(完整word版)浙教版中考数学专题复习——分类讨论题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类讨论题

类型之一直线型中的分类讨论

直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.

例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°

【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。故顶角可能是50°或80°.

答案:D .

同步测试:

1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()

A.9cm B.12cm C.15cm D.12cm或15cm

2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,

(1)求证:B′E=BF;

(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.

类型之二圆中的分类讨论

圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.

例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.

【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A 在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。

【答案】 3<r≤4或r=2.4

同步测试:

3.(上海市)在△ABC中,AB=AC=5,

3

cos

5

B .如果圆O的半径为10,且经过点B、C,那么线段AO

的长等于.

4.(•威海市)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).

(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;

(2)问点A出发后多少秒两圆相切?

类型之三方程、函数中的分类讨论

方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.

例3.(·上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B 不重合),M是线段DE的中点.

(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;

(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;

(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.

【解析】建立函数关系实质就是把函数y用含自变量x的代数式表示。要求线段的长,可假设线段的长,找到等量关系,列出方程求解。题中遇到“如果以A N D

,,为顶点的三角形与BME

△相似”,一定要注意

分类讨论。

【答案】(1)取AB 中点H ,联结MH ,

M Q 为DE 的中点,MH BE ∴∥,1()2

MH BE AD =+. 又AB BE ⊥Q ,MH AB ∴⊥.

12ABM S AB MH ∴=g △,得12(0)2

y x x =+>; (2)由已知得.

Q 以线段AB 为直径的圆与以线段DE 为直径的圆外切,

1122MH AB DE ∴=

+, 即. 解得43x =,即线段BE 的长为43

; (3)由已知,以A N D ,,为顶点的三角形与BME △相似,

又易证得DAM EBM ∠=∠.

由此可知,另一对对应角相等有两种情况:①ADN BEM ∠=∠;②ADB BME ∠=∠.

①当ADN BEM ∠=∠时,AD BE Q ∥,

ADN DBE ∴∠=∠.DBE BEM ∴∠=∠.

DB DE ∴=,易得2BE AD =.得8BE =;

②当时,AD BE Q ∥,

ADB DBE ∴∠=∠.

DBE BME ∴∠=∠.又BED MEB ∠=∠,

BED MEB ∴△∽△.

DE BE BE EM

=,即2BE EM DE =g ,

得2x = 解得12x =,(舍去).即线段BE 的长为2.

综上所述,所求线段BE 的长为8或2.

同步测试:

5.(·福州市)如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处.

(1)直接写出点E 、F 的坐标;

(2)设顶点为F 的抛物线交y 轴正半轴...

于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;

(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

同步测试答案:

1.【解析】在没有明确腰长和底边长的情况下,要分两种情况进行讨论,当腰长是3cm ,底边长是6cm 时,由于3+3不能大于6所以组不成三角形;当腰长是6cm ,地边长是3cm 时能组成三角形.

【答案】D

2.【解析】由折叠图形的轴对称性可知,B F BF '=,B FE BFE '∠=∠,从而可求得B ′E=BF ;第(2)小题要注意分类讨论.

【答案】(1)证:由题意得B F BF '=,B FE BFE '∠=∠,

在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,

B FE B EF ''∴∠=∠,

B F B E ''∴=.B E BF '∴=.

(2)答:a b c ,,三者关系不唯一,有两种可能情况:

(ⅰ)a b c ,,三者存在的关系是222a b c +=.

证:连结BE ,则BE B E '=.

由(1)知B E BF c '==,BE c ∴=.

在ABE △中,90A ∠=o ,222AE AB BE ∴+=.

AE a =Q ,AB b =,222a b c ∴+=.

(ⅱ)a b c ,,三者存在的关系是a b c +>.

相关文档
最新文档