计算方法线性方程组的数值解法
数值计算方法-第2章-线性方程组的直接解法
(k ) (k ) (k ) (k ) a max a A , b 在矩阵 的第 k 列中找 i k ik k in
( k 1) ( k 1) A , b 交换第k行与ik行, 进行第k次消元, 得
第2章 线性方程组的直接解法
n阶线性方程组: 记:
a1n b1 x1 b x a2 n 2 2 , x b , bn ann x n
a11 a Ai 21 an1 a1n b2 a2 n bn ann b1
消元过程: 只统计乘除法的次数. 除法次数: 2. for k=1 to n step 1 …… n次循环 n n 1 (n k ) k 2.2 for i=k+1 to n step 1 …… n-k次循环 k 1 k 1 aik/akk→aik ……每次k循环: n-k次除法 n(n 1) 2 for j=k+1 to n step 1 …… n-k次循环 : aij-aik*akj→aij … 每次k循环:(n-k)2次乘 乘法次数 n n 2 (n k ) (n k ) end for ( j ). k 1 k 1 bi-aik*bk→bi …每次k循环: n-k次乘法 n 1 n 1 2 k k end for ( i ). k 1 k 1 end for ( k ). n(n 2 1) 3 3. for k=n to 1 step -1 …… n次循环 3.1 计算 bk/akk→bk ……每次k循环: 1次除法 回代过程: 3.2 for i=1 to k-1 step 1 …… k-1次循环 乘除法次数: n bi-aik*bk→bi … 每次k循环: k-1次乘法 k n(n 1) 2 end for (i).(移第k列) k 1 end for ( k ). 总的乘除法次数: n3 3 n2 n 3, Gauss消去法时间复杂度: O(n3)
数值计算08-线性方程组数值解法(优选.)
0
(k=1,2,…,n) ,则可通过高斯消元法求出Ax=b 的解。
引理
A的主元素
a(k) kk
0
(k=1,2,…,n) 的充要条件
是矩阵A的各阶顺序主子式不为零,即
a11
a1k
D1 a11 0 Dk
0, k 2, 3, , n
ak1
akk
定理2 Ax=b 可用高 斯消元法求解的充分必要条件是: 系数矩阵 A 的各阶顺序主子式均不为零。
Page 5
线性代数方程组的计算机解法常用方法:
直接法 迭代法
消去法 矩阵三角分解法
Page 6
直接法:经过有限步算术运算,可求得方程组
的精确解的方法(若在计算过程中没有舍入误差)
迭代法:用某种极限过程去逐步逼近线性方程
组精确解的方法 迭代法具有占存储单元少,程序设计简单,原
始系数矩阵在迭代过程中不变等优点,但存在收 敛性及收敛速度等问题
a(k) ik
a(k) kk
aijk
mik
a
k
kj
bik1 bik mikbkk
xn
bnn annn
bii
n
a
i
ij
x
j
,
xi
ji1
aiii
i, j k 1, k 2,, n
i n 1,,2,1
高斯消元法的条件
Page 20
定理1
如果在消元过程中A的主元素
a(k) kk
即:
a111
a112 a222
a11n a22n
x1 x2
bb1212
an22
an2n
xn
bn2
其中:
实验五(线性方程组的数值解法和非线性方程求解)
1大学数学实验 实验报告 | 2014/4/5一、 实验目的1、学习用Matlab 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2、通过实例学习用线性代数方程组解决简化问题。
二、 实验内容项目一:种群的繁殖与稳定收获:种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应维持不变。
种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。
种群年龄记作k=1,2,…,n ,当年年龄k 的种群数量记作x k ,繁殖率记作b k (每个雌性个体1年的繁殖的数量),自然存活率记作s k (s k =1−d k ,d k 为1年的死亡率),收获量记作ℎk ,则来年年龄k 的种群数量x ̌k 应该为x ̌k =∑b k n k=1x k , x ̌k+1=s k x k −ℎk , (k=1,2,…,n -1)。
要求各个年龄的种群数量每年维持不变就是要求使得x ̌k =x k , (k=1,2,…,n -1).(1) 如果b k , s k 已知,给定收获量ℎk ,建立求各个年龄的稳定种群数量x k 的模型(用矩阵、向量表示).(2) 设n =5,b 1=b 2=b 5=0,b 3=5,b 4=3,s 1=s 4=0.4,s 2=s 3=0.6,如要求ℎ1~ℎ5为500,400,200,100,100,求x 1~x 5.(3) 要使ℎ1~ℎ5均为500,如何达到?问题分析:该问题属于简单的种群数量增长模型,在一定的条件(存活率,繁殖率等)下为使各年龄阶段的种群数量保持不变,各个年龄段的种群数量将会满足一定的要求,只要找到种群数量与各个参量之间的关系,建立起种群数量恒定的方程就可以求解出各年龄阶段的种群数量。
模型建立:根据题目中的信息,令x ̌k =x k ,得到方程组如下:{x ̌1=∑b k nk=1x k =x 1x ̌k+1=s k x k −ℎk =x k+1整理得到:{−x 1∑b k nk=1x k =0−x k+1+s k x k =ℎk2 大学数学实验 实验报告 | 2014/4/52写成系数矩阵的形式如下:A =[b 1−1b 2b 3s 1−100s 2−1…b n−1b n0000⋮⋱⋮000000000⋯00−10s n−1−1]令h =[0, ℎ1,ℎ2,ℎ3,…,ℎn−2,ℎn−1]Tx =[x n , x n−1,…,x 1]T则方程组化为矩阵形式:Ax =h ,即为所求模型。
第2章 线性方程组的数值解法
第2章 线性方程组的数值解法2.1 引言在自然科学研究和工程技术的应用中,许多问题的解决,诸如非线性问题线性化、求微分方程的数值解最终都归结为线性方程组的求解问题. 我们在后面章节中的样条插值、曲线拟合、数值代数等,也需要求解线性方程组。
一般地,设n 阶线性方程组(linear system of equations of order n )为11112211211222221122,,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (2.1.1) 表示成矩阵形式=Ax b , (2.1.2)其中()111212122212n n ij n nn n nn a a a a a a a a a a ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ A ,12n x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ x ,12n b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦b , (2.1.3) A 为系数矩阵(coefficient matrix).目前在计算机上经常使用的、简单有效的线性方程组的数值解法大致分为两类:直接法(direct method)和迭代法(iterative method). 其中直接法适用于以稠密矩阵为系数矩阵的中低阶线性方程组,而迭代法主要用于求解以稀疏矩阵为系数矩阵的高阶线性方程组。
本章首先介绍解线性方程组的两种常用的直接法:Gauss 消去法与矩阵三角分解法;然后介绍解线性方程组的三种常用的迭代法:Jacobi 迭代法、Gauss-Seidel 迭代法、超松弛法(SOR 法),并讨论它们的收敛性。
最后,讨论了线性方程组的性态。
2.2 Gauss 消去法Gauss 消去法(Gaussian elimination method )的基本思想是使用初等行变换将方程组转化为一个同解的上三角形方程组,再通过回代,求出该三角形方程组的解.2.2.1 Gauss 消去法Gauss 消去法包括消元和回代两个过程. 下面先举例说明Gauss 消去法求解线性方程组的主要过程.例2.2.1 求解线性方程组123123123471,2581,3611 1.x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ 解 将该线性方程组写成增广矩阵(augmented matrix)的形式1471258136111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦用Gauss 消去法求解过程如下:1.消元过程12213323323214711471147125810361036136111061020020r r r r r r r r r -+→-+→-+→⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−−−−→---−−−−→---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦,从而原方程组等价地变为上三角形方程组123233471,361,20.x x x x x x ++=⎧⎪--=-⎨⎪=⎩2.回代过程从第3 个方程解出30x =,将其代入第2 个方程得()2216/31/3x x =--+=,再将30x =及21/3x =回代到第1个方程,解出1231471/3x x x =--=-. 从而得到原方程组的解123113,0.x x x =-==对于一般线性方程组(2.1.1),使用Gauss 消去法求解分为以下两步:1.消元过程为方便起见,记()(0)(0),ijn na ⨯==A A ()T(0)(0)(0)(0)1,12,1,1,,,n n n n a a a +++== b b ,则方程组(2.1.1)为()()()()()()()()()()()()000011112211,1000021122222,100001122,1,,.n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a +++⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ (2.2.1) 第1次消元:若()0110a ≠,对方程组(2.2.1) 执行初等行变换11i i i r l r r -→, 2,3,,i n = ,得第1个导出方程组——————————————————————————高斯 (Carl Friedrich Gauss 1777年4月30 日 – 1855年2月23 ) 是德国数学家、天文学家,在许多科学领域都做出了杰出的贡献,他为现代数论、微分几何(曲面论)、误差理论等许多数学分支奠定了基础. 他的数学研究以简明、严谨、完美而著称于世. 他在数学上与阿基米德、牛顿和欧拉齐名,被称为“数学王子”,被公认为有史以来最伟大的数学家之一.()()()()()()()()()()000011112211,111122222,111122,1,,,n nn n n n n nn n n n a x a x a x a a x a x a a x a x a +++⎧+++=⎪⎪++=⎨⎪⎪++=⎩(2.2.2)其中()()1111/i i l a a =,()()()10011,2,3,,;2,3,, 1.ij ij i j a a l a i n j n =-==+第2次消元:若()1220a ≠,对方程组(2.2.2)执行初等行变换22,i i i r l r r -→ 3,4,,i n = ,得第2个导出方程组()()()()()()()()()()()()()()()0000011112213311,1111122223322,122233333,122233,1,,,,n nn n n n n nn n nn nn n a x a x a x a x a a x a x a x a a x a x a a x a x a ++++⎧++++=⎪⎪+++=⎪⎪++=⎨⎪⎪⎪++=⎪⎩(2.2.3)其中()()112222/i i l a a =,()()()21122,3,4,,;3,4,, 1.ij ij i j a a l a i n j n =-==+第k 次消元:若()10k kka -≠,对第1k -个导出方程组执行初等行变换i ik k i r l r r -→,1,2,,i k k n =++ , 得第k 个导出方程组()()()()()()()()()()()()()()()000001111221,1111,110112221,1122,11,111,1,1,11,1,,,,k k n nn k k n n n k k k k k k k n nk n k k k n k k nn n n n a x a x a x a x a a x a x a x a a x a x a a x a x a +++++++++++++++⎧+++++=⎪⎪++++=⎪⎪⎨++=⎪⎪⎪⎪++=⎩(2.2.4)其中()()11k k ik ikkkl a a --=,()()()11,k k k ij ij ik kj a a l a --=- 1,,;1,, 1.i k n j k n =+=++ 重复上述过程1n -次,得到第1n -个导出方程组()()()()()()()()()()()()()()0000011112213311,1111122223322,122233333,111,1,,,.n n n n n n n nn n n nn nn n a x a x a x a x a a x a x a x a a x a x a a x a +++--+⎧++++=⎪⎪+++=⎪⎪++=⎨⎪⎪⎪=⎪⎩(2.2.5)其中()()()()()1111,,1,2,,1;1,,;1,, 1.k k kk k ik ikkkij ijik kjl a a a a l a k n i k n j k n ----==-=-=+=++ (2.2.6)这样,通过消元过程就将方程组(2.1.1)化成了等价的上三角形方程组(2.2.5).2.回代过程回代过程就是求上三角形方程组(2.2.5)的解. 若()10n nna -≠,则从最后一个方程开始,先求出()()11,1,/n n n n n n n x a a --+=,再由第1n -个方程解出1n x -,依此类推可解出221,,,n x x x - . 一般(2.2.7)定义 2.2.1 由式(2.2.2)-(2.2.7)确定的求解线性方程组的算法称为Gauss 消去法(Gaussian elimination method),包括消元(elimination)和回代(backward substitution)两个过程。
数值计算方法第3章解线性方程组的数值解法1
,i
2 ,3 ,...,
n
a
(1 11
)
A( 1) A ( 2 )
a (1) 11
a (2) 22
...... ......
......
a (2) n2
......
a a
(1) 1n
(2) 2n
a
(2 nn
)
b (1)
b (2)
[
b
( 1
1
)
b (2) 2
a(k) kk
...
a(k) kn
... ... ...
...
...
a(n) nn
b1(1) b2(2)
...
bk(k)
...
bn(n)
21
高斯顺序消去法
也就是对于方程组AX=b系数矩阵做:
ai(jkl1i)k
a(k) ik
a(k) ij
/
a(k) kk
3)顺序消元
31
高斯列主元消去法
第k步
从A ( k ) 的第
k
列
a (k) kk
,a (k) k 1k
,...a
(k) nk
中选取绝对值
最大项,记录所在行,即
|a(k) ikk
|m kina|axi(kk)
|
记 lik
若 l k 交换第k行与l行的所有对应元素,再 进行顺序消元。
32
其中, lii 0, i 1,2,..., n
(1)
10
高斯顺序消元法
大学数值计算方法(第3章解线性方程组的数值解法)3
征值, 则称 ρ ( A) = max{| λi |}
1≤i ≤ n
为矩阵A的谱半径。 矩阵A的谱半径ρ ( A)不是A的一种范数, 但可能与A的任何一种范数有某种关系。
例题
2 求矩阵 A = − 2 − 1 的谱半径。 4
则必存在两正数m, M , 使得 m || x ||β ≤|| x ||α ≤ M || x ||β
向量范数性质 等价性质:
1) 2) 3) 1 || x ||1 ≤|| x ||∞ ≤|| x ||1 n || x ||∞ ≤|| x ||1 ≤ n || x ||∞ || x ||∞ ≤|| x ||2 ≤ n || x ||∞
lim || x
(k)
− x ||∞ = 0 ⇔ lim max x
* k →∞ 1≤i ≤ n k →∞ (k ) i
(k ) i
− xi = 0
⇔ lim x
=x
* i
(i = 1,2,...n)
3.4.2 矩阵范数
定义3.4.3 设任意A ∈ R n×n , 若按某一确定的法则对 应于一非负实数 || A ||, 且满足 : 1)非负性 :|| A ||≥ 0,当且仅当A = 0时, A ||= 0; || 2)奇次性: kA ||=| k ||| A || ,k ∈ R; || 3)三角不等式: A + B ||≤|| A || + || B ||, ∀A, B ∈ R n×n ; || 4)相容性: ≤ A B ,∀A, B ∈ R n×n, AB 则称 || A || 为R n×n的一种范数。
算子范数
所以对x ≠ 0有 || ( A + B) x || ≤|| A || + || B || || x || || ( A + B) x || || A + B ||= max ≤|| A || + || B || x ≠0 || x || || AB ||≤|| A |||| B || 。 || I ||= max || Ix ||= 1 x =1
线性方程组数值解法LU分解法
Crout 分解.
矩阵分解理论
推论 3 如果 A AT ,则A LDLT
其中,L 是单位下三角阵,D 是对角阵.
推论 4 如果 A 对称,正定,则 A L LT ,
L 是对角元全为正数的下三角矩阵, 称为平方根分解或 Cholesky 分解.
0
0
a (3) n3
...
a
(3 nn
)
高斯消元过程的矩阵表示
以此类推可得
a
(1 11
0
)
a (1) 12
a (2) 22
a (1) 13
a (2) 23
... ...
a a
(1 ) 1n
(2) 2n
L n 1 L n 2 ... L 2 L 1 A
0
...
0
a (3) 33
...
由 a21 u11l21
得
l21
a21 ; u11
由 a31 u11l31
得
l31
a31 u11
k 2时:a22 l21u12 u22
得u22
a22
l2
1u1
;
2
由a23 l21u13 u23 得u23 a23 l21u13;
由a32 l31u12 l32u23
得l3
2
a32
l31u12 u22
k 3时:由a33 l31u13 l32u23 u33
得u33 a33 (l31u13 l32u23)
A的各阶顺序主子式均不为零,即
a11 ... a1k Ak ... ... ...0
ak1 ... akk
(k1,2,..n.)
线性方程组的四种数值解法
线性方程组的四种数值解法(电子科技大学物理电子学院,四川 成都 610054)摘要:本文介绍了四种求解线性方程组的数值解法: 雅克比迭代法、高斯赛德尔迭代法、高斯消去法和改进的平方根法的基本原理和算法流程,通过求解具体方程,对四种求解方法进行了对比。
对于雅克比迭代法和高斯赛德尔迭代法,研究了两种算法对求解同一方程组的迭代效率差异,结果表明高斯赛德尔迭代法达到同样精度所需迭代次数较少。
对于高斯消去法,通过选择列主元的方法提高算法的准确度,计算结果表明高斯消去法计算精确,且运算复杂度也不是很高。
对于改进的平方根法,其运算复杂度低,但对于给定的方程组有着严苛的要求。
关键词:雅克比迭代法;高斯赛德尔迭代法;高斯消去法;改进的平方根法;线性方程组引言线性方程组的求解在日常生活和科研中有着极其重要的应用,但在实际运算中,当矩阵的维数较高时,用初等方法求解的计算复杂度随维数的增长非常快,因此,用数值方法求解线性方程组的重要性便显现出来。
经典的求解线性方程组的方法一般分为两类:直接法和迭代法。
前者例如高斯消去法,改进的平方根法等,后者的例子包括雅克比迭代法,高斯赛德尔迭代法等。
这些方法的计算复杂度在可以接受的范围内,因此被广泛采用。
一般来说,直接法对于阶数比较低的方程组比较有效;而后者对于比较大的方程组更有效。
在实际计算中,几十万甚至几百万个未知数的方程组并不少见。
在这些情况下,迭代法有无可比拟的优势。
另外,使用迭代法可以根据不同的精度要求选择终止时间,因此比较灵活。
在问题特别大的时候,计算机内存可能无法容纳被操作的矩阵,这给直接法带来很大的挑战。
而对于迭代法,则可以将矩阵的某一部分读入内存进行操作,然后再操作另外部分。
本文使用上述四种算法求解对应的方程组,验证各种算法的精确度和计算速度。
1 算法介绍1.1 雅克比迭代法 1.1.1 算法理论设线性方程组(1)b Ax的系数矩阵A 可逆且主对角元素 均不为零,令并将A 分解成(2)从而(1)可写成令其中. (3)以B 1为迭代矩阵的迭代法(公式)(4)称为雅克比(Jacobi)迭代法(公式),用向量的分量来表示,(4)为(5)其中为初始向量.1.1.2 算法描述 1给定迭代初始向量X 0以及误差要求delta 2根据雅克比迭代公式计算出下一组向量3判断X 是否满足误差要求,即||X k+1 – X k || < delta4若误差满足要求,则停止迭代返回结果;若否,则返回第二步进行下一轮迭代1.2 高斯赛德尔迭代法nna ,...,a ,a 2211()nna ,...,a ,a diag D 2211=()D D A A +-=()b x A D Dx +-=11f x B x +=b D f ,A D I B 1111--=-=()()111f x B x k k +=+⎩⎨⎧[],...,,k ,n ,...,i x a ba xnij j )k (j j i iii)k (i21021111==∑-=≠=+()()()()()Tn x ,...x ,x x 002010=1.2.1 算法理论由雅克比迭代公式可知,在迭代的每一步计算过程中是用的全部分量来计算的所有分量,显然在计算第i 个分量时,已经计算出的最新分量没有被利用,从直观上看,最新计算出的分量可能比旧的分量要好些.因此,对这些最新计算出来的第次近似的分量加以利用,就得到所谓解方程组的高斯—塞德尔(Gauss-Seidel )迭代法.把矩阵A 分解成(6)其中,分别为的主对角元除外的下三角和上三角部分,于是,方程组(1)便可以写成即其中(7)以为迭代矩阵构成的迭代法(公式)(8)称为高斯—塞德尔迭代法(公式),用变量表示的形式为(9)1.2.2 算法描述 1给定迭代初始向量X 0以及误差要求delta2根据高斯赛德尔迭代公式计算出下一组向量()k x ()1+k x ()1+k ix ()()1111+-+k i k x ,...,x 1+k()1+k x()1+k jx U L D A --=()nna ,...,a ,a diag D 2211=U ,L --A ()b Ux x L D +=-22f x B x +=()()b L D f ,U L D B 1212---=-=2B ()()221f x B x k k +=+⎩⎨⎧[],...,,k ,n ,,i x a x a b a xi j n i j )k (j ij )k (j ij i ii)k (i21021111111==∑∑--=-=+=++3判断X是否满足误差要求,即||X k+1– X k|| < delta4若误差满足要求,则停止迭代返回结果;若否,则返回第二步进行下一轮迭代1.3 高斯消去法1.3.1 算法理论下面三种变换称为初等行变换:1.对调两行;2.以数k≠0乘某一行中的所有元素;3.把某一行所有元素的k倍加到另一行对应的元素上去。
线性代数方程组的数值解法_百度文库
线性代数方程组的数值解法【实验目的】1. 学会用MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2. 通过实例学习用线性代数方程组解决简化的实际问题。
【实验内容】【题目1】通过求解线性方程组A1x=b1和A2x=b2,理解条件数的意义和方程组的性态对解的影响。
其中A1是n阶范德蒙矩阵,即⎡1x0⎢1x1⎢A1=⎢⎢⎢⎣1xn-12x0x12 2xn-1n-1⎤ x0⎥ x1n-1⎥1,...,n-1 ,xk=1+0.1k,k=0,⎥ n-1⎥ xn-1⎥⎦A2是n阶希尔伯特矩阵,b1,b2分别是A1,A2的行和。
(1)编程构造A1(A2可直接用命令产生)和b1,b2;你能预先知道方程组A1x=和A2x=。
b2的解吗?令n=5,用左除命令求解(用预先知道的解可检验程序)b1(2)令n=5,7,9,…,计算A1,A2的条件数。
为观察它们是否病态,做以下试验:b1,b2不变,A1和A2的元素A1(n,n),A2(n,n)分别加扰动ε后求解;A1和A2不变,b1,b2的分量b1(n),分析A和b的微小扰动对解的影响。
b2(n)分别加扰动ε求解。
ε取10-1010,-8,10-6。
(3)经扰动得到的解记做x~,计算误差-x~x,与用条件数估计的误差相比较。
1.1构造A1,A2和b1,b2首先令n=5,构造出A1,A2和b1,b2。
首先运行以下程序,输出A1。
运行以下程序对A1,A2求行和:由于b1,b2分别是A1,A2的行和,所以可以预知x1=运行下列程序,用左除命令对b1,b2进行求解:得到以下结果: T。
x2=(1,1, ,1)1.2 计算条件数并观察是否为病态1.不加扰动,计算条件数。
运行以下程序:由此可知,A1,A2的条件数分别是3.574∗10, 4,766∗10。
2.b1,b2不变,A1(n,n),A2(n,n)分别加扰动(1)n=5时设x11,x12,x13分别为A1添加扰动10−10,10−8,10−6后的解。
线性方程组的方法-数值分析-王兵团-北京交通大学
线性⽅程组的⽅法-数值分析-王兵团-北京交通⼤学注解:1.线性代数中线性⽅程组的⽅法:克拉默法则。
线性⽅程组:Ax=b解:x i=D i/D如果A可逆,还可以写成:x=A-1/b⽅程组的解是:系数⾏列式某⼀项换成等式右端常数项/系数⾏列式。
既然可以有这么好的公式,那为何还要学习其它解法呢?答:好多数学的公式⼀旦⽤到计算机⾥⾯,就不⾏了。
有⼈实验过,100万/s的计算量,解算40阶的线性⽅程组的解,要算⼀年。
天⽓预报的话有⼏百万⼏千万的⽅程组,怎样快速解出来?⼤规模集成电路也需要解⼤规模⽅程组的。
⼈们需要快速求解⼤规模的线性⽅程组,这样,理论解就不⾏了。
数值分析讲的是怎样⽤计算机快速求出数学问题的解。
注解:1.如果⽅程组的数量>未知数个数,没有解,或者有最⼩⼆乘解。
2.如果如果⽅程组的数量<未知数个数,没有解,有⽆穷多解。
3.如果如果⽅程组的数量=未知数个数,有唯⼀解。
计算机做的最多的是这种情况:即⽅(阵)的情况。
4.线性⽅程组怎么得来的?答:每次实验得来的。
5.⼀个系统,有n个元器件,x i代表第i个元器件,每个元器件相当于⼀个变量x i,它们之间的变化有⼀定的关系。
每实验⼀次,得到⼀个它们之间相互关系的⽅程。
实验n次,得到n个⽅程。
通过⽅程组,求出n个元器件情况。
注解:1.计算机求的解都是近似解。
2.学⼀个东西,怎样学好?答:通过类⽐去看。
注解:1.简单迭代法是怎样做的?答:注解:1.初值可以给成:[0,0,0,...].2.x是⼀个向量。
注解:1.构造迭代格式所⽤的等价形式⼀定是有的。
2.未必都收敛的意思:⽐如,如果c给的合适,就收敛,如果不合适,就不收敛。
3.前⽂的引例就是example9.注解:1.x k代表第k步的迭代值。
x k是⼀个向量,所以ε(k)也是⼀个向量,是指第k步的迭代误差。
2.红⾊部分的等式是⼀个递推式⼦。
3.。
完全取决于迭代矩阵B,跟初值怎样选择是没有关系的。
《应用数值分析》课件数值分析5.3线性方程组的数值解法
Step k:设ak(kk) ,0计算因子
mik
a(k) ik
/
a(k kk
)
(i k 1, ..., n)
且计算
a ( k 1) ij
b( k 1) i
a(k) ij
m
ik
a
(k kj
)
b(k ) i
mik bk(k )
(i, j k 1, ..., n)
n
bi (bi
aij * b j ) / aii
j i 1
2024/11/23
线性方程组的直接解法
11
计算量 /* Amount of Computation */
由于计算机中乘除 /* multiplications / divisions */ 运算的时 间远远超过加减 /* additions / subtractions */ 运算的时间,故 估计某种算法的运算量时,往往只估计乘除的次数,而且通 常以乘除次数的最高次幂为运算量的数量级。 (n k) 次
(k)
kk
k ,k1
0
a ( k 1) k 1,k 1
a(1) 1n
a(2) 2n
a(k) kn
a ( k 1) k 1,n
0
a ( k 1) n,k 1
a ( k 1) nn
第 6 章 不动点理论及应用 第 1 页 共 1 页
b(1) 1
b(2) 2
b( k ) k
b( k 1) k 1
b( k 1) n
xn
b(n) n
/
a(n) nn
n
b( i ) i
a
(i ij
计算方法线性方程组数值解法
d
2
a3b3c3
x3
d3
an
1bn1cn
1
xn
1
d
n
1
anbn xn dn
其系数矩阵为三对角形,元素满足以下条件:
|b1|>|c1|>0
|bi|≥|ai|+|ci|,且aici≠0 i=2,3,……n-1; |bn|≥|an|>0。
可以采用追赶法求解
4
线性代数方面的计算方法就是研究求解线 性方程组的一些数值解法与研究计算矩阵 的特征值及特征向量的数值方法。
5
设有线性方程组
a11x1 a12x2 a1nxn b1 a21x1a22x2a2nxnb2 an1x1 an2x2 annxn bn
式中,aij,bi为已知常数,xi为待求的未知量。记
u
2
2
u 2 n
u n 1,n 1u n 1,n
u n n
10
若uii≠0(i=1,2,……n),则由下至上依次回代得
xn yn / unn
xn1 ( yn1 xi yi
un1,n xn ) / un1,n1
n
uij x j ) / uii
0
a
( 2
2 2
)
a
( 2
2) ,k 1
a
( 2
2) ,k
a
( 2
2) ,n
a
( 2
2) ,n 1
0 A(k)
0 0
a
( k
k) ,k
a
( k
k) ,k 1
a
k
k ,n
a
( k
k) 1,n
1
线性方程组的数值解法-安振华-2012011837
实验5:线性方程组的数值解法化学工程系分2 安振华2012011837【实验目的】1、掌握线性方程组的常用数值解法,包括高斯消去法、LU分解法以及校正法。
2、体验数值计算的时间复杂度和计算规模的关系。
3、加深对数值计算误差的理解。
4、学习使用迭代法等算法,求解非线性方程。
5、学习如何使用MATLAB解非线性方程组和方程组。
【实验容】【实验五:习题9】种群的繁殖与稳定收获:种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应保持不变,种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。
种群年龄记作k=1,2,…,n,当年年龄k的种群数量记作x k,繁殖率记作b k(每个雌性个体在1年繁殖的数量),自然存活率记作s k(s k=1-d k,d k为1年的死亡率),收获量记作h k,则来年年龄k的种群数量k x应为:111,(1,2,,1)n k k k k k k k x b x x s x h k n +===-=⋅⋅⋅-∑要求各个年龄的种群数量每年维持不变就是要使(1,2,,)k k x x k n ==⋅⋅⋅(1) 若b k ,s k 已知,给定收获量h k ,建立求各年龄的稳定种群数量x k 的模型(用矩阵向量表示)(2) 设n=5,b 1=b 2=b 5=0,b 3=5,b 4=3,s 1=s 4=0.4,s 2=s 3=0.6,如果要求h 1~h 5为500,400,200,100,100,求x 1~x 5 (3) 要使h 1~h 5均为500,如何达到? 【分析】为方便起见以下种群数量均指其中的雌性。
我们并且有以下的假设:(1)雌性个体的繁殖率和存活率在特定的时间是不变的。
(2)人工饲养的种群在质量和数量上是不受外界环境和资源的限制的。
(3)模型中不考虑人为的或是自然的灾害所造成的种群数量、繁殖率和存活率的变动。
线性方程组的几种求解方法
线性方程组的几种求解方法线性方程组是指由一系列线性方程组成的方程组。
求解线性方程组是在给定的约束条件下找到满足所有方程的解。
在数学和工程领域,线性方程组的求解是一项重要的任务,涉及到许多实际问题的建模和分析。
本文将介绍几种常见的线性方程组的求解方法。
1. 高斯消元法(Gaussian elimination)高斯消元法是求解线性方程组的最常用方法之一、它通过矩阵的初等行变换将线性方程组化简为阶梯形矩阵,然后通过回代求解未知数的值。
高斯消元法具有简单、直观的特点,适用于一般的线性方程组求解。
2. 列主元高斯消元法(Gaussian elimination with partial pivoting)列主元高斯消元法是高斯消元法的改进版本。
它在每一步选择主元时,选取列中绝对值最大的元素作为主元,以减小误差的传播。
这种方法可以提高数值稳定性,但相对于普通高斯消元法,计算量较大。
3. 克拉默法则(Cramer's rule)克拉默法则是一种用于求解线性方程组的代数方法。
它通过计算系数矩阵的行列式和各个未知数的代数余子式,得到每个未知数的值。
克拉默法则适用于方程组个数和未知数个数相等的情况,但由于计算行列式的复杂度高,不适用于大规模的线性方程组求解。
4. 矩阵分解法(Matrix factorization)矩阵分解法通过将系数矩阵分解为两个或多个特定形式的矩阵的乘积,从而简化线性方程组的求解。
常见的矩阵分解方法有LU分解、QR分解、Cholesky分解等。
矩阵分解法适用于大规模线性方程组的求解,具有高效、稳定的特点。
5. 迭代法(Iterative methods)迭代法是一种逐步逼近解的方法,通过迭代计算逐渐接近线性方程组的解。
常见的迭代法有雅可比迭代法、高斯-赛德尔迭代法和共轭梯度法等。
迭代法适用于大规模稀疏线性方程组的求解,具有快速收敛、节约存储空间的特点。
6. 特殊结构法(Special structure methods)对于具有特殊结构的线性方程组,可以利用其特殊性质设计相应的求解方法。
数学建模线性方程组的数值解法
直接法 经过有限次算术运算求出精确解(实际上 由 于 有 舍 入 误 差 只 能 得 到 近 似 解 ) ---- 高 斯 (Gauss)消元法及与它密切相关的矩阵LU分解 迭代法 从初始解出发,根据设计好的步骤用逐次 求出的近似解逼近精确解 ---- 雅可比(Jacobi) 迭代法和高斯—塞德尔(Gauss—Seidel)迭代法
(k )
0.1x1
( k 1)
0.3x2
( k 1)
1.4
Gauss-Seideil迭代公式 Dx ( k 1) Lx ( k 1) Ux ( k ) b
用它作除数会导致舍入误 差的很大增加 解决 办法 选
(k ) aik
(i k , n) 最大的一个(列主元)
将列主元所在行与第k行交换后, 再按上面的 高斯消元法进行下去,称为列主元消元法。
直接法 - 高斯消元法的矩阵表示
高斯消元法的第一次消元
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 an1 x1 an 2 x2 ann xn bn
数值解法(迭代解法)的收敛性
实验5的主要内容
1. 两类数值解法: 直接方法;迭代方法
2. 超定线性方程组的最小二乘解 3. 线性方程组数值解法的MATLAB实现 4. 实际问题中方程组的数值解
线性方程组的一般形式、两类解法
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 a n1 x1 a n 2 x 2 a nn x n bn
大学数学实验
Mathematical Experiments 实验5 线性代数方程组的数值解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 线性方程组的数值解法
解线性方程组的两类方法:
直接法: 经过有限次运算后可求得方程 组精确解的方法(不计舍入误差!) 迭代法:从解的某个近似值出发,通 过构造一个无穷序列去逼近精确解的 方法(一般有限步内得不到精确解)
第3章 线性方程组的数值解法
§1 高斯消去法
高斯消去法是一个古老 的直接法,由它改进的 方法是目前计算机上常 用的求低阶稠密矩阵方
程组的有效方法。
思 首先将方程组Ax=b 化为上三角方程 路 组,此过程称为消去过程,再求解上
三角方程组,此过程称为回代过程.
第3章 线性方程组的数值解法
§1 高斯消去法
一、顺序消去法
1、三角形方程组的解法
a11 x1 a12 x2 a1n xn b1
a22 x2 a2n xn b2
✓ 若A非奇异,即|A|≠0,则X=A-1b
✓ 克莱姆法则:则Xi=Ai / |A|
每项共 n个因
子
计算量:
共包 含n!
项
☺ 一个n阶行列式,需要(n-1)*n!次乘法
☺ 要计算n+1个n阶行列式,需(n+1)(n-1)*n!
☺ X含有n个分量,要做n次除法,共需运算次数
(n+1)(n-1)*n!+n= (n2-1)*n!+n
角形方程组
x1 2x2 x3 3 ①
3x2 6x3 3 ②
12x3 3
③
(3―6")
第3章 线性方程组的数值解法
x1 2x2 x3 3
3x2
6 x3
3
12x3 3
从方程组(3―6“)的方程③解出x3,将所得 的结果代入方程②求出x2,再把x3、x2同时代 入方程①解出x1。这样可求出方程组的解为
x1
1 4
,
x2
3 2
,
x3
1 4
第3章 线性方程组的数值解法
上述求解方程组的方法就是高斯 (Gauss)消去法。从式(3―6)到 (3―6“) 的过程称为消元过程而由(3―6”)求出x3、 x2、x1的过程称为回代过程。
因此用高斯消去法求解线性方程组 要经过消元和回代两个过程。
第3章 线性方程组的数值解法
L
11 1
12 2
1n n
1
a x a x a x b
21
1
L
22 2
2n n
2
L
a x a x a x b
n1
1
L
n2 2
nn n
n
矩阵表示记为 AX b
这里 a A [ ]ij nn , X (x1 , L , xn )T , b (b1 , L ,bn )T
AX=b
第3章 线性方程组的数值解法
aij
aik
• akj
/
akk
aij ,
i k 1, k 2,, n j k 1, k 2,, n
(3―11)
1
2)回代过程
对于k=n,n-1,…,2,1,计算
n
xk (akn1
akj x j ) / akk
jk 1
(3―12)
第3章 线性方程组的数值解法
x2
... xn
bb12((12))
...
bn(n)
第3章 线性方程组的数值解法
回代过程:
xn
b(n) n
/
a(n) nn
n
b( i ) i
a(i ij
)
x
j
xi
j i 1
a(i) ii
(i n 1, ...,1)
定理:若A的所有顺序主子式 均不为0,则高斯消 去法能顺序进行消元,得到唯一解。
xn1 (bn1 an1n xn ) / an1n1
如此再解出xn-2,…,x2,x1,一般有 n
xi (bi aik xk ) / aii ,i n, n 1, ,1
k i1
(3―5)
第3章 线性方程组的数值解法
2、一般线性方程组的解法
现举例如下:
解方程组
x1 x1
2x2 x3 x 2 5x3
第3章 线性方程组的数值解法
第3章 线性代数计算方法
§1 高斯消去法 §2 高斯―约当消去法 §3 解实三对角线性方程组的追赶法 §4 矩阵的三角分解 §5 行列式和逆矩阵的计算 §6 迭代法 §7 迭代法的收敛性
第3章 线性方程组的数值解法
n 阶线性方程组:
a x a x a x b
2、一般的线性方程组
消去过程:
记A(1)
A (a(1) ) ij nn
, b(1) b(b1(1)L
bn(1) )T
第一步:设
a(1) 11
,0计算因子
l
(1)
ai1
i1
a (1)
11
将增广矩阵的第 i 行 + li1 第1行,得到:
a (1) 11
a (1) 12
...
a (1) 1n
A(2)
L
ann xn bn
且aii≠0,i=1,2,…,n
第3章 线性方程组的数值解法
a11x1 a12 x2 a1n xn b1
a22 x2 a2n xn b2
L
(3―4)
ann xn bn
由方程组(3―4)的最后一个方程直接可得
xn bn / ann
将其代入倒数第二个方程可求得
3 0
① ②
4x1 x 2 2x3 2 ③
(3―6)
第3章 线性方程组的数值解法
作②-①消去②中的x1,作③-①×4消去③ 中的x1,则方程组(3―6)化为
x1 2x2 x3 3 ①
3x2
6 x3
3Hale Waihona Puke ②7x2 2x3 3 ③
对方程组(3―6′)作③-②×
(3―6′)
7 3
,得到三
a(k) ij
bi(k )
lik
a(k kj
)
lik bk(k )
(i, j k 1, ..., n)
(i k 1, ..., n)
共进行 n 1步,得 到
a1(11)
a(1) 12
a(2) 22
... ... ...
a(1) 1n
a(2) 2n
...
a(n nn
)
x1
b1(1) b(2)
其中
(2)
aij (2) bi
a(1) ij
b(1) i
l a(1) ,i, i1 1 j
l b(1) i1 1
j
2,3,
,n
第3章 线性方程组的数值解法
第k步:设
a(k) kk
,0计算因子
lik
ai(kk )
/
a(k) kk
且计算
a(k 1) ij
b(k 1) i
a11 ... a1i det(Ai ) ... ... ...
ai1 ... aii
第3章 线性方程组的数值解法
3、顺序高斯消去法的计算步骤: 在计算机上实现时,我们常把方程组右端的常数 项排于系数矩阵的第n+1列,
1)消元过程
对于k=1,2,…,n-1列,若按顺序有某一ark≠0,r≥k,则 交换k与r行,然后计算