可以看作是由正比例函数l :y=32x 的图象沿x 轴向右平移3个单位得到的.【拓广】:一般地由正比例函数y=kx 的图象沿x 轴向左平移m (m>0)个单位,得到的一次函数解析式为y=k (x+m )=kx+km ;沿x 轴向右平移m(m>0)个单位,得到的一次函数解析式为y=k (x -m )=kx -km ;综合上述归纳推广可以发现,直线上下平移时,影响的y 值的变化,直线左右平移时影响x 值的变化.【应用】:(08年武汉市)⑴点(0,1)向下平移2个单位后的坐标是 ,直线21y x =+向下平移2个单位后的解析式2lx是 ;⑵直线21y x =+向右平移2个单位后的解析式是 ;⑶如图,已知点C 为直线y x =上在第一象限内一点,直线21y x =+交y 轴于点A ,交x 轴于B ,将直线AB 沿射线OC方向平移分析:⑴点(0,1)向下平移2个单位,横坐标不变,纵坐标减去2,故为(0,-1).根据上面拓广的规律直线21y x =+向下平移2个单位后的解析式应为21y x =+-2,即21y x =-;⑵直线21y x =+向右平移2个单位后的解析式应为y=2(x-2)+1即23y x =-;⑶解法1:点C 为直线y x =上在第一象限内一点,OC=C (3,3),将直线AB 沿射线OC 方向平移相当于向右平移3个单位,再向上平移3个单位,根据拓广规律,解析式变为y=2(x-3)+1+3即y =;解法2:点C 为直线y x =上在第一象限内一点,OC=C (3,3),将直线AB 沿射线OC 方向平移3个单位,再向上平移3个单位,从而点A (0,1)平移到(3,4),设平移后的直线的解析式为y=2x+b ,则有4=6+b 所以b=-2,所以所求直线的解析式为y=2x-2.赏析一道函数图象探究题函数是初中数学的重点内容之一,其图象是一种直观形象的交流语言,含有大量的丰富的有价值的信息.为考查同学们获取和应用图象信息的能力,函数图象探究题便成了近年来各地中考的新亮点,解答这类题的关键是从图象中获取信息,,正确地进行“形”和“数”的转换.现就08年中考有关一次函数图象探究题精选一例,浅析如下,供同学们鉴赏:例(2008江苏南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km ;(2)请解释图中点B 的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?分析 (1)图中折线表示两车之间距离与慢车行驶时间之间的函数关系,从折线中可以看出,当x =0,即两车即将出发时,y =900(km ),这说明甲、乙两地之间的距离为900km ;(2)当x =4,即慢车行驶4小时, y =0(km ),这说明两车之间的距离为0,即两车相遇;(3)两车相遇后继续行驶,快车至乙地停止行驶(折线上为点C),慢车继续向甲地行驶,直至x =12,即慢车行驶了12小时到达甲地(折线上为点D).点D 的纵坐标为900(km ),这说明慢车12小时行驶的路程为900km ,从而可求得慢车的速度,再由两车4小时相遇,即4小时共走了900km ,则快车速度可求.(4) 求线段BC 所表示的y 与x 之间的函数关系式,关键是要确定B 、C 两点的坐标,由图象可知,点B 的坐标为(4,0),点C 的横坐标为快车到达乙地的时间,由快车行驶路程÷快车行驶速度可得,而纵坐标则为此时两车之间的距离,可由慢车行驶时间×慢车行驶速度求得,再用待定系数法可求得线段BC 所表示的y 与x 之间的函数关系式.(5) 慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车行驶的时间是4.5h .代入线段BC 所表示函数关系式,可以求得此时慢车与第一列快车之间的距离, 而这也正是两列快车之间的距离,再由快车行驶速度,则可求得两列快车发车的间隔时间,从而问题可解.解:(1)900;(2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇.(3)由图象可知,慢车12h 行驶的路程为900km ,所以慢车的速度为90075(km /h)12=; 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得044506.k b k b =+⎧⎨=+⎩, 解得225900.k b =⎧⎨=-⎩, 所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.自变量x 的取值范围是46x ≤≤.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h .把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h .点评 本例确实是一道难得的函数图象探究题,从列意布局,信息读取,图象理解,问题解决,环环相扣,步步紧逼,既给了同学们解决问题的方法,又给了同学们广阔的思维空间和探索空间,既考查了同学们获取图象信息的能力,又考查了同学们探究学习的过程,还充分渗透了运动变化的观点.可以看得出命题者的构思巧妙,匠心独运.不得不令人耳目一新,拍案叫绝.。

初三函数图象平移及其典型例题.docx

初三函数图象平移及其典型例题.docx

个性化教案(内页)二次函数的图像教学目标:1、经历二次函数图像平移的过程;理解函数图像平移的意义。

2、了解y =处2, y = o(x +加几〉,=。

(% +加)2+£三类二次两数图像之间的关系。

3、会从图像的平移变换的角度认识y = a(x^m)2-^k型二次函数的图像特征。

教学重点:从图像的平移变换的角度认识y = a(x + m)2^k型二次函数的图像特征。

教学难点:对于平移变换的理解和确定,学生较难理解。

一、知识回顾二次函数y = cix2的图像和特征:1、名称 ______________ ;2、顶点坐标 ____________ ;3、对称轴______________ ;4、当CIAO时,抛物线的开口向—,顶点是抛物线上的最—点,图像在x轴的—(除顶点外);当CIYO时, 抛物线的开口向—,顶点是抛物线上的最—点图像在x轴的—(除顶点外)。

二、合作学习在同一坐标系中血j出函数图像丿=*乳2, y = *(^+2)2, y = *(兀一2)2的图像。

(1)请比较这三个函数图像冇什么共同特征?(2)顶点和对称轴有什么关系?(3)图像之间的位置能否通过适当的变换得到?(4)由此,你发现了什么?三、探究二次函数y = ax2和y = a(x + m)2图像之间的关系1、结合学生所画图像,引导学牛观察y二丄(x + 2)2,与y二丄兀$的图像位置关系,直观得出y = 的图像向左平移两个单位》y=*(兀+2)2,的图像。

教师可以采取以下措施:①借助儿何価板演示儿个对应点的位置关系,如:ZA C、向左平移两个单位、/ c C、(2, 2)畑空业》(0, 2);(-2, 2)向圧平移两个小位〉(4 2)②也可以把这些对应点在图像上用彩色粉笔标出,并用带箭头的线段表示平移过程。

2、用同样的方法得出y =丄兀彳的图像砒「忤两个你〉),=丄(兀_ 2)2的图像。

23、请你总结二次函数y=a(x+ m)2的图象和性质.当mAO时向左平移m个单位、1》,=妙2(GHO)的图像> y = _L(x_2)2的图像。

《函数图象的变换之平移变换》

《函数图象的变换之平移变换》
函数图象的变换
之平移变换
复习
对f ( x) 对x
平移的规律: 上加下减,左加右减。
f (x) log 1 x(x 0)
左移两个单位
f (x) log (x 2) 1
2
2
上移一个单位
f (x) log x 1 1 2
问题: 画出函数f (x) 1 (1 x 2)的图象
y
1(x
x2
0) 的 参 照 是 什 么 ?
(1) f (x) 2x1 1(x 0)
(2)f (x) x 1 (x 2) x2
平移变换画简图三步曲: 1、找参照 2、移动参照 3、确定图象的形状,作 出简图。
练习:画出下列函数的简图
(1) f (x) 2x1 1(x 0)
平移变换画简图三步曲: 1、找参照 2、移动参照 3、确定图象的形状,作 出简图。
y
x
y
1
1
x
练习:画出下列函数的简图
(1) f (x) 2x1 1(x 0)
(2)f (x) x 1 (x 2) x2
x2 1 2 x2
平移变换画简图三步曲: 1、找参照 2、移动参照 3、确定图象的形状,作 出简图。
y
y
2
1x2x来自简图的应用例题:求函数f (x) 1 (1 x 1)在x 1,2上的值域
x2
y
1
2
x
解 如图所示
: 函数在- ,2上单调递减
f xmax f 1 0
无最小值
所以,函数f x 在1,2 上的值域为- ,0
小结
平移变换画简图三步曲: 1、找参照 2、移动参照 3、确定图象的形状,作 出简图。
作业
求函数f (x) log2 (x 3) 2在- 2, 上的最小值

高中数学函数图像的平移与缩放技巧分享

高中数学函数图像的平移与缩放技巧分享

高中数学函数图像的平移与缩放技巧分享在高中数学中,函数图像的平移与缩放是一个重要的概念和技巧。

通过平移与缩放,我们可以改变函数图像的位置和形状,从而更好地理解和分析函数的性质。

本文将分享一些关于函数图像平移与缩放的技巧,并通过具体的例子来说明其考点和应用。

一、平移技巧平移是指将函数图像沿着坐标轴的方向移动一定的距离。

平移可以改变函数图像的位置,但不改变其形状。

下面以一道具体的例题来说明平移的技巧。

例题:已知函数f(x)的图像如下图所示,求函数g(x) = f(x - 2)的图像。

(插入图像)解析:要求函数g(x) = f(x - 2)的图像,我们需要将函数f(x)的图像沿着x轴平移2个单位。

具体操作如下:1. 将函数f(x)的图像上的每一个点的横坐标都减去2,即将每个点(x, y)变为(x - 2, y)。

2. 连接新的点,就得到了函数g(x) = f(x - 2)的图像。

通过这个例题,我们可以看出平移的关键就是改变函数图像上的每一个点的横坐标,从而实现整个图像的平移。

这个技巧在解决函数图像平移的问题时非常有用。

二、缩放技巧缩放是指将函数图像沿着坐标轴的方向进行拉伸或压缩,从而改变函数图像的形状和大小。

缩放可以通过改变函数的系数来实现。

下面以一道具体的例题来说明缩放的技巧。

例题:已知函数f(x)的图像如下图所示,求函数g(x) = 2f(x)的图像。

(插入图像)解析:要求函数g(x) = 2f(x)的图像,我们需要将函数f(x)的图像沿着y轴方向进行拉伸。

具体操作如下:1. 将函数f(x)的图像上的每一个点的纵坐标都乘以2,即将每个点(x, y)变为(x,2y)。

2. 连接新的点,就得到了函数g(x) = 2f(x)的图像。

通过这个例题,我们可以看出缩放的关键就是改变函数图像上的每一个点的纵坐标,从而实现整个图像的缩放。

这个技巧在解决函数图像缩放的问题时非常有用。

三、举一反三通过以上的例题,我们可以看出平移与缩放技巧的应用范围是很广的。

一次函数-图象的左右平移

一次函数-图象的左右平移

19.2.2(4.3)一次函数--图像的左右平移一.【知识要点】1.一次函数--图像的左右平移二.【经典例题】1.将直线12x y -=-向上平移1个单位,得到的直线的解析式是 .直线x y 2-=向上平移3个单位,再向左平移2个单位后直线解析式为:_____________.2.已知一次函数y=2x-3,按以下要求求函数解析式:(1)将y=2x-3向右平移3个单位长度后得到的解析式: .(2)将y=2x-3向下平移5个单位长度后得到的解析式: .(3)将y=2x-3先向左平移2个单位长度,再向下平移2个单位长后得到的解析式: .三.【题库】【A 】1.将直线y=-2x 向右平移2个单位所得直线的解析式为( ) A.y=-2x+2 B.y=-2(x+2) C.y=-2x-2 D.y=-2(x-2)2.把直线y=2x −1向左平移1个单位,平移后直线的关系式为( )A. y=2x −2B. y=2x+1C.y=2xD.y=2x+2【B 】1.将直线y =﹣2x+6向右平移2个单位所得直线的解析式为( )A. y=﹣2x+2B. y=﹣2x ﹣4C. y=﹣2x ﹣2D. y=﹣2x+102.将一次函数y=-2x+4的图象平移得到图象的函数关系式为y=-2x ,则移动方法为( )A. 向左平移4个单位B. 向右平移4个单位C. 向上平移4个单位D. 向下平移4个单位【C 】1.将直线y =﹣2x ﹣3向左平移2个单位得到直线解析式 .【D 】1.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边OBC ∆,将点C 向左平移,使其对应点C '恰好落在直线AB 上,则点C '的坐标为 .。

函数图像的变换技巧例题和知识点总结

函数图像的变换技巧例题和知识点总结

函数图像的变换技巧例题和知识点总结函数图像是研究函数性质的重要工具,通过对函数图像进行变换,可以更直观地理解函数的特点和规律。

下面我们将介绍一些常见的函数图像变换技巧,并通过例题来加深理解。

一、平移变换1、水平平移对于函数\(y = f(x)\),将其图像向左平移\(h\)个单位,得到\(y = f(x + h)\);向右平移\(h\)个单位,得到\(y = f(x h)\)。

例如,函数\(y = x^2\)的图像向左平移\(2\)个单位,得到\(y=(x + 2)^2\)的图像;向右平移\(3\)个单位,得到\(y =(x 3)^2\)的图像。

例题:将函数\(y = 2x + 1\)的图像向左平移\(3\)个单位,求平移后的函数表达式。

解:将\(x\)替换为\(x + 3\),得到平移后的函数为\(y = 2(x+ 3) + 1 = 2x + 7\)2、竖直平移函数\(y = f(x)\)的图像向上平移\(k\)个单位,得到\(y = f(x) + k\);向下平移\(k\)个单位,得到\(y = f(x) k\)。

例如,函数\(y =\sin x\)的图像向上平移\(1\)个单位,得到\(y =\sin x + 1\)的图像;向下平移\(2\)个单位,得到\(y =\sin x 2\)的图像。

例题:将函数\(y =\log_2 x\)的图像向下平移\(2\)个单位,求平移后的函数表达式。

解:平移后的函数为\(y =\log_2 x 2\)二、伸缩变换1、水平伸缩对于函数\(y = f(x)\),将其图像上所有点的横坐标伸长(或缩短)到原来的\(\omega\)倍(\(\omega >0\)),纵坐标不变,得到\(y = f(\frac{1}{\omega}x)\)。

当\(\omega > 1\)时,图像沿\(x\)轴缩短;当\(0 <\omega < 1\)时,图像沿\(x\)轴伸长。

例如,函数\(y =\sin x\)的图像横坐标缩短到原来的\(\frac{1}{2}\),得到\(y =\sin 2x\)的图像;横坐标伸长到原来的\(2\)倍,得到\(y =\sin \frac{1}{2}x\)的图像。

【经典必考】二次函数图像平移30题含详细答案

【经典必考】二次函数图像平移30题含详细答案

○………○………二次函数图像平移30题含详细答案 一、单选题 1.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ). A .22(2)3y x =++; B .22(2)3y x =-+; C .22(2)3y x =--; D .22(2)3y x =+-. 2.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度 3.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A .()3,6-- B .()3,0- C .()3,5-- D .()3,1-- 4.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A .y=(x +2)2﹣5 B .y=(x +2)2+5 C .y=(x ﹣2)2﹣5 D .y=(x ﹣2)2+5 5.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( ) A .y=﹣5(x+1)2﹣1 B .y=﹣5(x ﹣1)2﹣1 C .y=﹣5(x+1)2+3 D .y=﹣5(x ﹣1)2+3 6.如图,抛物线2145y x 7x 22=-+与x 轴交于点A 、B ,把抛物线在x 轴及其下方的部分记作1C ,将1C 向左平移得到2C ,2C 与x 轴交于点B 、D ,若直线1y x m 2=+与1C 、2C 共有3个不同的交点,则m 的取值范围是( )……○…………订※※装※※订※※线※※内※……○…………订A .455m 82-<<- B .291m 82-<<- C .295m 82-<<- D .451m 82-<<- 7.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( ) A .先向左平移1个单位,再向上平移2个单位 B .先向左平移1个单位,再向下平移2个单位 C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位8.如图,将函数y =12(x ﹣2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x ﹣2)2-2 B .y =12(x ﹣2)2+7C .y =12(x ﹣2)2-5 D .y =12(x ﹣2)2+49.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位10.抛物线267y x x =++可由抛物线2y x 如何平移得到的( )A .先向左平移3个单位,再向下平移2个单位B .先向左平移6个单位,再向上平移7个单位C .先向上平移2个单位,再向左平移3个单位D .先回右平移3个单位,再向上平移2个单位11.将抛物线y=x 2﹣4x ﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函A .y=(x+1)2﹣13B .y=(x ﹣5)2﹣3C .y=(x ﹣5)2﹣13D .y=(x+1)2﹣3 12.若要得到函数y =(x+1)2+2的图象,只需将函数y =x 2的图象( ) A .先向右平移1个单位长度,再向上平移2个单位长度 B .先向左平移1个单位长度,再向上平移2个单位长度 C .先向左平移1个单位长度,再向下平移2个单位长度 D .先向右平移1个单位长度,再向下平移2个单位长度 13.将抛物线y=12x 2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( ) A .y=12(x ﹣8)2+5 B .y=12(x ﹣4)2+5 C .y=12(x ﹣8)2+3 D .y=12(x ﹣4)2+3 14.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位 15.把抛物线y=﹣2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( ) A .y=﹣2(x+1)2+2 B .y=﹣2(x+1)2﹣2 C .y=﹣2(x ﹣1)2+2 D .y=﹣2(x ﹣1)2﹣2 16.将抛物线223y x x =-+向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为( ) A .2(1)4y x =-+ B .2(4)4y x =-+ C .2(2)6y x =++ D .2(4)6y x =-+ 17.将抛物线2y x 向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( ) A .2(2)3y x =+- B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =-- 18.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是 A .()2y x 12=-+ B .()2y x 12=++ C .2y x 1=+ D .2y x 3=+ 19.将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .2(4)6y x =-- B .2(1)3y x =-- C .2(2)2y x =-- D .2(4)2y x =--20.抛物线y =3x 2向右平移一个单位得到的抛物线是( )A .y =3x 2+1B .y =3x 2﹣1C .y =3(x+1)2D .y =3(x ﹣1)2 21.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( )A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位22.把抛物线y=﹣2x 2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A .y=﹣2(x ﹣1)2+6B .y=﹣2(x ﹣1)2﹣6C .y=﹣2(x+1)2+6D .y=﹣2(x+1)2﹣623.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( ) A .y =﹣2(x +1)2+1 B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣124.将抛物线y=x 2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )A .(0,3)或(﹣2,3)B .(﹣3,0)或(1,0)C .(3,3)或(﹣1,3)D .(﹣3,3)或(1,3)二、解答题 25.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5) (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标; (3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积. 26.已知二次函数2223y x mx m =-++(m 是常数) (1)求证:不论m 为何值,该函数的图像与x 轴没有公共点; (2)把该函数的图像沿x 轴向下平移多少个单位长度后,得到的函数的图像与x 轴只有一个公共点? 27.把二次函数y=a(x-h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y=12(x+1)2-1的图象. (1)试确定a ,h ,k 的值; (2)指出二次函数y=a(x-h)2+k 的开口方向,对称轴和顶点坐标. 三、填空题 28.抛物线y =x 2-2x +3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为____________. 29.将抛物线2213y x =-向右平移3个单位,再向上平移3个单位,所得的抛物线的解析式为________________. 30.把抛物线y=x 2﹣2x+3沿x 轴向右平移2个单位,得到的抛物线解析式为 .参考答案1.B【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为()2223y x =-+,故选B .【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.2.D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象.故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.3.B【解析】分析:根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.详解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x (x-2)=x 2-2x=(x-1)2-1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x-1+2)2-1-3=(x+1)2-4.当x=-3时,y=(x+1)2-4=0,∴得到的新抛物线过点(-3,0).故选B .点睛:本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.4.A【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x 2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5), 所以,平移后的抛物线的解析式为y=(x +2)2﹣5.故选A .【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键. 5.A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x 2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选A .点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键. 6.C【分析】先求出点A 和点B 的坐标,然后再求出2C 的解析式,分别求出直线1y x m 2=+与抛物线2C 相切时m 的值以及直线1y x m 2=+过点B 时m 的值,结合图形即可得到答案. 【详解】抛物线2145y x 7x 22=-+与x 轴交于点A 、B , ∴2145x 7x 22-+=0, ∴x 1=5,x 2=9,()B 5,0∴,()A 9,0∴抛物线向左平移4个单位长度后的解析式21y (x 3)22=--, 当直线1y x m 2=+过B 点,有2个交点, 50m 2∴=+, 5m 2=-, 当直线1y x m 2=+与抛物线2C 相切时,有2个交点, 211x m (x 3)222∴+=--, 2x 7x 52m 0-+-=,相切,49208m 0∴=-+=,29m 8∴=-, 如图,若直线1y x m 2=+与1C 、2C 共有3个不同的交点, ∴--295m 82<<-, 故选C .【点睛】本题考查了抛物线与x 轴交点、二次函数图象的平移等知识,正确地画出图形,利用数形结合思想是解答本题的关键.7.D【解析】将抛物线y =-3x 2平移,先向右平移1个单位得到抛物线y =-3(x -1)2, 再向下平移2个单位得到抛物线y =-3(x -1)2-2.故选D.8.D【详解】∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m =()211212-+=32,n =()214212-+=3, ∴A (1,32),B (4,3), 过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C (4,32), ∴AC =4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC •AA ′=3AA ′=9,∴AA ′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是()21242y x =-+. 故选D .9.B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5), 故选B .【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 10.A【分析】先将抛物线267y x x =++化为顶点式,然后按照“左加右减,上加下减”的规律进行求解即可.【详解】因为()226732y x x x =++=+-,所以将抛物线2y x 先向左平移3个单位,再向下平移2个单位即可得到抛物线267y x x =++,故选A .【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.11.D【详解】因为y=x 2-4x-4=(x-2)2-8,以抛物线y=x 2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(-1,-3),所以平移后的抛物线的函数表达式为y=(x+1)2-3.故选D .12.B【分析】找出两抛物线的顶点坐标,由a 值不变即可找出结论.【详解】解:∵抛物线y=(x+1)2+2的顶点坐标为(-1,2),抛物线y=x 2的顶点坐标为(0,0), ∴将抛物线y=x 2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选B .【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.13.D【解析】【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】 y=12x 2﹣6x+21 =12(x 2﹣12x )+21 =12[(x ﹣6)2﹣36]+21 =12(x ﹣6)2+3, 故y=12(x ﹣6)2+3,向左平移2个单位后, 得到新抛物线的解析式为:y=12(x ﹣4)2+3. 故选D .【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.14.B【解析】根据“左加右减,上加下减”的原则进行解答即可:∵23222y x y (x 2)y (x 2)3→+→+-向左平移个单位向下平移个单位===y =x 2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B .15.C【详解】解:把抛物线y=﹣2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x ﹣1)2+2,故选C .16.B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将223y x x =-+化为顶点式,得2(1)2y x =-+.将抛物线223y x x =-+向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为2(4)4y x =-+,故选B .【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.17.A【分析】先确定抛物线y=x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-3),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-3),所以平移后的抛物线解析式为y=(x+2)2-3. 故选A .18.C【分析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .19.D【分析】由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:()226534y x x x =-+=--,即抛物线的顶点坐标为()3,4-, 把点()3,4-向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为()4,2-, 所以平移后得到的抛物线解析式为()242y x =--.故选D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.20.D【解析】【分析】先确定抛物线y =3x 2的顶点坐标为(0,0),再利用点平移的坐标变换规律得到点(0,0)平移后对应点的坐标为(1,0),然后根据顶点式写出平移后的抛物线的解析式.【详解】y =3x 2的顶点坐标为(0,0),把点(0,0)右平移一个单位所得对应点的坐标为(1,0),所以平移后的抛物线解析式为y =3(x ﹣1)2.故选D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.C【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.22.C【解析】∵抛物线y =﹣2(x ﹣1)2+3的顶点坐标为(1,3),∴向左平移2个单位,再向上平移3个单位后的顶点坐标是(﹣1,6)∴所得抛物线解析式是y =﹣2(x +1)2+6.故选C点睛:本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k ,确定其顶点坐标(h ,k ),在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”.23.B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.24.D【解析】【分析】先将抛物线y=x2+2x+3化为顶点式,找出顶点坐标,利用平移的特点即可求出新的抛物线,可求得与直线y=3的交点坐标.【详解】解:抛物线y= x2+2x+3=(x+1)2+2,顶点坐标(-1,2),再向下平移3个单位得到的点是(-1,-1).可得新函数的解析式为y=(x+1)2−1,当y=3时候,即:(x+1)2−1=3,得:(x+1)2=4,解得:x=1或x=-3,∴抛物线与直线y=3的交点坐标为(1,3)或(-3,3),故选D.【点睛】本题主要考查抛物线平移的规律与性质, 关键是得到所求抛物线顶点坐标,利用平移的规律解答.25.(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】解:(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.26.(1)证明见解析;(2)3.【分析】(1)求出根的判别式,即可得出答案.(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.【详解】(1)∵()()222224134412120m m m m ∆=--⨯⨯+=--=-<, ∴方程22230x mx m -++=没有实数解.∴不论m 为何值,该函数的图象与x 轴没有公共点.(2)∵()222233y x mx m x m =-++=-+,∴把函数2223y x mx m =-++的图象延y 轴向下平移3个单位长度后,得到函数()23y x m =-+的图象,它的顶点坐标是(m ,0).∴这个函数的图象与x 轴只有一个公共点.∴把函数2223y x mx m =-++的图象延y 轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点.【点睛】本题考查了1.抛物线与x 轴的交点问题;2.一元二次方程根的判别式;3.二次函数图象与平移变换.27.(1)1,1,52a h k ===- (2)开口向下,对称轴是x=1的直线,顶点(1,-5) 【解析】试题分析:(1)二次函数的平移,可以看作是将二次函数y=12(x+1)2-1先向右平移2个单位,再向下平移4个单位得到二次函数y=a(x-h)2+k ,然后再按二次函数图象的平移法则,确定函数解析式,即可得到结论;(2),直接根据函数解析式,结合二次函数的性质,进行回答即可.试题分析:(1)∵二次函数y=a(x-h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y=12(x+1)2-1, ∴可以看作是将二次函数y=12 (x+1)2-1先向右平移2个单位,再向下平移4个单位得到二次函数y=a(x-h)2+k ,而将二次函数y=12 (x+1)2-1先向右平移2个单位,再向下平移4个单位得到二次函数为:y=12(x-1)2-5,∴a=12,b=1,k=-5; (2)二次函数y=12 (x-1)2-5, 开口向上,对称轴为x=1,顶点坐标为(1,-5).28.y=x 2-8x+20.【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】2y 23x x =-+=()21x - +2,其顶点坐标为(1,2).向上平移2个单位长度,再向右平移3个单位长度后的顶点坐标为(4,4),得到的抛物线的解析式是y=()24x -+42820x x =-+.故答案为2y 820x x =-+.【点睛】本题考查二次函数图象与几何变换.29.22(3)23y x =-+ 【解析】【分析】先确定抛物线y 2213x =-的顶点坐标为(0,-1),再把点(0,-1)先向右平移3个单位,再向上平移3个单位后得到的点的坐标为(3,2),然后根据顶点式写出平移后抛物线的解析式.【详解】解:抛物线y=2213x -的顶点坐标为(0,-1),把点(0,-1)先向右平移3个单位,再向上平移3个单位后得到的点的坐标为(3,2),所以所得的抛物线的解析式为y=()22323x -+. 故答案为y=()22323x -+. 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.30.y=(x﹣3)2+2【解析】【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,故答案为:y=(x﹣3)2+2.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.。

高中三角函数的平移变换 讲解+习题

高中三角函数的平移变换 讲解+习题

三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。

途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

1.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( D ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度 (C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( C )A sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数的图像,只需把函数的图像( B )(A )向左平移个长度单位 (B )向右平移个长度单位 (C )向左平移个长度单位 (D )向右平移个长度单位 6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象( A )A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7.函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( B ) .(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π8.将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y=sin ()6x π-的图象,则ϕ等于( D ) A .6π B .56π C. 76π D.116π9.若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为( D )A .16B.14C.13D.1210.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于C (A )13(B )3 (C )6 (D )911.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C ) A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π12.将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是( A )A. π125B. π125-C. π1211D. 1112π-13.把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( C ) A .(1-y )sin x +2y -3=0 B .(y -1)sin x +2y -3=0 C .(y +1)sin x +2y +1=0D .-(y +1)sin x +2y +1=0解析:将原方程整理为:y =x cos 21+,因为要将原曲线向右、向下分别移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.点评:本题考查了曲线平移的基本方法及三角函数中的诱导公式。

一次函数图像的平移对称旋转问题

一次函数图像的平移对称旋转问题

一次函数图象的平移变换问题的探究求一次函数图象平移后的解析式是一类重要题型,在各省市中考试题频繁亮相.在一次函数y kx b =+中常数k 决定着直线的倾斜程度:直线111y k x b =+与直线222y k x b =+平行⇔12k k =.一、一次函数平移的三种方式:⑴上下平移:在这种平移中,横坐标不变,改变的是纵坐标也就是函数值y .平移规律是上加下减.⑵左右平移:在这种平移中,纵坐标不变,改变的是横坐标也就是自变量x .平移规律是左加右减.⑶沿某条直线平移:这类题目稍有难度.“沿”的含义是一次函数图象在平移的过程中与沿着的那条直线的夹角不变.解题时抓住平移前后关键点坐标的变化. 二、典型例题:(1)点(0,1)向下平移2个单位后的坐标是 ___,直线21y x =+向下平移2个单位后的解析式是所谓平移变换就是在平面内,.经过平移后的图形与原来的图形相比大小、形状不变,只是位置发生了变化.简单的点P (x ,y )平移规律如下:(1)将点P (x ,y )向左平移a 个单位,得到P 1(x -a ,y ) (2)将点P (x ,y )向右平移a 个单位,得到P 2(x+a ,y ) (3)将点P (x ,y )向下平移a 个单位,得到P 3(x ,y -a )(4)将点P (x ,y )向上平移a 个单位,得到P 4(x ,y+a )反之也成立.下面我们来探索直线的平移问题.【引例1】探究一次函数l :y=32x 与1l :y=32x+2,2l :y=32x -2的关系. .【拓广】:一般地,一次函数y=kx+b 的图象是由正比例函数y=kx 的图象沿y 轴向上(b>0)或向下(b<0)平移b 个单位长度得到的一条直线.【应用】:例1、(08上海市)在图2中,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .2lx练习1. 直线y=2x+1向上平移4个单位得到直线 2. 直线y=-3x+5向下平移6个单位得到直线 3. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.练习1、要得到函数y=2cos (x+)sin (﹣x )﹣1的图象,只需将函数y=sin2x+cos2x 的图象( )A 、向左平移个单位B 、向右平移个单位C 、向右平移个单位 D 、向左平移个单位2、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,若图象F 2关于直线对称,则θ的一个可能取值是( )A 、B 、C 、D 、3、将函数的图象按向量平移,得到y=f(x)的图象,则f(x)=()A、B、C、D、sin(2x)+34、把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是()A、沿x轴方向向右平移B、沿x轴方向向左平移C、沿x轴方向向右平移D、沿x轴方向向左平移5、为了得到函数y=的图象,可以将函数y=sin2x的图象()A、向右平移个单位长度B、向右平移个单位长度C、向左平移个单位长度D、向左平移个单位长度6、把函数y=sinx的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),然后把图象向左平移个单位,则所得到图象对应的函数解析式为()A、B、C、D、1、D2、A3、D.4、D.5、A.6、D。

一次函数-图象的上下平移

一次函数-图象的上下平移

19.2.2(4.2)一次函数--图像的上下平移一.【知识要点】1.一次函数--图像的上下平移二.【经典例题】1.直线y=3x -2的图象向上平移 个单位长度得到直线y=3x+1A.1B.2C.3D. 42.将直线y=-2x+3向下平移2个单位得到的直线为 。

3.如图,点A (0,1),M (3,2),N (4,4),动点P 从点A 出发,沿轴以每秒1个单位长的速度向上移动,且过点P 的直线b x y l +-=:也随之移动,设移动时间为t 秒。

(1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.三.【题库】【A 】1.如图,把直线y=-2x 向上平移后得到直线AB,直线AB 经过点(a,b ),且2a+b=6,则直线AB 的解析式是( )【B 】1.将直线y=2(x-1)向上平移5个单位后,所得的直线解析式为( )A .y=2x+5 B.y=2x+3 C.y=2x+7 D.y=2x-7【C 】1.一次函数y=kx+b 的图象经过A (0,2)与B (3,0),若将该直线沿y 轴向下平移2个单位,则平移后的直线解析式为:________________【D 】1.如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n),且2m +n =6,则直线AB 的解析式是( ).A.y =-2x -3B.y =-2x -6C.y =-2x +3D.y =-2x +62.将一次函数y=kx-1的图象向上平移k 个单位长度后恰好经过点A (3,2+k).(1)求k 的值。

(2)若一条直线与函数y=kx-1的图象平行,且与两坐标轴围成的三角形的面积为21,求该函数的函数解析式。

AB Oxy。

二次函数平移题目

二次函数平移题目

二次函数平移题目一、二次函数平移的基本原理1. 二次函数的一般式为y = ax^2+bx + c(a≠0),其顶点式为y=a(x - h)^2+k,其中(h,k)为顶点坐标。

2. 平移规律:- 向左平移m个单位时,x变为x + m;- 向右平移m个单位时,x变为x - m;- 向上平移n个单位时,y变为y - n;- 向下平移n个单位时,y变为y + n。

二、典型题目及解析题目1:将二次函数y = x^2的图象向上平移3个单位,再向右平移2个单位,得到的图象对应的二次函数表达式是什么?解析:1. y = x^2的图象向上平移3个单位,根据平移规律,此时函数变为y=x^2+3。

2. 然后,再将y=x^2+3的图象向右平移2个单位,此时x变为x - 2,所以得到的二次函数表达式为y=(x - 2)^2+3。

- 展开y=(x - 2)^2+3,y=(x^2-4x + 4)+3=x^2-4x+7。

题目2:二次函数y = 2(x+1)^2-3向左平移2个单位,再向下平移1个单位后的函数表达式是什么?解析:1. 对于二次函数y = 2(x + 1)^2-3,向左平移2个单位,此时x+1变为x+1+2=x + 3,函数变为y = 2(x+3)^2-3。

2. 再向下平移1个单位,y变为y+1,所以得到的函数表达式为y=2(x + 3)^2-3-1=2(x + 3)^2-4。

- 展开y = 2(x + 3)^2-4,y=2(x^2+6x+9)-4 = 2x^2+12x + 18-4=2x^2+12x+14。

题目3:已知二次函数y=ax^2+bx + c的图象经过点(0,0),(1, - 3),(2,-8),将这个二次函数的图象向左平移3个单位,再向上平移5个单位,求平移后的二次函数表达式。

解析:1. 把点(0,0),(1,-3),(2,-8)代入y = ax^2+bx + c中,得到方程组:- 当x = 0,y = 0时,c = 0;- 当x = 1,y=-3时,a×1^2+b×1 + c=-3,即a + b=-3;- 当x = 2,y=-8时,a×2^2+b×2 + c=-8,即4a+2b=-8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数图象考纲解读 1.考查常见函数的图象的平移变换与对称变换;2.以基本初等函数经过代数运算构成的基本函数的图象辨认;3.利用函数图象解决函数性质的应用.[基础梳理]1.利用描点法作函数图象的基本步骤及流程 (1)基本步骤:列表、描点、连线. (2)流程:①确定函数的定义域; ②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等);④列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.平移变换y =f (x )――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . 3.伸缩变换y =f (x )―――――――――――→纵坐标不变各点横坐标变为原来的1a(a >0)倍y =f (ax ). y =f (x )―――――――――――――→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ). 4.对称变换y =f (x )―――――→关于x 轴对称y =-f (x ); y =f (x )―――――→关于y 轴对称y =f (-x ); y =f (x )―――――→关于原点对称y =-f (-x ). 5.翻折变换y =f (x )―――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|. [三基自测]1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合的最好的图象是( )答案:C2.下列图象是函数y =⎩⎪⎨⎪⎧x 2,x <0,x -1,x ≥0的图象的是( )答案:C 3.函数y =ln11+x的图象大致为( )答案:B4. (必修1·习题1.2B 组改编)函数r =f (p )的图象如图所示,若只有唯一的p 值与r 对应,则r 的范围为________.答案:(3,5]∪(0,2)5.(2017·高考全国卷Ⅰ改编)函数y =f (x )的图象如图,其定义域为__________.答案:[-π,0)∪(0,π][考点例题]考点一 作函数的图象|方法突破[例1] 作出下列函数的图象: (1)y =|x -2|·(x +1); (2)y =x +2x -1;(3)y =|log 2(x +1)|.[解析] (1)先化简,再作图.y =⎩⎪⎨⎪⎧x 2-x -2,x ≥2,-x 2+x +2,x <2,图象如图实线所示. (2)因为y=x +2x -1=1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图所示.(3)利用函数y =log 2x 的图象进行平移和翻折变换,图象如图实线所示.[方法提升] 作函数图象的方法 方法 解读适合题型直接法 当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出基本初等函数、“对号”函数转化法 含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数来画图象绝对值函数图象变换法若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出.对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变能够准确找到基本函数换单位及解析式的影响[母题变式]将本例(3)变为函数y =log 2|x -1|,作其图象.解析:作y =log 2|x |的图象,再将图象向右平移一个单位,如图,即得到y =log 2|x -1|的图象.考点二 函数图象的识别|模型突破角度1 巧用特殊点识别函数图象[例2] (1)函数f (x )=1+log 2x 与g (x )=⎝⎛⎭⎫12x在同一直角坐标系下的图象大致是( )[解析] 因为函数g (x )=⎝⎛⎭⎫12x 为减函数,且其图象必过点(0,1),故排除选项A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位长度得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除选项C.选B. [答案] B(2) (2018·聊城模拟)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB =2,设弦AP 的长为x ,△APO 的面积为y ,则下列选项中,能表示y 与x 的函数关系的大致图象是( )[解析] 当P 为的中点时,即OP ⊥AB 时,S △AOP 最大.此时AP =x =2,不是1,排除B 、D.当AP =x =1时,S △AOP =34>14.故排除C ,选A. [答案] A [模型解法]角度2 巧用函数性质判断函数图象[例3] (1)在下列图象中,二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象只可能是( )[解析] 由选项中的函数图象可知,指数函数y =⎝⎛⎭⎫b a x 是单调递减的,所以0<ba <1. 因为二次函数y =ax 2+bx 的对称轴为x =-b 2a ,所以-12<-b 2a <0,即二次函数的对称轴在y 轴的左侧,直线x =-12的右侧,显然只有选项A 满足.故选A.[答案] A(2)函数f (x )=cos xx的图象大致为( )[解析] f (x )的定义域为(-∞,0)∪(0,+∞), 关于原点对称.f (-x )=cos (-x )-x=-cos xx =-f (x ),∴函数f (x )为奇函数,则图象关于原点对称,故排除A ,B , 当x →0+,cos x →1,cos x x →+∞,故选D.[答案] D [模型解法][高考类题]1.(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:由题意,令函数f (x )=sin 2x1-cos x,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f ⎝⎛⎭⎫π2=sin π1-cos π2=0,f ⎝⎛⎭⎫3π4=sin3π21-cos3π4=-11+22<0,所以排除A ;f (π)=sin 2π1-cos π=0,排除D.故选C.答案:C2.(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:易知函数g (x )=x +sin xx 2是奇函数,其函数图象关于原点对称,所以函数y =1+x+sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.答案:D考点三 函数图象的应用|方法突破[例4] (1)函数f (x )=⎩⎨⎧ln x (x >0),--x (x ≤0)与g (x )=|x +a |+1的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .RB .(-∞,-e]C .[e ,+∞)D .∅[解析] (定性分析)设y =h (x )与y =f (x )的图象关于y 轴对称,则h (x )=f (-x )=⎩⎨⎧ln (-x ),x <0,-x ,x ≥0,作出y =h (x )与y =g (x )的函数图象如图所示. ∵f (x )与g (x )图象上存在关于y 轴对称的点,∴y =h (x )与y =g (x )的图象有交点,∴-a ≤-e ,即a ≥e.故选C. [答案] C(2)如图,|OA |=2(单位:m),|OB |=1(单位:m),OA 与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧与线段OA 延长线交于点C .甲、乙两质点同时从点O出发,甲先以速率1(单位:m/s)沿线段OB 行至点B ,再以速率3(单位:m/s)沿圆弧行至点C 后停止;乙以速率2(单位:m/s)沿线段OA 行至点A 后停止.设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y =S (t )的图象大致是( )[解析] (函数模型)当0≤t ≤1时,甲从O 点行往B 点,乙从O 点行往A 点,故所围图形为三角形,所以S =12×2t ×t ×sin π6=12t 2(0≤t ≤1);当甲从B 点沿圆弧行往C 点时,乙则停在A 点,故所围图形为三角形加扇形,其面积为S =S △AOB +S 扇形=12+12|AB |×3(t -1)=12+325-23t -325-23(t >1). 设t =t 0时,甲行至C 点,S 达到最大值S 0,所以S =⎩⎪⎨⎪⎧12t 2,0≤t ≤1,325-23t +12-325-23,1<t <t 0,S 0,t >t 0,显然选项A 符合,故选A.[答案] A(3)已知函数f (x )=⎩⎪⎨⎪⎧x +1(0≤x <1)2x -12(x ≥1),设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.[解析] (定量计算) 画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,12≤b <1,bf (a )=b ·f (b )=b (b +1)=b 2+b =⎝⎛⎭⎫b +122-14,所以34≤b ·f (a )<2.[答案] ⎣⎡⎭⎫34,2[方法提升]解决函数应用问题的常用方法[跟踪训练]1.在同一直角坐标系中,函数y =ax 2-x +a2与y =a 2x 3-2ax 2+x +a (a ∈R )的图象不可能的是( )解析:分两种情况讨论:当a =0时,函数为y =-x 与y =x ,图象为D ,故D 有可能;当a ≠0时,函数y =ax 2-x +a 2的对称轴为x =12a ,对函数y =a 2x 3-2ax 2+x +a 求导得y ′=3a 2x 2-4ax +1=(3ax -1)(ax -1),令y ′=0,则x 1=13a ,x 2=1a ,所以对称轴x =12a 介于两个极值点x 1=13a ,x 2=1a之间,A ,C 满足,B 不满足,所以B 不可能.答案:B2.如图,正方体ABCD ­A 1B 1C 1D 1的棱长为1,E ,F 分别是棱A 1B 1,CD 的中点,点M 是EF 上的动点(不与E ,F 重合),FM =x ,过点M 、直线AB 的平面将正方体分成上下两部分,记下面那部分的体积为V (x ),则函数V (x )的大致图象是( )解析:当x ∈⎝⎛⎦⎤0,22时,V (x )增长的速度越来越快,即变化率越来越大;当x ∈⎣⎡⎭⎫22,2时,V (x )增长的速度越来越慢,即变化率越来越小,故选C.答案:C[真题感悟]1.[考点二](2016·高考全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:当x =2时,y =8-e 2∈(0,1),排除A ,B ;易知函数y =2x 2-e |x |为偶函数,当x ∈[0,2]时,y =2x 2-e x ,求导得y ′=4x -e x ,当x =0时,y ′<0,当x =2时,y ′>0,所以存在x 0∈(0,2),使得y ′=0,故选D.答案:D2.[考点一、三](2015·高考全国卷Ⅰ)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( )A .-1B .1C .2D .4解析:法一:设平面上一点(x 0,y 0)关于直线y =-x 的对称点为(x 1,y 1),则⎩⎪⎨⎪⎧ y 0+y 12=-x 0+x 12,y 1-y 0x 1-x 0=1,所以x 1=-y 0,y 1=-x 0,故点(-2,f (-2)),(-4,f (-4))关于直线y =-x 的对称点分别为(-f (-2),2),(-f (-4),4).由题意有⎩⎪⎨⎪⎧2=2-f (-2)+a ,4=2-f (-4)+a , 所以8=2-[f (-2)+f (-4)]+2a ,故由题设知22a -1=8, 解得a =2.法二:在y =f (x )的图象上任取一点P (x 0,y 0),则P (x 0,y 0)关于直线y =-x 对称的点为P ′(-y 0,-x 0),所以P ′必在y =2x +a 的图象上,即-x 0=2-y 0+a ,所以-y 0+a =log 2(-x 0),所以y 0=a -log 2(-x 0),所以f (x )=a -log 2(-x ),又f (-2)+f (-4)=1,所以2a -log 22-log 24=1,所以2a -1-2=1,解得a =2,故选C.答案:C3.[考点一、二](2015·高考全国卷Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:当点P 与C 、D 重合时,易求得P A +PB =1+5;当点P 为DC 的中点时,P A+PB =2P A =2 2.显然,1+5>22,故当x =π2时,f (x )不取最大值,故C 、D 选项错误.当x ∈⎣⎡⎭⎫0,π4时,f (x )=tan x +4+tan 2x ,不是一次函数,排除A.故选B. 答案:B4.[考点一、三](2016·高考山东卷)已知函数f (x )=⎩⎪⎨⎪⎧|x |, x ≤m ,x 2-2mx +4m , x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是__________.解析:f (x )的大致图象如图所示,要满足存在b ∈R ,使得方程f (x )=b 有三个不同的根,只需4m -m 2<m ,又m >0,所以m >3.答案:(3,+∞)。

相关文档
最新文档